
998  |     Int J Rheum Dis. 2020;23:998–1008.wileyonlinelibrary.com/journal/apl

 

Received: 5 June 2020  |  Revised: 17 June 2020  |  Accepted: 18 June 2020

DOI: 10.1111/1756-185X.13909  

I N V I T E D  R E V I E W

Understanding immunopathological fallout of human 
coronavirus infections including COVID-19: Will they cross the 
path of rheumatologists?

Jayakanthan Kabeerdoss  |   Debashish Danda

© 2020 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd

Department of Clinical Immunology and 
Rheumatology, Christian Medical College, 
Vellore, India

Correspondence
Debashish Danda, Department of Clinical 
Immunology and Rheumatology, Christian 
Medical College, Vellore, Tamil Nadu, India.
Email: debashisdandacmc@hotmail.com

Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causing 
coronavirus disease 2019 (COVID-19) is the biggest pandemic of our lifetime to date. 
No effective treatment is yet in sight for this catastrophic illness. Several antiviral 
agents and vaccines are in clinical trials, and drug repurposings as immediate and 
alternative choices are also under consideration. Immunomodulatory agents like hy-
droxychloroquine (HCQ) as well as biological disease-modifying anti-rheumatic drugs 
(bDMARDs) such as tocilizumab and anakinra received worldwide attention for treat-
ment of critical patients with COVID-19. This is of interest to rheumatologists, who 
are well versed with rational use of these agents. This brief review addresses the 
understandings of some of the common immunopathogenetic mechanisms in the 
context of autoimmune rheumatic diseases like systemic lupus erythematosus (SLE) 
and COVID-19. Apart from demographic comparisons, the role of type I interferons 
(IFN), presence of antiphospholipid antibodies and finally mechanism of action of 
HCQ in both the scenarios are discussed here. High risks for fatal disease in COVID-
19 include older age, metabolic syndrome, male gender, and individuals who develop 
delayed type I IFN response. HCQ acts by different mechanisms including preven-
tion of cellular entry of SARS-CoV-2 and inhibition of type I IFN signaling. Recent 
controversies regarding efficacy of HCQ in management of COVID-19 warrant more 
studies in that direction. Autoantibodies were also reported in severe acute respira-
tory syndrome (SARS) as well as in COVID-19. Rheumatologists need to wait and see 
whether SARS-CoV-2 infection triggers development of autoimmunity in patients 
with COVID-19 infection in the long run.

K E Y W O R D S

autoantibodies, COVID-19, cytokine storm, hydroxychloroquine (HCQ), interferon, systemic 
lupus erythematosus (SLE)

www.wileyonlinelibrary.com/journal/apl
https://orcid.org/0000-0002-7852-6657
mailto:﻿￼
https://orcid.org/0000-0002-2121-0942
mailto:debashisdandacmc@hotmail.com


     |  999KABEERDOSS AnD DAnDA

1  | INTRODUC TION

Since the outbreak of severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) infection causing coronavirus disease 2019 (COVID-
19) was declared as a pandemic by the World Health Organization 
(WHO), 6.43 million people have been infected and approximately 
386 000 deaths have been reported as on 4 June 2020.1 Currently, 
there is no specific therapeutic agent for treatment of COVD-19. 
Several drugs were repurposed for their use as antiviral treatment 
in COVID-19. Global attention and controversies related to use of 
hydroxychloroquine (HCQ) and successful use of several biological 
disease-modifying anti-rheumatic drugs (bDMARDs) have drawn at-
tention of rheumatologists toward immunological understandings of 
COVID-19 pathology as well as scientific and rational use of these 
agents in this scenario.

SARS-CoV-2 affects the lower respiratory tract and infected 
patients develop common symptoms including fever, cough and 
fatigue.2 SARS-CoV-2 differs from common human coronavirus 
(HCoV), SARS-CoV and Middle East respiratory syndrome coro-
navirus (MERS-CoV) in terms of the time required for develop-
ment of symptoms and fatality rate. Patients with COVID-19 can 
be classified, based on severity of diseases, as asymptomatic, mild 
to moderate, severe and critical cases. In severe and critical pa-
tients, SARS-CoV-2 causes atypical pneumonia associated with 
acute respiratory distress syndrome (ARDS). In some cases, other 
complications including multi-organ failure and disseminated in-
travascular coagulation increases fatality. Common laboratory 
markers like C-reactive protein (CRP), ferritin, lymphocyte count 
and lactate dehydrogenase are helpful in predicting severe illness 
in a patient.

Here, we have discussed common pathophysiological mech-
anisms involved in autoimmune diseases like systemic lupus er-
ythematosus (SLE) and COVID-19, including the role of type I 
interferon (IFN), antiphospholipid antibodies, hypercytokinemia 
and finally mechanisms of actions of HCQ in these conditions 
(Figure 1). This review also outlines briefly immunopathogenesis 
of all human coronavirus diseases (HCoV). Most of the scientific 
information was retrieved from studies on animal models of SARS-
CoV and MERS-CoV infections, apart from recent studies on pa-
tients with COVID-19.

2  | DOES SEQUEL A OF HCOV INFEC TIONS 
MIMIC AUTOIMMUNE FOOTPRINTS?

There are demographic, immunological and therapeutic similarities 
and dissimilarities between HCoV infections and autoimmunity.

2.1 | Gender based comparisons

In general, adult women have stronger immune response and they 
are protected more often from infectious disease compared to men 

of similar age.3 Women appears to have robust antimicrobial immune 
responses, especially against viral infections. X chromosomes and 
sex hormones are thought to be responsible for this phenomenon. In 
addition, negative regulators of immune response are less marked in 
woman as compared to men, for example lower number of circulat-
ing T-regulatory cells and lower expression of immune checkpoint 
inhibitors like PD-L1 in T-cells of women.3

Coronavirus strains SARS-CoV and SARS-CoV-2 utilize angioten-
sin I converting enzyme (ACE) 2 as a receptor for entry into host 
cells.4 ACE2 is differentially expressed in different organs; high lev-
els are reported in the small intestine, colon, heart, muscle, kidney, 
testis and moderate levels in lungs. Expression of ACE2 is also higher 
in males compared to females, especially in liver and lung tissues 
even though its gene is present in the X chromosome.5 ACE2 activ-
ity and expression is regulated by 17β-estradiol.6 Messenger RNA 
(mRNA) expression of ACE2 correlates with immune signatures in 
lungs and it is dependent upon age and gender.

There is positive correlation between ACE2 expression and im-
mune signatures in the lungs of men and older individuals, whereas 
negative correlation is observed in women and younger individuals.7 
This might be the reason for excessive immune response in the form 
of the cytokine storm observed in older-aged males that results in se-
vere respiratory complications. However, SARS-CoV-2 infects both 
genders equally, although higher mortality is observed in males.8,9

In an animal model studies, males were found to be highly sus-
ceptible to SARS-CoV infection and more severe lung pathology. 
Mortality of male mice was higher than that of female mice and it 
was dependent on viral load. Blocking estrogen receptor signaling, 
however, led to an increase in mortality even among SARS-CoV in-
fected female mice.10 Enhanced Toll-like receptor (TLR)7 expression 
in female mice, on the other hand, can result in rapid viral clearance 
and improve disease outcome upon exposure to other RNA viruses 
like mouse hepatitis corona virus (MHV) infection as compared to 
male counterparts.

Similar to animal studies, male population is predominantly sus-
ceptible to SARS-CoV-2 infection and accounts for nearly 60% of all 
cases of COVID-19 with higher mortality.11 Similar gender bias was 
also observed in MERS-CoV infection, although it was attributed to 
social activities and religious customs that involved more men than 
women in the Middle East.

2.2 | Ethnicity-related comparisons

African American women are at 4 times higher risk and Latino 
American as well as Asian women are at 2 times higher risk for de-
veloping SLE than European American women. SLE disease severity, 
number of clinical manifestations, prevalence of autoantibodies and 
nephritis as well as mortality are higher in African American, Asian 
and Hispanic populations as compared to the White populations. 
However, socio-economic and environmental background may also 
be confounding factors that influence ethnicity-based prevalence 
and phenotypic differences in SLE.12



1000  |     KABEERDOSS AnD DAnDA

As on 16 June 2020, mortality rate (deaths/ total cases) of 
COVID-19 infection in Europe, North America, Asia and Africa are 
8.2%, 5.8%, 2.5% and 2.7% respectively.13

However, mortality rate of COVID19 in the USA is disproportion-
ately higher among Blacks (92.3 deaths per 100 000 population) and 
Hispanics/Latino Americans (74.3 deaths per 100 000 population) 
than the White American population (45.2 deaths per 100 000).14,15 
Blacks, Asians and minority ethnic (BAME) groups are also found 
to have higher COVID19 mortality rates when compared to White 
ethnic groups in the UK. People of Chinese, Indian, Pakistani, other 
Asian and Caribbean origin as well as other Black ethnicities with 
COVID-19 infection had 10%-50% higher risk of death when com-
pared to the White British population.16

These ethnic discrepancies in COVID-19 mortality, there-
fore, are not because of any genetic factors unlike that in SLE. It is 

essentially due to socioeconomic disadvantages, different cultural 
and health-seeking behavior as well as various disadvantages related 
to their occupations.

Or, do the lifestyle changes among the migrants in the USA 
and Europe unfold underlying metabolic syndrome (obesity/cen-
tral obesity, hypertension/diabetes and related cardiovascular 
complications), a known risk factor for higher mortality in SARS-
CoV illnesses?

3  | BA SIC IMMUNE INJURIES IN 
COVID -19 -  A DEJA VU OF LUPUS-LIKE 
AUTOIMMUNIT Y

Major immunological mechanisms in COVID-19 include: 

F I G U R E  1   Comparison of demographic and clinical characteristics between COVID-19 and systemic lupus erythematosus (SLE). 
Demographic characteristics are dissimilar except ethnicity, and there are similarities in immuno-pathogenic features among the 2 diseases 
including type I interferon (IFN) expression, increased cytokine levels and therapeutic targets. Older males and non-White population may 
be at risk for fatal outcomes in COVID-19, whereas young females are less likely to develop severe COVID-19 disease. Will the surviving 
females develop lupus or antiphospholipid syndrome (APS) in the future?
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1. Late Type I IFN-driven immune activities
2. Adaptive immune responses
3. Cytokine storm
4. Age-related differential immune response: innate versus adaptive 

immunity
5. Production of antiphospholipid antibodies as well as thrombo-

embolic processes.

3.1 | Type I IFNs act as key players in HCoV-induced 
immuno-inflammation

Type I IFNs are produced by host cells against viruses including 
HCoV and recent strain like SARS-CoV-2.17 Type I IFN is required at 
early stages of infection for proper T-cell activation. Type I IFN se-
cretion and its response by receptor cells is highly dependent upon 
age. CD4 T-cells from younger individuals require less amount of IFN 
for activation and survival as compared to older individuals.18 This 
might be the reason for older persons being highly susceptible to 
SARS-CoV2 infection.

Ethnicity also influences type I IFN secretion, as Asians and 
African Americans have higher type I IFN expression in peripheral 
blood cells as compared to Caucasians.19,20 This observation goes 
hand in hand with prevalence of lupus in these ethnicities, a predom-
inantly type 1 IFN-driven disease.

Type I IFN expression is also lower in male individuals compared to 
females, again keeping in line with high female predominance in lupus.

Body mass index (BMI) and smoking also increases type I IFN 
expression and inflammatory cytokines.20 These 2 risk factors tend 
to adversely affect outcome of COVID-19 disease as well as lupus 
and other systemic autoimmune diseases.21-23

These reports suggest that gender, ethnicity, BMI and smoking af-
fect type I IFN secretion. Hence, male gender, African ancestry, high 
BMI and smoking are risk factors for severe or critical COVID-19 dis-
ease21; interestingly, these are also risk factors for severe lupus.23

Several coronavirus proteins antagonize the IFN response in the 
host cell, thereby enhancing viral survival. Papain-like proteases 
(PLP) from SARS-CoV antagonize IFN-β induction by blocking STING 
(stimulator of interferon genes)-mediated signaling.24

On the other hand, impaired clearance of apoptosis products in 
SLE patients leads to generation of membrane vesicles containing 
double-stranded DNA (dsDNA) which induces Type I IFN production 
via the cyclic guanosine monophosphate – adenosine monophos-
phate (GMP-AMP) synthase (cGAS)–STING pathway.25

Delayed type I IFN secretion and response is associated with 
SARS and acute lung injury. Improper T-cell activation leads to infil-
tration of inflammatory monocytes-macrophages in the lung result-
ing in cytokine storm-mediated tissue injury and fatal outcome.26

Inhibition of type I IFN would be an effective choice to reduce 
mortality in a subset of SARS patients who have delayed and inap-
propriate type I IFN secretion.

Similar phenomenon is observed in animals infected with MERS-
CoV and early IFN treatment is effective in preventing viral repli-
cation and delayed IFN response that causes fatal pneumonia with 
infiltrating monocytes, macrophages and neutrophils.27

Chloroquine (CQ) and HCQ are inhibitors of type I IFN secre-
tion by preventing recognition of viral RNA by TLR7 and 8. However, 
type I IFN secretion during the early stage of coronavirus infection 
would protect and limit viral load in the host. Therefore, character-
ization of patients who would develop delayed type I IFN response 
is very crucial and antimalarial compounds could be effective in this 
subset of patients.

Major cellular source of type I IFN is plasmacytoid dendritic cells 
(pDCs), which recognize murine coronavirus MHV and human SARS-
CoV viral RNA through TLR7.28

This mechanism of type I IFN induction is strikingly similar to 
that of SLE. Early secretion of type I IFN by pDCs is important 
for controlling viral replication and preventing dissemination of 
virus to major organs. Depletion of pDCs results in loss of antiviral 
type I IFN response and impaired survival of virus-specific natural 
killer (NK) or CD8+ T-cells.29 Numbers of pDCs gradually decrease 
as age increases, whereas there is no change in conventional DC 
(cDC) cells.30 This may be the reason for reduced antiviral IFN re-
sponses in older age and increased mortality among the elderly 
due to COVID-19.

There is nearly 8-fold higher secretion of type I IFN by pDCs 
upon recognition of MERS-CoV compared to that of SARS-CoV.31 
This may be one of the factors contributing to the higher mortality 
rate observed in MERS than SARS and COVID-19.

Type III IFN (IFN-λ) secretion is also higher by coronavirus-in-
fected pDC and its levels were similar to that of type I IFN. Signal 
transducer and activator of transcription 1 (STAT1) knockout mice 
were more susceptible to SARS-CoV infection compared to IFN re-
ceptor knockout mice.32 SARS ORF6 protein blocks nuclear trans-
location of phosphorylated STAT1 (p-STAT1), thereby preventing 
downstream signaling of type I IFN. In contrast, MERS-CoV doesn't 
prevent p-STAT translocation in IFN-ɑ treated cells.33 This implicates 
that STAT1-mediated IFN response plays an important role in SARS 
pathogenesis.

In addition to TLR7 and STING, TLR3 also contributes protec-
tive immune response against SARS-CoV infection in early disease 
through TRIF-mediated signaling and induction of IFN-β.34 Early 
recognition of TLR3 is required for mounting viral-specific T-cell 
responses in mice infected with a mouse-adapted version of the 
coronavirus (MA15).35 TLR3/7-mediated recognition of viral RNA 
results in induction of type I IFN, and it also activates nuclear fac-
tor-κβ thereby promoting expression of various pro-inflammatory 
cytokines in host cells.34

In summary, both HCoV-mediated diseases and SLE have ro-
bust production of type I IFN. In both conditions, pDC is a major 
cellular source for type I IFN via TLR7 and cGAS–STING signal-
ing, as well as via the TLR3 pathway, a relatively lesser known 
mechanism.
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3.2 | Adaptive immune responses

Early response to SARS-CoV-2 infection is mediated by CD8 cells. 
Dramatic reduction in the number of CD4 and CD8 T-cells during the 
acute phase of infection in patients of SARS and COVID-19 are uniformly 
reported. Decrease in activated CD8 T cells and increase in antibody-
secreting B-cells as well as circulating T follicular helper cells (cTFH cells) 
during convalescence phase of COVID-19 are other encountered observa-
tions.36 Low levels of T-cells (CD3+), both CD4 + T-cells and CD8 + T-cells, 
are also associated with severity and hospital death in COVID-19.8,9,37

Neutrophil to lymphocyte ratio as a predictor for severity in 
COVID-19 has also been studied.11 IFN-γ-producing CD4 T-cells 
were much lower in number in severe cases compared to moder-
ate COVID-19 patients.9 However, Wang et al reported that IFN-
γ-producing CD4 T-cells and CD8 T-cells were higher in critically 
severe and severe cases compared to mild patients.38

SARS-CoV-2-specific antibodies can be detected from day 7 of 
illness and they last for 50 days in patients with COVID-19.39 This 
shows that antibody-producing plasma B-cells are increased in 
blood and they are protective against SARS-CoV-2 infection.40 In 
summary, low T-cells and B-cells in patients with COVID-19 during 
early periods of SARS-CoV-2 infection may be warning of ensuing 
severe disease; and antibody-secreting B-cells rise in number during 
the recovery stage. Further studies on profiling of immune cells in 
longitudinal samples at various stages of illness will be required to 
understand the role of adaptive immune response in COVID-19.

Most of the evidence for the role of memory T-cell response in 
HCoV was obtained from animal studies of SARS-CoV. CD4 T-cells 
are required for activation of B-cells during SARS-CoV and SARS-
CoV-2 infection. During the early period of SARS-CoV infection, 
rapid response cytotoxic lymphocyte (CTL) actions contribute to 
clearance of viruses in mice.41 SARS-CoV Ag-specific immune re-
sponses were measured in a study after 6 years of SARS outbreak 
and showed that memory T-cell responses can be seen in 60% of pa-
tients, but memory B cell responses were undetectable.42 Memory 
T-cells reside in the lung for long-term protection against SARS-CoV.

Similar observations were noted from other studies showing 
persistence of memory T-cells against coronavirus up to a decade 
following the infection.43,44

Type I IFN is required for activation of CD4 Th1 cells that sustain 
antiviral response of CD8 CTLs. In parallel, type I IFN is also required 
for differentiation of TFH cells that mediate B cell differentiation and 
antibody production.45 Therefore, type 1 IFN are crucial for immedi-
ate and long-term protection against COVID-19.

3.3 | Cytokine storm

Wide variability in cytokine secretion patterns that is noticed among 
patients with SARS and COVID-19 determines the course of disease.

Pre-existing comorbidities of these patients also synergistically 
alter cytokine levels and decide outcome. ARDS, disseminated intra-
vascular coagulation and multiple-organ failure rapidly progress in 

severe COVID-19 patients, leading to death within 7 to 14 days of in-
tensive care unit admission. Increased infiltration of neutrophils and 
macrophages as well as secretion of high levels of pro-inflammatory 
cytokines result in a condition called cytokine storm.46 Cytokine 
storm could be the leading cause for respiratory complications and 
multi-organ failure in patients with COVID-19.

Reduced lymphocytes, increased cytokine levels and abnormal 
coagulation parameters are frequent in these cases. Reduced IFN 
levels and increased viral load are higher in critical and severe cases 
as compared to mild to moderate patients with COVID-19.47 In view 
of diminished lymphocyte and dendritic cell function, neutrophils 
and macrophages take over antiviral defense response.47 Interleukin 
6 (IL-6) and tumor necrosis factor alpha (TNF-α) are major pro-in-
flammatory cytokines secreted by these cells that induce tissue 
damage, eventually leading to alveolar flooding and fibrosis.48

Cytokine storm is also a relatively common complication in pa-
tients with SLE, systemic juvenile idiopathic arthritis (SoJIA) and 
adult-onset Still's disease in the form of the severe complication 
called macrophage activation syndrome (MAS). Pattern and serum 
levels of cytokines in COVID-19, mainly that of IL-1β, IL-1 receptor 
antagonist (IL-1Ra), IL-6, IL-10, IFN-γ inducible protein (IP-10), and 
TNF-α in severe and critical cases of COVID-19 is similar to that of 
MAS and hemophagocytic lymphohistiocytosis (HLH).49,50 Clinical 
and laboratory markers of HLH/MAS such as fever, elevated levels 
of acute phase reactants (CRP, serum amyloid A, ferritin) are com-
mon in patients with severe COVID-19.50-52

Thus COVID-19 in severe and critical patients display features like 
MAS leading to severe respiratory failure.50 Treatment regimes de-
signed to reduce cytokine levels that are shown to be beneficial for criti-
cal patients with COVID-19 include infusion of tocilizumab (IL-6 blocker), 
anakinra (IL-1 blocker) and plasma exchange.50,52,53 Immunosuppression 
by conventional DMARDs including low-dose glucocorticoids may be 
useful in these patients as reported by some, even though there is no 
evidence or supportive data yet from any clinical trials.

3.4 | Age-related differential immune responses in 
COVID-19: innate versus adaptive immunity

Age-dependent altered innate immune response to HCoV was stud-
ied in a mice model. Young mice infected with SARS-CoV efficiently 
cleared the virus. In contrast, aged mice showed exacerbated im-
mune response to virus with increased lymphocyte infiltration in 
lungs. During initial infection in young mice, activation of innate im-
mune cells, namely pDC, macrophages and NK cells were involved 
in viral clearance. However, this response was not effective in aged 
mice to contain the virus; instead, a robust cytokine storm and al-
tered lung pathology followed the immunological war against the 
virus in older mice.54 In a macaque model of SARS-CoV infection too, 
aged macaques had more severe lung pathology, lower expression 
of type I IFN and higher expression of pro-inflammatory cytokines 
as compared to younger macaques.55 As mentioned earlier, SARS-
CoV2 infects hosts equally across all age groups, but complications 
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and fatality are noted much more commonly in older populations. 
Early type I IFN response is important for preventing HCoV-mediated 
inflammation and severe disease.27 Both IFN secretion from innate 
cells like pDC and response threshold by its receptor in T-cells are im-
paired in older age as compared to young individuals.18,29,30 Delayed 
IFN response causes apoptosis of T-cells and recruitment of mono-
cytes and neutrophils, leading to cytokine storm and lung injury.26,48 
Inflammation in the form of chronic subclinical systemic inflammation 
and immune senescence, that is reflected by blunted and impaired 
immune response, are other factors contributing to age-related dif-
ferential COVID-19 pathogenesis.56

On the other hand, SARS-CoV-2-associated multisystem inflamma-
tory syndrome in children (MIS-C), mimicking Kawasaki disease (KD) 
are reported across several nations of the world.59-61 Such inflamma-
tory responses are often associated with elevated serum ferritin levels. 
Kawasaki-like diseases have also been reported in some immunode-
ficiency states.60 It is likely that children with MIS-C may have some 
underlying immunodeficiency state that is triggered into an auto-inflam-
matory syndrome by COVID-19 infection; only future studies can reveal 
exact immunological mechanisms behind this unique mimic of KD.

3.5 | Antiphospholipid antibodies

Presence of antiphospholipid antibodies (aPL) were reported in sev-
eral case series and case reports including pediatric patients with 
COVID-19 infection.53,61,62 aPL was associated with coagulopathy and 
multiple infarcts in these patients. aPL is seen in patients with several 
post-viral infection states and usually those are transient. Plasma ex-
change decreases aPL titer levels in patients with COVID-19.53 Positive 
lupus anticoagulant (LAC) is also seen in patients with COVID-19 and 
is often associated with thrombosis.63-65 However, associations of aPL 
negative state in COVID-19 patients with thrombotic complications 
(venous thromboembolism) were also observed.66 Recommendation 
of American Society of Hematology (ASH) is against testing of aPL in 
COVID-19 unless there is prior history of antiphospholipid syndrome 
(APS) and other clinical indications exist.67 aPL Ab can be transiently 
positive at times in several acute infections as mentioned above, vari-
ous states of inflammation, or thrombosis. The International Society 
on Thrombosis and Haemostasis (ISTH) guideline recommends repeat 
confirmatory laboratory testing 12 weeks apart to diagnose APS. 
Therefore, ASH recommendation in isolation may be a hindrance to 
the understanding of an important immunological event in COVID-19, 
even if the presence of aPL Ab is transient.

4  | THE HCQ STORY -  BIOLOGIC AL BA SIS 
FOR ITS USE IN COVID -19 INFEC TION AND 
LUPUS SPEC TRUM DISE A SES

During recent times, HCQ has been subjected to huge discus-
sions in relation to its benefit and harm in COVID-19; its role in 

autoimmune diseases like rheumatoid arthritis (RA) and lupus are 
already established.

4.1 | Mechanisms of action by antimalarials in SARS, 
COVID-19 and SLE

Antimalarial agents, chloroquine (CQ) and HCQ are drugs of choice 
for various connective tissue diseases. Both are immunomodula-
tory agents; unlike immunosuppressants, these drugs are safer for 
patients with chronic diseases. Role and mechanism of HCQ in man-
agement of autoimmune rheumatic diseases is discussed in a recent 
review.68 Here we discuss its perspectives in COVID-19 (Figure 2).

CQ and HCQ not only interfere with TLR7/8-mediated signal-
ing, there is evidence that it has an effect on TLR3 also. CQ inhibit 
IFN-β secretion and phosphorylation of STAT1 in human mesangial 
cells treated with TLR3 agonist polyinosinic-polycytidylic acid (poly 
I:C).69 This may be one more effective mechanism of CQ and HCQ 
in treatment of lupus nephritis patients. As mentioned above, TLR3 
also recognize SARS-CoV dsRNA and activates transcription factors 
IFN regulatory factor 3 (IRF3) and NF-κB, which in turn induces gene 
expression of type I IFN and several pro-inflammatory cytokines. 
CQ reduces poly I:C, ligand for TLR3-induced human lung endothe-
lial barrier permeability by inhibition of pro-inflammatory cytokines 
and by increasing expression of tight junction protein.70 Thus CQ 
and HCQ are effective in treatment of SARS and COVID-19 by pre-
venting immunological injury to lungs. CQ and HCQ also inhibit the 
cGAS–STING pathway, thereby suppressing IFN-β secretion.68,71,72

ACE2 and transmembrane serine protease 2 (TMPRSS2) are IFN 
inducible proteins in humans, but not in mice. Coronavirus strains 
SARS-CoV-2 and SARS-CoV exploits these protein machineries to 
gain entry into host cells.73 Inhibition of expression of IFN inducible 
genes by CQ and HCQ could have a role in prevention of cellular 
entry of these human coronavirus strains.

CQ and HCQ may also inhibit entry of SARS-CoV-2 by preventing 
maturation of endosomes due to its alkalization action and thereby 
impair viral replication.74 CQ can also inhibit SARS-CoV multiplica-
tion by interfering in glycosylation of cellular receptor ACE2 and 
S-protein of virion.75

Moreover, CQ and HCQ are antithrombotic in action and they 
are approved drugs for APS. Hence it may be all the more relevant in 
COVID-19, especially in the light of several autopsy studies showing 
extensive thromboembolic processes in lungs, heart and elsewhere 
as a major finding. However, CQ or HCQ should be avoided if a pa-
tient has myocarditis or QT prolongation by electrocardiogram (ECG) 
due to COVID itself or induced by any other agent including other 
concurrently used drugs.

In summary, antimalarials CQ and HCQ mechanistically prevent 
interaction of ligand-receptors of TLR7, TLR3 and cGAS–STING and 
thereby inhibit type I IFN response. They also may prevent throm-
boembolic events in COVID-19 with or without the presence of an-
tiphospholipid antibodies.
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4.2 | Clinical scenario – HCQ in COVID-19

In a small randomized controlled trial, treatment with HCQ was 
associated with reduced viral load and improvement in radiologi-
cal progression on computed tomography images in patients with 
COVID-19.76 However, another clinical study involving 11 patients 
showed failure of HCQ to clear viral load and no clinical benefit.77

In an observational study, administration of HCQ in severe 
COVID-19 patients has shown no benefit in preventing intubation or 
death.78 In other randomized and clinical observational studies, HCQ 
was not shown to be beneficial for patients who are transferred to 
the intensive care unit.79

These studies were different in terms of dose of medication, day 
of starting treatment, primary endpoint and selection bias of sever-
ity (Table S1). Therefore, randomized clinical trials with larger sample 
size is warranted for testing its efficacy.

On the other hand, HCQ has been recommended as prophylac-
tic regimen specifically for healthcare workers in India.80 HCQ has 
not shown any benefit in severe forms of SARS-CoV-2 infection 
among patients with SLE.81 However currently there is paucity of 
studies to establish its prophylactic role, till results of several on-
going studies are out. Results of larger studies from European Trial 
of Treatments for COVID-19 in Hospitalized Adults (DisCoVeRy) 
and registry from Global Rheumatology Alliance will provide data 
regarding efficacy of HCQ in treatment of COVID-19. Based on 
biological basis, it appears feasible that HCQ may be useful in pa-
tients who have delayed type I IFN response even if the results 
of these trials are negative. Measurement of IFN signature score 
may be employed to identify these subsets of patients in order 
to prescribe HCQ in COVID-19 infection in a more personalized 
manner. Physicians need to understand while recommending HCQ 
to patients with COVID-19 that it is a mild immunomodulatory 

F I G U R E  2   Hydroxychloroquine (HCQ) inhibits SARS-CoV-2 entry and inhibits virus-induced type I interferon (IFN) signaling and pro-
inflammatory cytokines production. Here are the various pathways: 1. Angiotensin I converting enzyme 2 (ACE2) is an inducible gene. HCQ 
inhibit type I IFN, thereby inhibit ACE expression. Also HCQ may inhibit n-terminal glycosylation of ACE2. 2. HCQ can also inhibit viral 
entry by disrupting endosomal acidification. 3. HCQ alters endosomal pH, there by disrupts ligand binding to Toll-like receptor 3 (TLR3) and 
TLR7. 4. HCQ inhibit cGAS–STING (stimulator of interferon genes) signal and thereby reduce type I IFN and pro-inflammatory cytokines 
expression
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agent and not an immunosuppressant. While its use in hospitalized 
COVID-19 patients are not yet proven to be beneficial, several de-
veloping nations are using it in early disease and as a pre-exposure 
prophylaxis for frontline healthcare workers exposed to SARS-
CoV-2, as recommended by Indian Council of Medical Research 
(ICMR)80 (Table S1).

5  | IMPLIC ATIONS FOR 
RHEUMATOLOGISTS IN THE POST-
COVID -19 ER A

Presumable viral etiologies have been known for many connective 
tissue diseases. We might very well expect SARS-CoV-2 triggered 
development of autoantibodies. Some available evidence to support 
this notion are discussed in the following paragraphs.

Autoantibodies seen in patients with SARS are mostly targeted 
to antigens expressed in lung tissue. Human long interspersed nu-
clear element 1 (LINE1) gene endonuclease (EN) domain protein is 
one such autoantigen. Anti-EN antibody is seen in 40% of patients 
with SARS.82 LINE1 is a well characterized autoantigen in patients 
with SLE. LINE1 encoded RNA induces type I IFN in patients with 
SLE and primary Sjögren's syndrome through the TLR7-dependent 
pathway in pDC and TBK1/IKKε pathways in monocytes.83 A recent 
study found that antinuclear antibodies (ANA) (35%), antiphospho-
lipid antibodies (4%) and lupus anticoagulant (40%) were present in 
COVID-19 patients with pneumonia.84 Around 80% of patients in 
this study were male and this observation strongly suggests that el-
derly male COVID-19 patients may develop autoimmune rheumatic 
diseases in the future. Further confirmatory studies are warranted to 
reproduce this finding.

Injection of convalescent sera from SARS patients to rhesus ma-
caques also causes lung injury with similar histopathological features 
as in human disease.85 Thus convalescent sera containing autoanti-
bodies or other antiviral antibodies might cross-react with antigens 
expressed in the lung. This has to be kept in mind while recommend-
ing over enthusiastic use of convalescent sera/plasma therapy in 
critically ill covid 19 cases.

High titers of anticardiolipin antibodies are also seen in SARS pa-
tients presenting with osteonecrosis.86

In vitro experiments also reveal that sera of SARS patients con-
tain autoantibodies targeting pulmonary epithelial cells and endo-
thelial cells.87

Another in vitro experimental study demonstrated anti-S2 spike 
antibodies in sera of SARS patients that can bind to epithelial cells 
inducing cytotoxic injury.88

Sera from patients with autoimmune diseases like mixed con-
nective tissue disease, and RA were found to have higher positivity 
for anti-SARS-CoV IgG and IgM as compared to healthy controls.89 
False positivity was also reported for anti-SARS-CoV antibodies 
in patients with SLE.90 Cross-reactivity between anti-SARS-CoV 
antibodies and autoantibodies targeting the same antigenic target 
is possible. However, autoantibodies in SARS specifically bind to 

antigens expressed in lung tissue, and are not expected against 
cell nuclei (like ANA), against smooth muscles (like SMA) or against 
parietal cells (like PCA).91 These studies show that both SARS-CoV 
and SARS-CoV-2 infections might induce expression of ANA and 
aPL antibodies.84 Further studies are needed to delineate the 
spectrum and pattern of developing autoantibodies in patients 
with COVID-19.

Systemic vasculitis was noted in an autopsy study from 3 pa-
tients who died from SARS.92 Simultaneous diagnosis of COVID-
19 and KD was also made in a 6-month-old child.93 Outbreak of 
Kawasaki-like diseases is reported in 10 children, 8 of them were 
positive for either SARS-CoV-2 by nasal swab or antibodies.57 
Pediatric patients who were positive for SARS-CoV-2 IgG also de-
veloped cutaneous vasculitis lesions.94 Development of cutaneous 
small vessel vasculits was seen in elderly female COVID-19 pa-
tients also on the 7th day after onset of symptoms.95 SARS-CoV-2 
infects endothelial cells and induces apoptosis as well as pyropto-
sis resulting in multi-organ dysfunction.96 These show HCoV not 
only targets lungs, but can infect blood vessels, thereby causing 
multi-organ damage.

In summary, ANA and aPL autoantibodies can be seen in patients 
with SARS and COVID-19. Theoretically, these patients may have 
higher chances to develop autoimmune diseases in future, like APS 
or a lupus spectrum disorder. Rheumatologists will have to wait for 
the post-COVID-19 era to witness any unfolding of events towards a 
rising prevalence of lupus, vasculitic process or APS.

6  | CONCLUSION

Complications and fallouts of COVID-19 disease have some simi-
larities as well as dissimilarities with autoimmune diseases like SLE. 
While male gender, older age and people with metabolic syndrome 
seem to be at a higher risk of contracting more severe SARS-CoV-2 
infection, younger females of African and Asian ancestry have higher 
risk for developing SLE; male gender among lupus patients, however, 
is an independent risk factor for severe disease.

Delayed type I IFN secretion contributes to pneumonia-like 
complications in COVID-19. Increased type I IFN secretion, presence 
of aPL antibodies and cytokine storm are common immunological 
pathologies in lupus as well as COVID-19. Management of COVID-
19 using HCQ as a pre-exposure prophylactic agent and biological 
DMARDs (like tocilizumb) in advanced disease are reported to be 
useful in specific subsets of patients. It will be interesting to note if 
rheumatologists encounter newer presentations of systemic auto-
immune rheumatic diseases in the near future, especially that of any 
unusual lupus spectrum disease following a recent trigger by SARS-
CoV-2 infection.
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