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In the United States, approximately 2.53 million people sustain a concussion each
year. Relative to adults, youth show greater cognitive deficits following concussion and
a longer recovery. An accurate and reliable imaging method is needed to determine
injury severity and symptom resolution. The primary objective of this study was to
characterize concussions with diffusion tensor imaging (DTI). This was performed
through a normative Z-scoring analysis of DTI metrics, fractional anisotropy (FA), axial
diffusivity (AD), and radial diffusivity (RD), to quantify patient-specific injuries and identify
commonly damaged brain regions in paediatric concussion patients relative to healthy
controls. It was hypothesized that personalizing the detection analysis through normative
Z-scoring would provide an understanding of trauma-induced microstructural damage.
Concussion patients were volunteers recruited from the Emergency Department of the
McMaster Children’s Hospital with a recent concussion (n = 26), 9 males and 17 females,
mean age 14.22 ± 2.64, while healthy paediatric brain DTI datasets (25 males and
24 females, mean age 13.52 ± 1.03) were obtained from an MRI data repository.
Significant abnormalities were commonly found in the longitudinal fasciculus, fronto-
occipital fasciculus, and corticospinal tract, while unique abnormalities were localized
in a number of other areas reflecting the individuality of each child’s injury. Total injury
burden, determined by the number of regions containing outliers per DTI metric per
patient, was used as the metric to quantify the overall injury severity of each patient. The
primary outcome of this analysis found that younger patients experienced a significantly
greater injury burden when measured using fractional anisotropy (p < 0.001). These
results show that DTI was able to detect microstructural changes caused by concussion,
on a per-person basis, and has the potential to be a useful tool for improving diagnostic
accuracy and prognosis of a concussion.
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INTRODUCTION

Concussions are mild traumatic brain injuries (mTBI) that
account for 70–90% of all TBI (Cassidy et al., 2004). In 2014 the
Center for Disease Control and Prevention (CDC) recorded
approximately 2.53 million TBI-related Emergency Department
visits, with 812,000 resulting from children (The Centers for
Disease Control and Prevention, 2020). In most cases symptoms
resolve in amatter of days, however, youth show greater cognitive
deficits following concussion and a longer recovery relative to
adults (Zuckerman et al., 2012). Cognitive impairment resulting
from a concussion can include memory, information processing
speed, attention, and executive function (Moore et al., 2016).
The safe and timely return to school and recreation is important
for the physical and psychosocial development of children and
adolescents affected by concussion.

Currently, subtle changes in brain structure caused by diffuse
axonal injury (DAI), indicative of a concussion, are not detected
using clinical magnetic resonance imaging (MRI) and computed
tomography (CT) scans (Chamard and Lichtenstein, 2018).
Therefore, it is paramount that reliable methods be developed to
determine a safe return to sport or activity for each individual.
Advanced imaging methods are required to improve diagnosis
and prognosis in concussion cases. MRI techniques such as
diffusion tensor imaging (DTI) are sensitive to subtle changes
in white matter (WM) fiber tracts revealing microstructural
DAI (Asken et al., 2018). In WM water diffusion is anisotropic,
meaning the diffusivity is not equal in all directions. Utilizing
tensors, the shape of the diffusion ellipsoid can be modeled
by a parameter called fractional anisotropy (FA), which scales
between zero (isotropic diffusion) and one (anisotropy). Higher
FA is interpreted to be related to healthy, intact myelin. The
tensor calculation provides further metrics of water mobility
known as axial diffusivity (AD) and radial diffusivity (RD; Asken
et al., 2018). DTI has been useful in understanding damaged
myelin for a number of neurological disorders such as brain
tumors, neurodegenerative dementia, and multiple sclerosis
(Filippi and Agosta, 2016), but is not typically used clinically for
concussion assessment. However, because a concussion causes
axonal shearing damage (Asken et al., 2018), DTI could be a
useful diagnostic tool.

Concussions are a unique injury where the individualization
of grading and diagnosis is critically important. Comparison of
an individual against a standardized reference sample of healthy
age/sex-matched brains, using a Z-scoring approach, can be
used to localize abnormalities in any single brain. A Z-score
identifies outliers, relative to a normative dataset, and hence is
hypothesized to indicate a region of damage while accounting for
normal anatomical variability. Although DTI studies have been
successful in adults, most only focus on FA as a metric rather
than considering RD and AD (Asken et al., 2018). Furthermore,
none have reported on statistical normality, necessary for valid
Z-scoring, or the severity of clinical presentation. Thus, the
goals of this study were to: (i) develop a Z-scoring approach for
assessment of paediatric concussion, to validate the assumption
of normality in Z-scoring; (ii) to determine whether Z-scoring of
other DTI metrics (AD and RD) provide diagnostic utility in the

personalized assessment of concussion; and (iii) to assess whether
Z-score correlates with concussion severity.

MATERIALS AND METHODS

Participants
Twenty-six subjects [nine males and 17 females,
age = 14.22 ± 2.64 years; average ± standard deviation
(S.D.)] recently diagnosed with a concussion were recruited from
the emergency department of the McMaster Children’s Hospital,
13 of which sustained a sport-related concussion (Table 1). The
study was approved by the Hamilton Integrated Research Ethics
Board (HiREB), with informed consent obtained from a parent
or guardian, and assent obtained from the youth subject. At the
time of scanning, participants were graded on symptom severity
using the Post-Concussion Symptom Scale (PCSS; Lovell et al.,
2006). Data from 49 healthy, age-matched controls [25 males
and 24 females, age = 13.52 ± 1.03 years; average ± standard
deviation (S.D.)] was obtained from the Paediatric MRI Data
Repository created by the NIH MRI Study of Normal Brain
Development (Rivkin et al., 2016).

Data Acquisition and Pre-processing
Imaging was done using a 3 Tesla GE Discovery MR750 MRI
system and 32-channel head and neck coil (General Electric
Healthcare, Milwaukee, WI). Following a 3-plane localizer,
a 3D inversion recovery (IR) prepped fast spoiled gradient
recalled echo (fSPGR) T1-weighted scan was performed
(TE/TR/TI = 4.3/11.4/450 ms, flip angle = 12◦, 512× 256 matrix,
140 slices, 24 cm field of view (FOV), reconstructed to 1 mm3

isotropic voxels).
The DTI spin-echo, echo-planar imaging (SE-EPI) protocol

was split into three separate scans of 19-, 20-, and 21-directions
(each with four b = 0 s/mm2 images) to permit motion and eddy
current correction on smaller blocks of data during the analysis
pipeline. The three scans were then concatenated to form a single
merged 60-direction DTI dataset containing 12 b = 0 s/mm2

and 60 b = 1,000 s/mm2 volumes for a total of 72 images per
slice (Jakab et al., 2017). For each block of diffusion images
(TE/TR = 87/10,000 ms, 3 mm isotropic voxels) MRI pre-scan
values were kept constant. The DTI scans for the downloaded
control dataset were performed on the same MRI systems with
identical resolution and similar diffusion parameters. A B0 field
map was also acquired with identical acquisition geometry to the
DTI scan.

After image concatenation, processing was performed using
FSL (Smith et al., 2004; Jenkinson et al., 2012). Initial steps
included eddy current correction, motion correction, and B0 field
distortion correction through affine registration to a reference
volume using the FSL tool ‘eddy’ (Andersson and Sotiropoulos,
2016). Afterward, the FSL Brain Extraction Tool (BET) was
applied to remove the skull and optic nerves to produce a
binary brain mask (Smith, 2002). The diffusion tensors were
then reconstructed using the default standard linear regression
algorithm of dtifit in FSL (Behrens et al., 2003, 2007). The final
output images from dtifit included FA, eigenvalue (λ1, λ2, λ3),
and eigenvector (ε1, ε2, ε3) images, where AD = λ1 and RD was
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TABLE 1 | Demographics per participant with regard to their current and previous concussion(s).

Participant Age at injury Number of previous concussions Loss of consciousness Time from injury to MRI scan (days) PCSS

1 9.63 0 Yes 142 71
2 13.65 1 Unknown 11 48
3 11.79 0 Yes 10 56
4 10.07 0 No 17 62
5 15.03 0 No 19 76
6 10.8 0 No 14 36
7 15.42 1 No 15 77
8 16.99 1 No 185 64
9 14.2 0 No 15 82
10 16.86 0 Yes 27 19
11 15.92 0 No 196 47
12 14.8 0 No 33 52
13 10.38 1 No 146 2
14 16.3 0 Unknown 20 22
15 11.61 2 No 31 39
16 17.4 4 Unknown 79 62
17 16.4 2 No 21 36
18 16.65 2 No 98 42
19 12.3 0 No 37 56
20 16.67 0 Yes 27 6
21 15.21 1 Unknown 27 90
22 10.44 1 Yes 28 20
23 10.34 0 Unknown 71 26
24 15.31 1 No 57 47
25 14.43 1 No 38 84
26 16.9 3 No 195 52

computed from (λ2+λ3)/2. All control brains were processed in
a similar fashion.

All brains, controls and subjects, were registered to the
MNI152 1 mm T1-weighted average structural template using
the FSL utility flirt (Jenkinson and Smith, 2001; Jenkinson et al.,
2002; Greve and Fischl, 2009). More specifically a 12 degree
of freedom (df) trilinear affine transformation was applied to
register the FA maps to the standard atlas (with all other DTI
metrics following). Within FSLView, two brain atlases were used
to obtain 24 unique regions of interest (ROI) from the Juelich
Histological Atlas and the JHU DTI-based WM Atlas (Eickhoff
et al., 2005, 2006, 2007; Mori et al., 2005; Wakana et al., 2007;
Hua et al., 2008). The 24 ROI masks were individually multiplied
over both concussion and control subjects’ transformed FA, AD,
and RD images. Control data ROIs were individually tested for
normality using the Shapiro-Wilk statistic (p < 0.01) to confirm
the validity of the Z-scoring analysis (Shapiro and Wilk, 1965).

Statistical Analysis
For the subject-specific Z-score analysis each subject had 72
Z-scores performed (i.e., 24 brain ROIs each having measures of
FA, AD, and RD):

ZROI =
xROI − µC

σC

where, for a particular ROI in the subject’s brain xROI represents
the DTI metric value, µC represents the mean of the control
group, and σC is the standard deviation of the control
group. Typically, when conducting multiple analyses on the
same dependent variable, one needs to perform a Bonferroni
correction to minimize Type I errors. However, we were not

performing repeated testing on the same dependent variable
since each brain ROI in each subject and each DTI parameter
were considered independent.

To determine whether DTI correlated with the clinically
assessed injury a multiple linear regression was performed using
R (v.3.6.1) and RStudio (v.1.2.1335). The number of adversely
affected brain areas, as determined using DTI Z-scoring, was
compared to total PCSS score, age at the time of injury, and
time from injury to MRI assessment. This was performed
as a two-tailed test with a significance threshold set at
p< 0.05.

Even though concussions should be analyzed on a per-person
basis, group analysis was done to assess whether there were
brain regions where the injury occurred more commonly in the
entire sample relative to healthy controls. A two-tailed Welch’s
t-test, here with Bonferroni correction, was used to test the
hypothesis that both datasets come from the same population.
This statistic was chosen because it assumes both samples have
normal distributions that are independent of each other, and it
does not assume the variances of each sample to be equivalent
(Montgomery and Runger, 2010). A significant threshold of
p< 0.05 was used.

RESULTS

Based on the Shapiro-Wilk test on healthy control brains,
all ROIs passed the test for normality for FA. However,
two ROIs (right acoustic radiation and corpus callosum) did
not meet assumptions for normality for RD and three ROIs
(cingulum, corpus callosum, and uncinate fasciculus) did not
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TABLE 2 | Shapiro-Wilk normality test for control brains (n = 49) showing the
calculated W-Statistic values.

Region of Interest (ROI) W-Statistic

FA AD RD

Acoustic Radiation Left 0.9675 0.9439 0.9634
Acoustic Radiation Right 0.9308† 0.9655 0.8755¤

Cingulate Gyrus Left 0.9684 0.9732 0.9293†

Cingulate Gyrus Right 0.9312† 0.9295† 0.9676
Cingulum Left 0.9545 0.8603¤ 0.9576
Cingulum Right 0.9445 0.8391¤ 0.9544
Corpus Callosum 0.9545 0.7990¤ 0.7244¤

Corticospinal Tract Left 0.9653 0.9687 0.9295†

Corticospinal Tract Right 0.9373 0.9437 0.9411
Forceps Major 0.9551 0.9787 0.9301†

Forceps Minor 0.9680 0.9400 0.9719
Fornix 0.9291† 0.9327 0.9303†

Hippocampus Left 0.9300† 0.9538 0.9746
Hippocampus Right 0.9529 0.9672 0.9555
Inferior Fronto-occipital Fasciculus Left 0.9846 0.9299† 0.9741
Inferior Fronto-occipital Fasciculus Right 0.9679 0.9500 0.9291†

Inferior Longitudinal Fasciculus Left 0.9291 0.9345 0.9293
Inferior Longitudinal Fasciculus Right 0.9788 0.9615 0.9311†

Optic Radiation Left 0.9451 0.9635 0.9593
Optic Radiation Right 0.9385 0.9506 0.9397
Superior Longitudinal Fasciculus Left 0.9662 0.9348 0.9634
Superior Longitudinal Fasciculus Right 0.9758 0.9564 0.9756
Uncinate Fasciculus Left 0.9462 0.8777¤ 0.9732
Uncinate Fasciculus Right 0.9589 0.8865¤ 0.9326†

Note. †Denotes α > 0.01 after 2 or fewer outliers removed from data set, thus the sample
was considered normally distributed. ¤Denotes α < 0.01 therefore reject H0, indicating
the sample was not normally distributed.

meet assumptions for normality for AD (Table 2). The metrics
for these specific regions were not used in the subsequent Z-
scoring analysis.

Subject-Specific Z-Score Analysis
Subject-specific outlier detection using voxel-wise Z-scores from
24 brain regions in each of the concussion patients (n = 26) were
calculated for FA, AD, and RD, where outliers identified regions
of abnormality. The outlier Z-score distributions between left
and right hemispheres were fairly even for FA (58 and 45,
respectively), and RD (28 and 21, respectively). However, AD
found far fewer abnormalities in the left compared to the right
hemisphere (5 and 21, respectively).

Outliers in FA Z-score values were most frequently observed
in the left inferior fronto-occipital fasciculus (12 patients),
left inferior longitudinal fasciculus (12 patients), and in both
the left and right superior longitudinal fasciculus (11 and
17 patients, respectively; Table 3). Fewer outliers were identified
in the cingulum, cingulate gyrus, corpus callosum, fornix, and
hippocampus, all having three or fewer subjects exhibiting
anomalies.

For RD outliers, the right corticospinal tract and left uncinate
fasciculus were both frequently classified as outliers (10 of
26 patients; Table 3). For both, every outlier had Z > 2. In the
corticospinal tract Z > 0 for 22 of the 26 subjects and in the
uncinate fasciculus Z > 0 for 25 of the 26 subjects indicated
that RD increased in these regions for most concussion subjects
relative to healthy controls.

Outliers in AD identified the least number of concussion
subjects brain differences compared to controls (Table 3). The
right corticospinal tract was the only region that had a significant
number of abnormalities (10 of 26 patients). All 10 patients
had Z > 2, and 25 of the 26 subjects had Z > 0. Of note,
nine of the 19 normally distributed regions did not produce
any outliers.

Demographic parameters were significantly correlated with
DTI metrics (Figure 1). The strongest and most significant
correlations were with FA (Adjusted R-squared: 0.5725,
p < 0.001) and RD (Adjusted R-squared: 0.3295, p = 0.013;
Table 4). Specifically, total FA injury burden was significantly
and negatively associated with age at injury (p < 0.001),
which indicated that younger subjects experienced greater
WM damage (Figure 2). There was a very weak negative
correlation between FA-based disease burden and PCSS
(correlation coefficient = −0.274, P < 0.038). RD injury burden
was also significantly correlated with age at injury (p = 0.029;
Figure 3) and the time to scan (TTS) × PCSS interaction
(p = 0.0078).

Group Z-Score Analysis
Even though concussions are best assessed individually, group
analysis was carried out to identify whether any particular brain
regions more frequently appeared as abnormal post-concussion.
As with Z-scoring, t-tests also require the data to follow a
Gaussian distribution. All FA comparisons met the assumptions
for normality. The concussion group was significantly different
in FA from controls in 19 of the 24 ROIs analyzed. The remaining
five regions that were not significantly different from controls
(p > 0.05) were the left and right cingulum, corpus callosum,
forceps major, and fornix. Additionally, in every ROI, excluding
the forceps major, the mean FA for the concussion group was less
than for the control group.

For RD, the concussion group was significantly different from
the control group in 14 of the 22 normally distributed, testable
ROIs. The corticospinal tract and uncinate fasciculus regions had
the greatest probability of being from two different populations
with p-values< 0.001. Themean RD of the concussion group was
greater than controls in 15 of the 22 regions tested. Similarly, RD
was greater for the concussion group in 10 of the 14 significantly
different regions. The regions whose AD and RD values were not
normally distributed (five regions for AD, and two for RD) were
not analyzed.

For AD, significant differences between the concussion
and control groups were found in 9 of the 19 normally
distributed, testable ROIs. Of those that passed normality
testing, the following appeared significantly different unilaterally:
the acoustic radiation, hippocampus, inferior fronto-occipital
fasciculus, and inferior longitudinal fasciculus. However, both
left and right corticospinal tracts and left and right optic
radiation regions showed the highest degree of significant
difference between concussion and control data with all of their
p-values <0.001. In 11 of the 19 regions, the concussion group
had a higher mean AD than the control group. A similar pattern
was observed among the nine significantly different ROIs with
greater mean AD values found in five of those regions.
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TABLE 3 | Z-score outliers for the DTI metrics of fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD).

Region of Interest Fractional anisotropy (FA) Axial diffusivity (AD) Radial diffusivity (RD)

Control Control No. Outliers No. Outliers Control Control No. Outliers No. Outliers Control Control No. Outliers No. Outliers
Mean SD (± 2σ) (± 3σ) Mean SD (± 2σ) (± 3σ) Mean SD (± 2σ) (± 3σ)

Acoustic Radiation Left 0.2844 0.0257 5 0 1.16 × 10−3 4.15 × 10−5 1 0 7.68 × 10−4 4.98 × 10−5 4 0
Acoustic Radiation
Right

0.2724 0.0257 4 0 1.17 × 10−3 3.60 × 10−5 6 1 — — — —

Cingulate Gyrus Left 0.3609 0.0379 2 0 1.12 × 10−3 6.49 × 10−5 0 0 6.47 × 10−4 3.71 × 10−5 5 0
Cingulate Gyrus Right 0.3095 0.0485 1 0 1.07 × 10−3 6.25 × 10−5 0 0 6.76 × 10−4 4.08 × 10−5 5 0
Cingulum Left 0.3455 0.0407 3 0 — — — — 6.74 × 10−4 4.31 × 10−5 0 0
Cingulum Right 0.358 0.0513 0 0 — — — — 6.59 × 10−4 4.59 × 10−5 0 0
Corpus Callosum 0.4076 0.0319 0 0 — — — — — — — —
Corticospinal Tract Left 0.4713 0.0229 3 2 1.32 × 10−3 6.14 × 10−5 3 0 6.52 × 10−4 6.32 × 10−5 6 0
Corticospinal Tract
Right

0.4652 0.0219 5 1 1.32 × 10−3 6.11 × 10−5 10 1 6.52 × 10−4 5.40 × 10−5 10 2

Forceps Major 0.3871 0.0512 0 0 1.34 × 10−3 9.49 × 10−5 3 0 7.29 × 10−4 7.91 × 10−5 1 0
Forceps Minor 0.377 0.0265 3 1 1.22 × 10−3 4.73 × 10−5 1 0 6.90 × 10−4 3.60 × 10−5 4 1
Fornix 0.2999 0.0415 2 0 1.68 × 10−3 1.66 × 10−4 2 0 1.09 × 10−3 1.85 × 10−4 1 0
Hippocampus Left 0.2652 0.0405 2 0 1.12 × 10−3 5.31 × 10−5 0 0 7.60 × 10−4 6.24 × 10−5 0 0
Hippocampus Right 0.2764 0.0399 1 0 1.13 × 10−3 4.88 × 10−5 4 0 7.60 × 10−4 6.22 × 10−5 1 0
Inferior Fronto-occipital
Fasciculus Left

0.3978 0.0207 12 2 1.20 × 10−3 6.05 × 10−5 0 0 6.53 × 10−4 3.27 × 10−5 0 0

Inferior Fronto-occipital
Fasciculus Right

0.3945 0.0255 5 0 1.21 × 10−3 5.54 × 10−5 0 0 6.56 × 10−4 4.56 × 10−5 0 0

Inferior Longitudinal
Fasciculus Left

0.3517 0.023 12 1 1.17 × 10−3 6.54 × 10−5 0 0 6.88 × 10−4 3.58 × 10−5 0 0

Inferior Longitudinal
Fasciculus Right

0.36 0.0282 6 1 1.15 × 10−3 5.79 × 10−5 0 0 6.72 × 10−4 4.26 × 10−5 0 0

Optic Radiation Left 0.2975 0.0157 1 0 1.15 × 10−3 4.88 × 10−5 1 0 7.28 × 10−4 3.29 × 10−5 2 0
Optic Radiation Right 0.3092 0.0192 2 0 1.14 × 10−3 4.27 × 10−5 1 0 7.09 × 10−4 3.34 × 10−5 0 0
Superior Longitudinal
Fasciculus Left

0.3337 0.0178 11 4 1.10 × 10−3 4.41 × 10−5 0 0 6.78 × 10−4 2.85 × 10−5 1 0

Superior Longitudinal
Fasciculus Right

0.3482 0.0185 17 8 1.10 × 10−3 4.12 × 10−5 0 0 6.62 × 10−4 3.12 × 10−5 1 0

Uncinate Fasciculus
Left

0.3786 0.0322 7 1 — — — — 6.78 × 10−4 3.83 × 10−5 10 3

Uncinate Fasciculus
Right

0.3534 0.0401 4 0 — — — — 7.15 × 10−4 5.55 × 10−5 4 0

An outlier from the Z-distribution implies that area of the brain to be injured. Note: ROIs that failed the normality test and therefore, could not be used for analysis are signified by “—“.
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FIGURE 1 | A paired matrix plot indicating the distribution of data for each metric and the correlation between metrics.

TABLE 4 | Results of the multiple linear regression for the three DTI metrics against the patient demographic information of patient age, the time from their concussion
to the MRI scan (TTS), Post-Concussion Symptom Scale (PCSS) score and the interaction between TTS and PCSS score.

DTI Metric Coefficient Estimate Std. Error t-value Pr (>|t|)

FA Intercept 27.474 3.985 6.894 <0.001∗∗∗

Age −1.362 0.239 −5.691 <0.001∗∗∗

TTS −0.0281 0.0271 −1.038 0.311
PCSS −0.0809 0.0365 −2.214 0.038∗

TTS:PCSS 8.76 × 10−4 5.1 × 10−4 1.718 0.101
AD Intercept 0.515 0.456 1.130 0.271

Age −0.0211 0.0274 −0.771 0.449
TTS −0.00223 0.00310 −0.720 0.480
PCSS −8.57 × 10−4 0.00418 −0.205 0.839
TTS:PCSS 2.53 × 10−5 5.83 × 10−5 0.433 0.669

RD Intercept 32.923 2.419 13.609 <0.001∗∗∗

Age −0.341 0.145 −2.344 0.0290∗

TTS −0.0306 0.0164 −1.859 0.0771 .
PCSS −0.0446 0.0222 −2.011 0.0573 .
TTS:PCSS 9.11 × 10−4 3.1 × 10−4 2.941 0.0078∗∗

Note: Significance codes: 0 ‘∗∗∗’; 0.001 ‘∗∗’; 0.01 ‘∗’; 0.05 ‘.’; 0.1 ‘ ’ 1. For FA: Residual standard error: 2.994 on 21 degrees of freedom. Multiple R-squared: 0.6409, Adjusted
R-squared: 0.5725. F-statistic: 9.368 on 4 and 21 DF, p-value: 0.0001653. For AD: Residual standard error: 0.3423 on 21 degrees of freedom. Multiple R-squared: 0.07259, Adjusted
R-squared: −0.1041. F-statistic: 0.4109 on 4 and 21 DF, p-value: 0.7988. For RD: Residual standard error: 1.817 on 21 degrees of freedom. Multiple R-squared: 0.4367, Adjusted
R-squared: 0.3295. F-statistic: 4.071 on 4 and 21 DF, p-value: 0.013473.

DISCUSSION

The important finding from this work was that a concussion
could be assessed in an individual paediatric subject

using Z-scored DTI metrics. The three primary metrics
(FA, AD, and RD) may not uniformly show brain ROI
abnormalities, but together can provide an understanding
of the global structural abnormalities unique to a subject
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FIGURE 2 | The total number of fractional anisotropy (FA) outliers against the
age for each concussion subject. A greater number of FA outliers were found
in younger subjects.

FIGURE 3 | The total number of radial diffusivity (RD) outliers against the age
for each concussion subject. A greater number of RD outliers were found in
younger subjects.

following a concussion. Furthermore, although the
assumption of normality must be confirmed, comparing
individuals with a concussion to healthy controls is a viable
technique since the large normative healthy dataset is often
normally distributed.

A number of previous studies have reported lower FA
values and higher RD and AD measurements when analyzing
concussion relative to age-matched control groups using group-
based statistics (Inglese et al., 2005; Cubon et al., 2011). This
study aimed to build upon past research by investigating
the efficacy of a novel approach to improve individualized
concussion identification. It was hypothesized that FA would be
decreased in the concussion group relative to healthy controls,
and within our concussion subjects, 19 of the 24 ROIs analyzed

showed lower values in at least one individual (Table 3).
The regions not showing significantly lower Z-scores were the
deep brain regions (left and right cingulum, corpus callosum,
forceps major, and fornix). Many have suggested, albeit based
on group analysis, that the corpus callosum would be a
significant focus for damage inmTBI due to stresses and shearing
forces (Kinnunen et al., 2011). Although corpus callosum FA
was reduced for concussion subjects in this study, it was
not significantly different from control values. It was also
hypothesized that concussion would result in increased RD
and AD. But these measures were more variable than that
seen with FA, showing seven ROIs that were significantly
elevated for both metrics; the corticospinal tract, forceps minor,
right hippocampus, left inferior longitudinal fasciculus, and
optic radiation. The left and right corticospinal tracts saw
the most dramatic differences between the two groups, with
approximately 11% greater RD and 6% greater AD. The group
analysis had variable efficacy in identifying abnormalities in
a single mTBI patient, relative to controls, in terms of FA,
RD, and AD measurements. In only some instances did all
three metrics detect abnormalities in the same brain region
in the same patient. Table 5 provides a rank-order of these
seven ROIs based on each region’s average p-value calculated
for FA, AD, and RD (where pavg = [pFA+pAD+pRD]/3).
This data suggests that the corticospinal tract was the most
effective region to differentiate between the mTBI and healthy
control groups.

One key factor that is often overlooked in MRI studies of
concussion is its correlation with clinical metrics. The PCSS
score is the most frequently used clinical tool. As it is not
possible to correlate any one PCSS symptom with one brain
ROI, overall lesion burden (i.e., number of abnormal ROIs per
metric per subject) was used to compare against PCSS, age
at injury, and time to scan (TTS). It was found that younger
age was a strong predictor (correlation coefficient = −0.715,
P < 0.001) of more MRI indicated damage. This suggests that
age plays a role in brain injuries and must be considered
during the diagnosis as older children had fewer outlier regions.
As paediatric brains are still developing the influence of a
concussion may be more severe than that experienced by an
adult brain (Zuckerman et al., 2012). Although PCSS was
significantly correlated with FA injury burden, it was calculated
to have a very weak, negative correlation. The PCSS remains
a useful diagnostic tool to assess concussion recovery, however
its accuracy and subjectivity when used for youth may explain
these results. Further research with a larger sample size is
required to draw final conclusions on the link between MRI and
PCSS compatibility.

The FA measurements identified significant abnormalities
in the inferior and superior longitudinal fasciculus and the
inferior fronto-occipital fasciculus. These are longer WM
tracts and are possibly more vulnerable to rotational and
shearing forces. A number of imaging studies have also
identified microstructural damage in the superior longitudinal
fasciculus post-mTBI (Kraus et al., 2007; Morey et al.,
2013; O’Phelan et al., 2018). Involved in auditory, visual,
and memory integration, impairment within these regions
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TABLE 5 | Relative difference between the mTBI and control groups for AD and RD, and the average p-value across all DTI metrics for only the ROIs that satisfied
p < 0.05 for both AD and RD metrics.

% Difference (mTBI vs. Control) Average P-value (FA + AD + RD)/3

Region of Interest (ROI) AD RD

Corticospinal Tract Left 5.5% 11.3% 1.53 × 10−7

Corticospinal Tract Right 6.6% 11.2% 5.52 × 10−6

Forceps Minor 2.6% 5.5% 9.35 × 10−5

Hippocampus Right 2.4% 3.9% 9.19 × 10−4

Inferior Longitudinal Fasciculus Left −3.1% −2.0% 3.75 × 10−3

Optic Radiation Left −4.5% −4.5% 7.55 × 10−3

Optic Radiation Right −3.8% −3.1% 1.43 × 10−2

may decrease the ability to comprehend and remember new
information, both written and spoken, which is common with
concussions. The uncinate fasciculus was found abnormal for
a number of subjects, based on RD, and the corticospinal
tract was greatly impacted in terms of both RD and AD. The
uncinate fasciculus’ primary function is memory integration
with functional importance to the integration of social and
emotional behavior (Von der Heide et al., 2013). The
corticospinal tract processes motor control by conducting brain
impulses to the spinal cord. Damage to the uncinate fasciculus
and corticospinal tracts would include frequently reported
post-concussion symptoms such as auditory, memory, and
motor impairments. Previous work supports our findings where
only the longitudinal fasciculus and corticospinal tracts had
axonal damage in concussion (Wakana et al., 2007; Cubon
et al., 2011), while 13 brain regions saw reductions in FA
for moderate to severe TBI. Few ROIs, including the corpus
callosum, were not significantly different from control data
regardless of the metric. A past study from Morey and
colleagues showed correlation with concussion severity and
WM integrity in the corpus callosum and other deeper brain
structures (Mori et al., 2005; Eickhoff et al., 2007; Morey
et al., 2013). Although these findings are in disagreement
with this study, possibly because they performed group rather
than individual analysis, it should be noted that FA was the
only testable metric in this study for the corpus callosum
because corpus callosum RD and AD data failed the normality
test and therefore no further analysis could be performed
(Table 2).

Overall, it was confirmed that the suggested loss of WM
integrity, measured through changes in DTI metrics, could be
quantified on a personalized basis. Using large normative data,
we were able to identify significant regional brain abnormalities
on an individual basis. Because the three DTI metrics (FA,
RD, and AD) did not always corroborate, more advanced
imaging approaches such as high angular resolution diffusion
imaging (HARDI) and Diffusion Kurtosis Imaging (DKI) with
even larger normative datasets are unquestionably necessary
for future research. The more advanced DWI techniques of
HARDI and DKI, and their subsequent analyses such as
neurite orientation dispersion and density imaging (NODDI) or
constrained spherical deconvolution (CSD), can provide more
accurate estimations of voxel properties because they utilize
more diffusion directions and higher b-values than DTI (Danielli

et al., 2020). Thus, making HARDI and DKI more accurate
than DTI as they are able to measure multiple fiber directions,
orientations, densities, and dispersions within voxels because
they are not limited to Gaussian distributions (Danielli et al.,
2020). As seen in Table 3 of our study, a large number of
FA outliers were calculated in several brain regions with no
outliers calculated for AD or RD (i.e., the inferior fronto-
occipital fasciculus left (FA = 12, AD = 0, RD = 0), inferior
longitudinal fasciculus left (FA = 12, AD = 0, RD = 0), superior
longitudinal fasciculus left (FA = 11, AD = 0, RD = 1) and
superior longitudinal fasciculus right (FA = 17, AD = 0, RD = 1).
Although FA appeared to be the most sensitive DTI metric
there was still value in exploring the diffusion metrics of AD
and RD as outliers were detected in other ROIs, and RD
showed significant correlations with demographic factors. The
discrepancy between metrics may also have been the result
of DTI limitations where HARDI or DKI acquisitions might
have detected outliers due to their more accurate estimates.
Nonetheless, consideration of diffusion metrics beyond FA can
provide insightful information and should be implemented
more often in research. In conclusion, this study demonstrated
that DTI can sensitively detect microstructural changes caused
by a concussion and has the potential to be an effective
tool to accurately diagnosis concussions on a person-by-
person basis.
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