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INTRODUCTION

Chronic rhinosinusitis (CRS) is one of the common diseases 
affecting about 10% of the general population, causing signifi-
cant socioeconomic burden.1,2 The phenotypes of CRS, clinical-
ly observable characteristics, have been classified based on en-
doscopic or computed tomographic findings of nasal polyps 
(NP),3 the presence of lower airway disease (e.g. aspirin-exacer-
bated respiratory disease), and hypersensitivity to allergens (e.g. 
allergic fungal rhinosinusitis). Furthermore, CRS can also be 
subdivided by underlying diseases, such as cystic fibrosis, cili-
ary dyskinesia, autoimmune diseases, immune deficiency, and 
systemic illness.4-6 Specifically, NP are presented as a severe 
form of inflammation and remodeling among the phenotypes 
of CRS, and the presence of NP has been considered the most 
important clinical aspect of phenotyping CRS due to therapeu-
tic challenges. For this reason, histologic subtypes of NP have 
been sought to be defined more precisely: eosinophilic or non-
eosinophilic NP. Mucosal eosinophilia predicts recurrence after 
surgeries and risks of having comorbidities.7 However, there are 
no standard methods to evaluate tissue eosinophilia due to un-
even distribution throughout the tissue.8 Multiple inflammato-
ry cells exist in most NP tissue, but the function and pathologi-
cal roles of these cells are not yet completely elucidated.9 Even 

in eosinophilic NP, neutrophils and macrophages exist and 
may play a role in nasal polypogenesis.2 Therefore, the subtyp-
ing of CRS or NP based on inflammatory cells has limitations. 
One phenotype can include several molecular mechanisms 
(endotypes), and one endotype can also involve several pheno-
types. Due to these challenges, it is hard to design a personal-
ized treatment approach with clinical phenotyping or histolog-
ic subtyping alone.

The concept of personalized medicine in the field of CRS can 
be incorporated after establishing endotypes. This is because 
CRS involves various pathomechanisms showing high hetero-
geneity, which causes different therapeutic responses. Endo-
typing also helps determine optimal primary therapeutic mo-
dality, select a good responder to a specific treatment, and pre-
dict treatment outcomes and risks for comorbidities, such as 
asthma.
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We herein summarize pathophysiology and potential endo-
types of CRS with NP (CRSwNP) and introduce biologicals 
available now or under investigation in CRS.

PATHOGENESIS AND ENDOTYPES OF CRS

Epithelial barrier function and epithelial cytokines 
CRS can be understood as a dysfunctional host-environment 

interaction at the nasal and sinus mucosa.10,11 Bacterial and vi-
ral infections, fungal extracts, and protease allergens play po-
tential roles in CRS as external stimuli.12 For the evidence of 
bacterial roles, the superantigen hypothesis has been strongly 
suggested. Colonized Staphylococcus aureus secretes entero-
toxins that augment local T helper 2 (Th2) inflammation and 
may play a role in the pathogenesis of NP as a disease modifier 
rather than an initiator.13 Another hypothesis of bacterial roles 
is that bacterial biofilms may be involved in CRS pathogenesis. 
Biofilms are organized structures comprised of bacteria protec-
tively encased within extracellular matrix (ECM), which is asso-
ciated with local inflammatory markers and disease severity.14 
Although many studies have attempted to find evidence, the 
role of fungi in CRS has drawn lots of controversies in the last 
decade.15 There is still relatively sparse evidence that viral infec-
tion is a chronic source of CRS or involved in the initiation and 
development of sinonasal allergic inflammation. However, ds-
RNA, a toll-like receptor 3 (TLR3) ligand, is a potent inducer of 
thymic stromal lymphopoietin (TSLP)16 and a potential chang-
er of innate lymphoid cell (ILC) phenotypes,17 which may be as-
sociated with chronicity of airway disease. Moreover, viral in-
fection has been clearly implicated in the exacerbation of aller-
gic airway diseases, such as asthma, in a number of studies.18

The epithelial barrier is the first line of defense; its breakdown 
can play a significant role in allowing external stimuli to enter 
nasal tissue and provoke immune responses.19 Functional and 
mechanical defects have been reported in NP. The protease-ac-
tivated receptor (PAR) contributes to the production of cyto-
kines and chemokines from the epithelium in response to ex-
ternal stimuli, such as bacteria, fungi, and allergens.12,20 Epithe-
lial barrier destroyed by protease activities enables allergens to 
pass physical epithelial barriers, culminating in allergen sensi-
tization.21 It also signals epithelial cells to secrete innate cyto-
kines and then facilitates the induction of eosinophilic inflam-
mation. Epithelial-derived innate cytokines, such as interleukin 
(IL)-25, IL-33, and TSLP, may also participate in the evolution 
of NP.22 IL-33 is secreted by immune cells, such as macrophages 
and dendritic cells as well as epithelial cells.23 Full-length IL-33 
is extracellularly released when epithelial cells undergo necro-
sis and necroptosis via tissue damage caused by external stim-
uli. Biologically active full-length IL-33 plays a role in mucosal 
inflammation recruiting neutrophils via chemokines, including 
chemokine (C-X-C motif) ligand (CXCL)-1 and CXCL-2.24-26 
Gordon et al.27 have suggested a potential role of IL-33 in eosin-

ophilic inflammation by demonstrating a splice variant of IL-33 
missing exons 3 and 4, which localizes to the cytoplasm of epi-
thelial cells, is actively released and strongly related to Th2 in-
flammation, whereas full length is not. Several studies have 
sought to investigate the expression and role of IL-33 in CRS. 
There have been conflicting results of the expression of IL-33 in 
CRS. It has been reported that IL-33 mRNA is highly expressed 
in nasal mucosa but was not elevated in NP or other inflamed 
areas of the sinuses in CRSwNP.28-30 A significant up-regulation 
of ST2 expression has been demonstrated in ethmoid mucosa 
from CRSwNP, but the concentration of IL-33 protein is not sig-
nificantly different between nasal polyp and control tissue.31 
Kim et al.23 have recently demonstrated that IL-33 is up-regulat-
ed in other CRS tissues compared to eosinophilic NP and cor-
relates with Th1/Th17 cytokines. IL-33 may contribute to the 
induction of different types of inflammation under various mi-
croenvironments.

IL-17E, also known as IL-25, is released by Th2 cells, mast 
cells, eosinophils as well as epithelial cells. It is produced and 
stored in the cytoplasm of epithelial cells as a result of external 
stimuli, including allergen proteases.32 IL-25 transcript levels 
have been reported to increase in CRS tissues, including NP 
and to correlate with disease severity and blood eosinophil-
ia,30,33 whereas an earlier study has reported that IL-25 and GA-
TA-binding protein 3 (GATA-3) transcripts were decreased in 
NP vs control tissues.29 Additionally,  polyp-derived IL-17RB (+)
Th2 cells were identified in NP, which co-expressed ST2 and 
enhanced IL-5 and IL-13 production in response to IL-25 and 
IL-33.34 Protein levels of IL-25 are up-regulated in non-eosino-
philic NP as well as eosinophilic NP.22,35 Of note, the fact that IL-
25, known as a cytokine involved in diverse Th2-mediated dis-
eases, also correlated with inflammatory mediators involved in 
Th1 and Th17 responses in Asian subjects suggests that it may 
play diverse roles in polypogenesis besides promoting Th2 in-
flammation.33,36 Blockade of IL-25 reduced the burden of NP in 
a mouse model of NP and represented a potential novel thera-
peutic target.36

TSLP is well known to be induced in airway epithelial cells by 
viruses, TLR3 agonists, protease, and pro-inflammatory cyto-
kines.16,37-39 IL-1β and tumor necrosis factor (TNF)-α regulate 
TSLP transcript expression in an nuclear factor-kappa B (NF-
κB)-dependent manner.39 Several researchers have demon-
strated that TSLP mRNA is overexpressed in eosinophilic NP 
and associated with Th2 inflammation.40-42 TSLP induces the 
differentiation of naïve T cells into effector Th2 cells via en-
hancement of OX40 ligand (OX40L)-OX40 axis on the interac-
tion between dendritic cells and CD4 T cells.43 TSLP protein is 
post-translationally modified by the endogenous protease. The 
cleaved TSLP shows higher activity, producing IL-5 when stim-
ulated with IL-1β, than the full-length form.40 Of interest, Kim et 
al.44 authors recently demonstrated that TSLP production was 
induced by periostin in epithelial cells under the Th2 high in-
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flammatory condition like eosinophilic NP. Until now, TSLP has 
been consistently reported to play a pathological role in eosino-
philic NP unlike IL-25 and IL-33.

ILCs
Epithelial-derived cytokines, such as IL-25, IL-33, and TSLP, 

exert effects on type 2 ILCs (ILC2s).45 ILCs are lymphocyte-like 
cells, but lack markers of mature lymphocytes, and do not ex-
press allergen-specific T cell receptors. ILC2s are regarded as 
innate counterparts of Th2 cells because both share the same 
functional module by their mutual production of signature cy-
tokines, such as IL-5 and IL-13.46 For example, GATA-3 is a key 
transcriptional factor that plays parallel roles in the develop-
ment and function of both Th2 cells and ILC2s.47 Moreover, the 
signal transducer and activator of transcription (STAT)-6 is also 
an important factor for Th2 polarization and plays a role in the 
post-developmental role in ILC2s, though it is not required for 
the development of ILC2s.46 Interestingly, IL-33- and IL-25-acti-
vated ILC2s can induce eosinophilic airway inflammation ac-
companied by airway hyperresponsiveness even in recombina-
tion-activating gene (Rag) knockout mice, which means ILC2s 
have function independent of acquired immunity.48,49 ILC2s are 
abundant and also have a close relationship with higher tissue 
and blood eosinophilia in NP, clinically related to worsening 
nasal symptom scores and asthma comorbidity.50,51 Bal et al.52 
have reported that there is spatial co-localization between 
ILC2s and eosinophils in NP, and that co-culture of eosinophils 
and ILC2s augmented the activation of eosinophils and pro-
longed their survival, and in return pre-activated eosinophils 
enhanced IL-5 production of ILC2s in an IL-4 dependent man-
ner. Of note, ILC2s have functional plasticity responsive to envi-
ronmental cues, including viral infection. Mouse ILC2s in the 
lung undergo T-bet-mediated plasticity in response to infec-
tion, including influenza virus, respiratory syncytial virus, Hae-
mophilus influenza, and Staphylococcal aureus.17 Human ILC2s 
can be converted into ILC1s by IL-12 and reversed by IL-4,52 or 
into interferon (IFN)-γ/IL-13 dual-producing ILC1s in response 
to both IL-1β and IL-12.53 T cells that are able to produce both 
IFN-γ and IL-13 induce enhanced airway hyperresponsiveness 
compared to conventional Th2 cells.54 Thus, ILC2 plasticity may 
contribute to disease heterogeneity which might lead to recal-
citrance and exacerbation of inflammatory diseases.

T cell subsets
Three major subsets of CD4+ T effectors, classified as Th1, 

Th2, and Th17, function in host defense in response to various 
types of pathogens and are involved in different types of tissue 
injury in immunologic diseases. Regulatory T cells (Tregs) 
modulate T cell response inducing the termination of inflam-
mation. Definite characteristics of differentiated subsets of T ef-
fector cells are cytokines they produce and transcriptional fac-
tors they express. Signature cytokines produced by the major 

CD4+ T cell subsets are IFN-γ for Th1 cells; IL-4, IL-5, and IL-13 
for Th2 cells; IL-17 and IL-22 for Th17 cells, and IL-10 and 
transforming growth factor-beta (TGF-β) for Treg. Involved 
transcriptional factors are T-bet for Th1, GATA-3 for Th2, reti-
noid-related orphan receptor C (RORC) for Th17, and FOXP3 
for Treg. CRS was initially classified according to the presence 
of NP which reflects predominantly eosinophil-infiltrating Th2 
inflammation at the molecular levels in Western countries.55 
However, Asian populations, including Chinese population, 
showed multiple inflammatory cell infiltrates, including neu-
trophils and T cells classified as Th1/Th17 cells.56 Furthermore, 
mixed Th17/Th2 inflammatory patterns were also demonstrat-
ed throughout a single nasal polyp tissue, and eosinophilic NP 
also encompass neutrophils and their biological markers such 
as IL-8 and myeloperoxidase.2 Therefore, NP begin to be un-
derstood from the dichotomization of Th1 or Th2 to a multi-di-
mensionally evolved concept. A European multicenter case-
control study group (GA2LEN Sinusitis Cohort group) recently 
conducted the clustering of CRS subjects by T cell subset-based 
cytokines and explored whether these cytokines adequately re-
flect phenotype, such as the presence of NP or asthma comor-
bidities.57 This study analyzed tissue cytokines from 173 CRS 
subjects and 89 controls in a phenotype-free manner and clas-
sified 10 clusters: 4 clusters with low or undetectable IL-5, im-
munoglobulin E (IgE), and eosinophilic cationic protein (ECP); 
and 6 clusters having moderate to high concentrations of these 
markers. In detail, cluster 1 has minimal inflammatory mark-
ers, cluster 2 associated with Th22, cluster 3 representing Th1, 
and cluster 4 showing mixed Th17/Th22/Th1. The latter 6 clus-
ters with elevated IL-5 were classified into 2 groups: clusters 
8-10 showed the highest IL-5 with enhanced IgE against Staph-
ylococcal enterotoxins plus neutrophilic markers plus Th17/
Th22 cytokines implying sophisticated pathomechanism, 
whereas clusters 5-7 showed mainly IL-5 dominant CRS. This 
clustering roughly reflects phenotypes: clusters 1-3 represent 
CRS without NP (CRSsNP) and low asthma comorbidity, but 
the proportion of NP and asthma comorbidities seems to in-
crease from cluster 4 to cluster 10. Furthermore, it was reported 
to be a distinct regional difference in endotypes.2 CRSwNP tis-
sues from patients of European countries, such as Benelux and 
Berlin, had a high proportion of IL-5 (62%-82%); those from 
Adelaide, Australia showed  IL-5 in 46% and mixed IL-5 plus IL-
17 or IFN-r in 27%. Most of the Western NP were Th2-biased. 
However, there was a remarkable difference even in Chinese 
NP. Beijing NP showed mixed IL-5/IL-17 portion of 42%; NP in 
Chengdu, a Chinese city, mainly had a negative cytokine pat-
tern of 57%. These results imply that CRS is not a dichotomous 
disease but has multi-dimensional continuum worldwide. To 
make this concept clearer and more understandable, longitudi-
nal cohort studies would be required rather than cross-section-
al, case-control studies conducted in the past.
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Remodeling
CRS is characterized by edematous remodeling patterns, base-

ment membrane thickening, and goblet cell hyperplasia.58,59 
TGF-β is not only a chemoattractant for fibroblasts, enhancing 
their proliferation and collagen deposition, but also an inducer 
for Treg. High TGF-β is characteristic for CRSsNP, but low TGF-β 
was a signature finding in patients with CRSwNP.58,60 Low TGF-β 
is also associated with a defect of Treg, namely, failing to main-
tain homeostasis, additionally, failure of deposition of collagens 
and other ECMs. High matrix metallopeptidases (MMPs), which 
are usually observed in NP, support ECM degradation.61 Besides 
the roles of TGF-β in the remodeling process in NP, the dysregu-
lated coagulation system can be engaged in this process. Coagu-
lation and fibrinolysis cascades are the biological processes in-
volved in fibrin deposition and dissolution.62 The first study to 
suggest local activation of the coagulation system in sinus tissue 
showed that the concentration of thrombin and thrombin-anti-
thrombin complex were increased in CRSwNP, which in turn 
participated in the remodeling process via a vascular endotheli-
al growth factor pathway.63 Since that study, well-conducted re-
ports have documented that the down-regulation of tissue plas-
minogen activator (t-PA) and activated coagulation factor XIIIa 
are involved in fibrin deposition and enhancement of fibrin 
crosslinking, culminating in edematous remodeling patterns in 
NP.63-65 Of interest, the concentration of t-PA in CRS tissues 
shows a negative correlation with the concentration of ECP, a 
marker of eosinophils, and t-PA is mainly stained in epithelial 
cells on immunohistochemistry and down-regulated in epithe-
lial cells by Th2 cytokines, such as IL-4 and IL-13.64 Furthermore, 
M2 macrophages, alternatively activated by Th2 cytokines,66 
produce coagulation factor XIIIa which acts enzymatically and 
contribute to the formation of a tight tetrameric complex (FXII-
IA2B2), a cross-linking process of fibrin.65 In summary, Th2-in-
duced coagulopathy causes excessive fibrin deposition to in-
duce edematous remodeling patterns in NP. The pathogenesis 
of NP described above is depicted in Figure.

PERSONALIZED THERAPEUTIC STRATEGIES

Therapeutic strategies according to clinical or pathologic 
markers have also been developed. Among these signs, tissue 
eosinophilia is the most important regarding disease recur-
rence and comorbidities.7 Approximately 70%-80% of CRSwNP 
cases accounts for eosinophilic types in the Western country, 
whereas 30%-40% cases constitute eosinophilic NP in Asian 
countries, including South Korea and China.2,9 Eosinophilic 
CRS is a better responder to steroid therapy vs non-eosinophil-
ic CRS.67 Non-eosinophilic CRS seems to be a better responder 
to surgical treatment vs eosinophilic CRS, especially in elderly 
subjects.68 Therefore, how to discriminate between 2 groups by 
using clinical features or easily available samples, such as blood 
samples, has been investigated because tissue eosinophil count 

using biopsy tissue is not practical for primary care clinicians. 
Blood eosinophilia, computerized tomography (CT) scans 
showing ethmoidal dominance, bilateral disease, asthma co-
morbidity, and aspirin sensitivity are predictors of eosinophilic 
NP.69,70 Despite strategical approaches according to histologic or 
clinical subtypes, there must be mixed pathologic subgroups in 
recalcitrant subgroups which require further innovative thera-
peutic plans. That is why endotyping and the development of 
biologicals corresponding to their endotypes are inevitable at 
present. When we determine molecular targets from previous 
research data, Th2 cytokines, such as IL-4, IL-5, IL-13, and peri-
ostin, epithelial-derived cytokines, such as TSLP, IL-33, and IL-
25, IgE as an acquired immunity marker, and Th17 cytokines 
such as IL-17a and IL-22, can be candidates for biologicals. 
Among these, several human monoclonal antibodies became 
commercially available or under clinical trials in allergic dis-
ease.

A humanized monoclonal anti-IgE antibody, omalizumab, 
which binds to free IgE with high affinity, has been used in 
moderate to severe allergic asthma in the US and Europe.71 Ha-
nania et al.72 have demonstrated that periostin is a marker for 
omalizumab responsiveness in patients with moderate to se-
vere allergic asthma. Since the concentration of IgE is locally in-
creased in eosinophilic NP,73 a strategy for antagonizing IgE 
might be relevant in subjects with eosinophilic NP. However, a 
clear indication of omalizumab remains undetermined in NP.74 
Given that periostin is upregulated and secreted from mast 
cells via IgE-mediated signaling in eosinophilic NP,44 periostin 
might be a biomarker for responsiveness to omalizumab in eo-
sinophilic NP. Gevaert et al.75 conducted a randomized, double-
blind, placebo-controlled study on the effects of omalizumab 
on NP and comorbid asthma (n=24). A significant decrease in 
the total nasal endoscopic polyp score after 16 weeks in the 
omalizumab-treated group was observed. Omalizumab also 
showed significant benefits in nasal and respiratory symptoms, 
such as nasal congestion, anterior rhinorrhea, loss of smelling 
sense, wheezing, and dyspnea, as well as quality-of-life scores, 
irrespective of the presence of allergy. However, there was no 
reduction in nasal or serum inflammatory mediators in the 
treated group. Larger sizes of clinical trials are needed to con-
firm this proof-of-concept study and to analyze subgroups for 
appropriate biomarkers to guide better treatment responses.

Eosinophils, mast cells, and ILC2s mainly produce IL-5 which 
is a strong driver to Th2 inflammation and associated with a 
higher risk of having asthma comorbidity.76 As mentioned 
above, 80% of Western NP cases account for the eosinophilic 
type. Furthermore, over 80% of European NP cases and 20%-
60% of Asian NP cases expressed IL-5 in NP tissue homoge-
nates.2 Based on previous mechanistic studies, antagonizing 
IL-5 would be considered a good therapeutic target. In a small 
clinical trial, subjects treated with anti-IL-5 mAb (reslizumab) 
showed reduced polyp size, blood eosinophilic counts, and 
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ECP concentration in nasal secretions. Responders had higher 
IL-5 levels in nasal secretions compared with non-responders. 
However, there was no symptom improvement in the treated 
group.77 A clinical trial of another anti-IL-5 mAb, mepolizumab, 
demonstrated similar results as a previous study and showed a 

significant reduction in polyp score, blood eosinophilic count, 
serum ECP, and serum IL-5Rα, but no significant improvement 
in symptom scores.78 based on earlier studies, it still remains 
unclear which biomarker can be used to select good respond-
ers to anti-IL-5 treatment.
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Dupilumab targeting IL-4Rα has inhibitory effects on the sig-
naling of IL-4 and IL-13 since both cytokines signaled through 
IL-4Rα as a common subunit. IL-4 and IL-13 act through 2 dif-
ferent receptors. One is type 1, activated by IL-4 only and ex-
pressed on the lymphocyte. The other is type 2 receptor activat-
ed by both IL-4 and IL-13 and expressed by various cells.71 
Blocking the type 2 receptor is promising for controlling recalci-
trant allergic disease.79,80 Since type 2 receptors can play a pivot-
al role in polypogenesis, dupulimab may play a role in treating 
recalcitrant NP. Recently, a multi-center clinical trial demon-
strated a potential role of dupilumab in NP showing a signifi-
cant decrease in nasal polyp score and improvements in olfac-
tion and CT scores as well as other clinical outcomes, such as 
nasal symptoms and quality of life.81

Epithelial cell-derived innate cytokines, including TSLP, exert 
major effects on Th2 inflammation. However, there has been 
no study regarding its effect on NP, although a previous study 
investigated the inhibitory effects of anti-TSLP on allergen-in-
duced asthmatic response.82 The roles of IL-25 and IL-33 in NP 
remain unclear and need further investigation.83 Therefore, tar-
geting epithelial derived innate cytokines can be promising be-
cause it may control upstream mediators which T cell subsets 
do not act on.

CONCLUSIONS 

A clinically observable phenotype includes multiple molecu-
lar endotypes with different prognoses. Therefore, phenotyping 
is not sufficient to predict responsiveness to medical or surgical 
treatments and the risk of comorbid conditions. With the ad-
vent of an era with biologicals, endotyping helps select patients 
suitable for each biological which can be a breakthrough in 
treating NP. Although modulating acquired immunity, for ex-
ample T cell subsets, has made some progression, targeting ep-
ithelial cell-derived innate cytokines, such as TSLP, IL-33, and 
IL-25, may provide novel opportunities to manage CRS and NP 
as well as allergic airway disease.
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