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Abstract

The McDonald and Kreitman test is one of the most powerful and widely used methods to detect and quantify recurrent natural selection
in DNA sequence data. One of its main limitations is the underestimation of positive selection due to the presence of slightly deleterious
variants segregating at low frequencies. Although several approaches have been developed to overcome this limitation, most of them
work on gene pooled analyses. Here, we present the imputed McDonald and Kreitman test (impMKT), a new straightforward approach for
the detection of positive selection and other selection components of the distribution of fitness effects at the gene level. We compare im-
puted McDonald and Kreitman test with other widely used McDonald and Kreitman test approaches considering both simulated and em-
pirical data. By applying imputed McDonald and Kreitman test to humans and Drosophila data at the gene level, we substantially increase
the statistical evidence of positive selection with respect to previous approaches (e.g. by 50% and 157% compared with the McDonald and
Kreitman test in Drosophila and humans, respectively). Finally, we review the minimum number of genes required to obtain a reliable esti-
mation of the proportion of adaptive substitution (a) in gene pooled analyses by using the imputed McDonald and Kreitman test compared
with other McDonald and Kreitman test implementations. Because of its simplicity and increased power to detect recurrent positive selec-
tion on genes, we propose the imputed McDonald and Kreitman test as the first straightforward approach for testing specific evolutionary
hypotheses at the gene level. The software implementation and population genomics data are available at the web-server imkt.uab.cat.
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Introduction
Natural selection leaves characteristic footprints at the patterns

of genetic variation. Since the advent of next-generation se-

quencing, numerous statistical methods have been proposed to

analyze genomic data (Casillas and Barbadilla 2017), allowing the

detection and quantification of molecular adaptation at different

temporal scales. The McDonald and Kreitman test (MKT)

(McDonald and Kreitman 1991) is one of the most powerful and

robust methods to detect the action of recurrent natural selection

at the DNA level. Unlike the x ratio (Kimura 1977), which com-

pares the number of synonymous (DS) and nonsynonymous (DN)

divergent sites, the MKT combines both divergence (DS, DN) and

polymorphism (PS, PN) data. Polymorphic data allows taking into

account purifying selection on divergent nonsynonymous sites,

significantly increasing the power of detecting recurrent positive

selection.

The null model of the original MKT approach is the neutral
theory (Kimura 1968, 1977; Ohta 1973). It assumes that positively
selected (adaptive) mutations are rare, and thus not easily ob-
servable when polymorphic sequences are sampled at a given
time t, thus contributing almost exclusively to divergence (and
not to polymorphism). Therefore, an excess of the divergence
ratio relative to the polymorphism ratio is the signal of positive
selection acting on nonsynonymous sites (DN=DS > PN=PS).
Temporally, the MKT covers the evolutionary period spanning
from the present to the time back to divergence between the
target and the outgroup species, and it allows the estimation
of the fraction of adaptive nonsynonymous substitutions (a)
(Charlesworth 1994; Smith and Eyre-Walker 2002). Nonetheless,
the MKT, as originally formulated, has multiple drawbacks that
could bias the estimation of a. First, the MKT assumes strict neu-
trality on segregating (polymorphic) sites. However, several stud-
ies in multiple species have shown an excess of low-frequency
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variants (Smith and Eyre-Walker 2002; Messer and Petrov 2013;
Galtier 2016). These variants are attributed to slightly deleteri-
ous mutations (SDM), which will not usually reach fixation,
contributing more to polymorphism than divergence. SDM re-
duce the MKT statistical power and underestimate a (Eyre-
Walker and Keightley 2009). Second, MKT assumes that the
neutral mutation rate is constant over time and so is the selec-
tive constraint. However, the nearly neutral mutation rate
depends on the effective population size (Ne) (Balloux and
Lehmann 2012; Lanfear et al. 2014; Rousselle et al. 2018; Galtier
and Rousselle 2020) and, therefore, changes in population size
can affect the MKT considerably. SDM get fixed at higher rates
in populations with past smaller sizes, contributing to diver-
gence and leading to an overestimation of a (Eyre-Walker and
Keightley 2009). Besides, recent evidence shows that weakly ad-
vantageous mutations can also be segregating within popula-
tions (Galtier 2016; Tataru et al. 2017; Uricchio et al. 2019). The
presence of this positively selected polymorphism, like SDM,
can mask the effect of adaptive selection, since it counteracts
the excess of the divergence ratio relative to the polymorphism
tested by the MKT.

Over the last decades, several modifications in the original
MKT have been proposed to account for the potential biases in
the estimation of a (Templeton 1996; Fay et al. 2001; Eyre-Walker
and Keightley 2009; Mackay et al. 2012; Messer and Petrov 2013;
Galtier 2016). Most of these extensions deal with the presence of
SDM. Although other forces affect the site frequency spectrum
(SFS) of segregating variants, such as recombination, demogra-
phy, ancestral population sizes, or weak positive selection, sev-
eral studies have pointed out the relevance of SDM (Eyre-Walker
et al. 2006; Eyre-Walker and Keightley 2009). SDM distort the
nonsynonymous SFS and have been repeatedly shown to be a
main factor biasing a downwards (Charlesworth and Eyre-
Walker 2008; Eyre-Walker and Keightley 2009; Fay et al. 2001;
Galtier 2016).

New model-based approaches for the estimation of a have
benefited from the increasing number of genomics data sets
available, which allow dealing, implicitly or explicitly, with the
underlying distribution of fitness effects (DFE) of new mutations,
including the presence of SDM or controlling for correlated geno-
mic features (Eyre-Walker and Keightley 2009; Messer and Petrov
2013; Galtier 2016; Tataru et al. 2017; Uricchio et al. 2019; Huang
2021). However, these advanced methodologies need extensive
data sets to fit complex parametric evolutionary models by ap-
plying maximum likelihood (ML) inference, exponential fitting or
generalized linear models and they work properly for genome-
wide analyses or on large pools of genes. In contrast, these
methodologies are rarely applicable over specific genes to test
particular evolutionary hypotheses, as the original MKT does
(McDonald and Kreitman 1991).

While more and more genome-wide analyses of evolution of
protein coding genes have been carried out through these MKT
extensions, the simple G-test or the independence chi-square
test of the original MKT (McDonald and Kreitman 1991) is cur-
rently almost deprecated. Most MKT heuristic alternatives ex-
clude all variants below a frequency threshold for the minor
frequency allele (MAF) (Templeton 1996; Akashi 1999; Fay et al.
2001). Since the MAF distribution resembles an exponential one,
dropping these data inevitably leads to the loss of most of the
polymorphic information, consequently performing very poorly
on gene-by-gene testing.

Here, we present the imputed MKT (impMKT), a modification of
the Fay, Waycoff, and Wu MKT approach (fwwMKT) (Fay et al. 2001)

to improve gene-by-gene analyses. We propose a methodology

that imputes the proportion of SDM at the SFS rather than re-

moving all variants below a frequency threshold. The impMKT

maximizes the information to test the excess of divergence ratio

relative to polymorphism at the gene level. We compare our im-

putation method to previous and recent MKT approaches, using

simulated data to test its accuracy and efficiency. Moreover, we

test the impMKT on the human African lineage samples of the

1000 Genome Project (1000GP) (Auton et al. 2015) and the

Zambian population of the Drosophila Genome Nexus (DGN)

(Lack et al. 2016). impMKT considerably increases the number of

statistically significant genes under positive selection in

Drosophila and humans, respectively, compared to other MKT

approaches. Despite the limitations of heuristic MKT and MKT-

derived methods, the impMKT has the advantages of simplicity,

intuitiveness, ease of use, and increased statistical power to test

recurrent positive selection on genes; thus, it can be used as a

first straightforward approach for testing specific evolutionary

hypotheses at the gene level.

Materials and methods
Simulated data
We used SLiM 3 (Haller and Messer 2019) to test the accuracy and

performance of the impMKT compared to other MKT approaches

on simulated data. We tested 15 different genetic scenarios

following the procedure proposed by Campos and Charlesworth

(2019) and Booker (2020).
We simulated the evolution of a population of 10,000 diploid

individuals for 220,000 generations while setting a uniform

population-scaled mutation and recombination rates of

4Ner ¼ 4Nel ¼ 0:001. To improve performance, we rescaled by a

factor of 10 and substitutions were recorded 14Ne generations af-

ter burn-in following Booker (2020). Each simulation contained 7

genes spaced by 8,100 bp neutral intergenic regions. For each

gene, we simulated 5 exons of 300 bp separated by 100 bp neu-

trally evolving introns. We assumed a proportion of 0.25 and

0.75 for synonymous and nonsynonymous alleles, respectively.

Deleterious alleles were modeled following a Gamma distribu-

tion, whereas beneficial alleles were modeled following a point-

mass distribution. We assumed that the Gamma distribution of

deleterious alleles followed a shape parameter (b) of 0.3, and

population-scaled selection coefficients of 2Nes� ¼ 2000. For

beneficial alleles, we assumed a population-scaled selection

coefficients 2Nesþ ¼ 250. We solved the analytical estimations

described in Uricchio et al. (2019) using the corresponding soft-

ware (https://github.com/uricchio/mktest) to input the fixation

probabilities of strong and weakly beneficial alleles. We consid-

ered a total adaptation rate of a ¼ 0:4 while setting as 50% the

proportion of adaptation due to weakly beneficial alleles

(aW ¼ a � 0:5). We used the estimated fixation probabilities to de-

fine the relative proportion of strong beneficial, weak beneficial,

and deleterious alleles as ps, pw, and 0:75� ps � pw, respectively,

in our model.
We performed 2,000 replicas, totalizing 14,000 simulated

genes (2,000 replicas � 7 genes), sampling 20 individuals. Besides,

7 parameters were modified to test for multiple scenarios (see

Table 1). Each scenario independently replaces a genetic feature

to identify limitations and advantages of the method regarding

the underlying DFE, the global adaptation rate, or the number of

polymorphic sites.
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Drosophila melanogaster and human data
We followed the pipeline described at Murga-Moreno et al. (2019)

to retrieve polymorphic and divergence genome data from D. mel-

anogaster and the human lineage.
In brief, for D. melanogaster we retrieved polymorphic and di-

vergence data from the DGN data, using the genome sequence of

Drosophila simulans as outgroup (release 2) (Lack et al. 2016).

Specifically, we subset data from 13,753 protein-coding genes

from the Zambian population (197 individuals). We binned the

output SFS considering a sample of 20 individuals. The ancestral

state of each segregating site was inferred from the sequence

comparison with the outgroup species D. simulans. The D. mela-

nogaster genome reference sequence and annotations correspond

to the 5.57 FlyBase release. Gene-associated recombination rate

estimates at 100-kb nonoverlapping windows were retrieved

from Comeron et al. (2012).
For the human lineage, we retrieved polymorphic data and an-

cestral states for all African populations of the 1000GP Phase III

(Auton et al. 2015). We used chimpanzee (Pan troglodytes) as the

outgroup species to compute human divergence metrics. We

downloaded hg19-panTro4 alignment from PopHuman (Casillas

et al. 2018). Annotations retrieved from GENCODE (release 27)

(Derrien et al. 2012) were used to assess the functional class of

each genomic position. Recombination rate values associated

with each protein-coding gene were obtained from Bhérer et al.

(2017) and correspond to the sex-average estimates. We retrieved

polymorphic and divergence data from 20,643 protein-coding

genes. We binned the output SFS considering a sample of 20 indi-

viduals.

MKT approaches
To test the performance and accuracy of the impMKT, we com-

pared it against 4 already published heuristic MKT methods:

i) the original MKT (McDonald and Kreitman 1991);
ii) the Fay, Wickoff and Wu correction (fwwMKT) (Fay et al.

2001) (see next section);
iii) the extended MKT (eMKT) (Mackay et al. 2012) where PN,

the count of segregating sites in the nonsynonymous class

is decomposed in neutral and weakly deleterious variants.

Deleterious variants are assumed be only below a fre-

quency threshold and the remaining neutral fraction is

estimated from the synonymous class (PS). For a 15%
threshold, the estimators are as follows:

f̂ neutral j<15% ¼
PSðj<15%Þ

PS
PNneutral j< 15%

¼ PN � fneutral j< 15%

PNneutral ¼ PNneutral j<15%
þ PN j�15%

The estimated PNneutral values can be used to perform both
MKT and a estimations.

iv) the asymptotic MKT (aMKT) (Messer and Petrov 2013),
which defines a as a function that depends on the SFS of
alleles. Hence, a is estimated in different frequency inter-
vals. Given the frequency spectrum distribution in the fre-
quency interval ½0; 1�, the estimate of ax results in an
exponential function of the form aðxÞ ¼ aþ b � e�cx. The best
fit of the exponential at x ¼ 1 eliminates the effect of SDM.
We followed Haller and Messer (2017) to choose the cutoffs
for the aMKT estimations.

In addition, we included the Grapes software (Galtier 2016), an
ML method fitting the DFE. We ran Grapes using the Gamma-
zero DFE distribution and estimated a for 100 bootstrap datasets.
In addition, when incorporating weak adaptation in the simula-
tions, a gamma-exponential was run. We measured a confidence
interval (CI) through the boundaries for a estimation in Grapes
using a down and a up parameters independently for each boot-
strapped dataset (Galtier 2016).

aMKT and Grapes (as well other DFE-related methods) are
commonly used to estimate a using a large pool of genes or
genome-wide data (Messer and Petrov 2013; Rousselle et al. 2019).
Both methodologies have been previously shown to perform the
most accurate estimations in the presence of SDM and demogra-
phy events (Eyre-Walker and Keightley 2009; Messer and Petrov
2013). Since impMKT is specially designed to perform gene-by-
gene analyses, we tried to determine in which cases the amount
of data was large enough to perform estimations using aMKT and
Grapes compared to impMKT.

Results
impMKT
Our main goal is to devise a derived MKT approach that enhances
the power to detect selection at the gene level. To do this, we

Table 1. SLiM simulated parameters.

Simulations Ne Samples 2Nes� 2Nesþ b pa q h Genes

Baseline 10,000 20 �2,000 250 0.3 0.00021 0.001 0.001 14,000
2Nesþ ¼ 500 10,000 20 �2,000 500 0.3 0.00012 0.001 0.001 14,000
2Nesþ ¼ 100 10,000 20 �2,000 100 0.3 0.00048 0.001 0.001 14,000
2Nes� ¼ 1000 10,000 20 �1,000 250 0.3 0.00021 0.001 0.001 14,000
2Nes� ¼ 500 10,000 20 �500 250 0.3 0.00021 0.001 0.001 14,000
b ¼ 0:1 10,000 20 �2,000 250 0.1 0.00115 0.001 0.001 14,000
b ¼ 0:2 10,000 20 �2,000 250 0.2 0.00048 0.001 0.001 14,000
28,000 genes 10,000 20 �2,000 250 0.3 0.00021 0.001 0.001 28,000
2,000 genes 1,000 20 �2,000 250 0.3 0.00021 0.001 0.001 2,000
q ¼ 0:01 10,000 20 �2,000 250 0.3 0.00021 0.01 0.001 14,000
q ¼ 0:0001 10,000 20 �2,000 250 0.3 0.00021 0.0001 0.001 14,000
h ¼ 0:01 10,000 20 �2,000 250 0.3 0.00021 0.001 0.01 14,000
h ¼ 0:0001 10,000 20 �2,000 250 0.3 0.00021 0.001 0.0001 14,000
a ¼ 0:1 10,000 20 �2,000 250 0.3 0.000036 0.001 0.001 14,000
a ¼ 0:1 10,000 20 �2,000 250 0.3 0.00075 0.001 0.001 14,000

Ne: effective population size; 2Nes: population-scaled selection coefficient; b: shape parameter of the Gamma distribution; pa: relative proportion of advantageous
mutations; q: population-scaled recombination rate; h: population-scaled mutation rate; and a: proportion of adaptive mutation.
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modified the approach proposed by Fay et al. (2001) (fwwMKT),
which removes all nonsynonymous (PN) and synonymous (PS)
polymorphic sites below a derived allele frequency cutoff j, as-
suming that SDM segregate at low frequencies. Removing var-
iants below a cutoff, typically 5% or 15% (Fay et al. 2001; Mackay
et al. 2012), implies losing a considerable amount of data.
Consider the example of Nielsen and Slatkin (2013) for the stan-
dard neutral coalescence model: a 15% cutoff implies up to 44%
of excluded variants of the expected SFS for a sample of n¼ 10
haploid individuals. We observed the same trend considering the
D. melanogaster and human data, for which considering a virtual
gene containing the mean polymorphic level a 15% cutoff implies
up to 80% of excluded variants of the expected SFS for D. mela-
nogaster and up to 90% in humans. This amount of data exclusion
may make the computation of the MKT impracticable, especially
in species with low levels of polymorphism.

Here, we propose a new MKT approach that modifies the
fwwMKT to impute the actual number of SDM (Pwd) segregating
within PN. The resulting approach, impMKT, just removes the im-
puted number of SDM instead of all polymorphism segregating
below a given threshold as fwwMKT does, thus retaining a larger
fraction of the data and increasing the power to detect positive
selection.

Consider the SFS and fixed differences of a hypothetical gene
as illustrated by Hahn (2018) (Fig. 1). Table 2 shows the 2� 2 con-
tingency tables to perform the original MKT, fwwMKT and
impMKT. Charlesworth and Eyre-Walker (2008) investigated how
the removal of low-frequency polymorphism affects the estima-
tion of different MKT approaches depending on the continuous
function defining the DFE for different nonarbitrary cutoffs. To
develop the impMKT, we followed Charlesworth and Eyre-Walker
(2008) results, which show that any derived allele frequency cut-
off j > 15% is a near-optimal solution to the problem of SDM seg-
regating at the SFS (Charlesworth and Eyre-Walker 2008).

Consequently, considering that SDM are the main force bias-
ing a downward and assuming that SDM do not segregate at fre-
quencies above 15% (Pwd ! 0), we impute the actual proportion

of SDM (Pwd) segregating below the frequency cutoff by consider-
ing that the expected neutral polymorphism nonsynonymous/
synonymous ratio is PNðj>15%Þ=PSðj>15%Þ . This ratio can be used to infer
the number of SDM in our data set (Pwd). If Pwd 6¼ 0 bellow
j < 15%, then PNðj<15%Þ=PSðj<15%Þ exceeds the expected polymorphic
ratio because PNðj< 15%Þ includes Pwd. That is, PNðj<15%Þ ¼ Pneutðj< 15%Þþ
Pwdðj< 15%Þ , where Pneutðj<15%Þ refers to the number of nonsynonymous
segregating sites that are effectively neutral. Accordingly, we can
estimate (impute) Pwd from expression

PNðj< 15%Þ � Pwdðj<15%Þ

PSðj< 15%Þ
¼

PNðj>15%Þ

PSðj>15%Þ
(1)

rearranging we have

Pwd � Pwdðj< 15%Þ ¼ PNðj<15%Þ �
PNðj>15%Þ � PSðj< 15%Þ

PSðj>15%Þ
(2)

Considering our example in Table 2, Pwd is

Pwd ¼ 7� 4 � 6
11
� 5 (3)

And, thus, 5 is the number of sites removed from the nonsy-
nonymous polymorphism counts (see Table 2D).

As can be seen in Table 2C, the approach proposed by Fay et al.
(2001) shows that removing all low-frequency polymorphisms be-
low a given threshold j significantly increases the power of detec-
tion of positive selection by conducting a 2� 2 test. Thus, testing
for the ratio of replacement on fwwMKT 2� 2 contingency table
through a Fisher exact test decreases the P-value significance
from 0.093 to 0.045 in our example. Nonetheless, it implies a re-
duction of 46% of the analyzed data, reducing PN from 11 to 4 and
PS from 17 to 11, respectively. In comparison, by simply removing
the expected number of SDM (Pwd), we reduced the data loss to
only 15%, while decreasing the P-value from 0.093 to 0.017 (see
Table 2D).

Fig. 1. Hypothetical SFS and fixed differences from Hahn (2018).
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Therefore, the impMKT allows maximizing gene-by-gene anal-
yses where information is limited to a small number of polymor-
phic sites. Note that in cases where data is highly constrained,
SDM would not rise in frequency, or their presence would be neg-
ligible, and the impMKT will be penalized since the imputation
removes data from the 2� 2 contingency table. In such cases,
impMKT should be avoided, and the method developed by
Eilertson et al. (2012) shows better performance than the original
MKT for several genetic scenarios.

In addition, we can correct a, the proportion of adaptive sub-
stitutions, by removing the expected proportion of SDM (Pwd) with
the expression

aimputed ¼ 1� PN � Pwd

PS
� DN

DS

� �
(4)

Other selection regimes
The SDM imputation can be used to estimate other selective
components shaping the DFE. Let consider the model proposed
by Eyre-Walker and Keightley (2009) and nearly neutral theory
(Ohta 1973), where selected segregating alleles are drawn from a
continuous Gamma distribution and categorized as strongly dele-
terious, slightly deleterious and effectively neutral mutations.
Analogous to Mackay et al. (2012), we define the statistics d, dw,
and d0, which measure the different types of purifying selection,
both at genome-wide and gene levels. These measures are like
heuristic estimates of the DFE parameters at the gene level.

Let d be the proportion of strongly deleterious mutations. We
estimated d following Mackay et al. (2012) as the missing fraction
of segregating nonsynonymous sites

d̂ ¼ 1� PN

PS
� mS

mN
(5)

where mS and mN are the total number of synonymous and non-
synonymous sites, respectively.

Let dw be the fraction of SDM at nonsynonymous sites

d̂w ¼
Pwd

PS
� mS

mN
(6)

Lastly, the fraction of effectively neutral mutations d0 can be
estimated as the remaining fraction

d̂0 ¼ 1� d� dw (7)

Properties of the impMKT a estimator
We tested the accuracy and performance of the impMKT com-
pared to other MKT approaches at estimating the fraction of sub-
stitutions fixed by positive selection (a) under different scenarios
that were simulated using SLiM 3 (Haller and Messer 2019). The
different scenarios considered the combined effects of different
genetic features: the level of polymorphism in terms of segregat-
ing sites (h), the number of simulated genes, the proportion of
adaptive mutations (pa), the proportion of SDM (b), the recombi-
nation rate (q), and the selection strength (2Nes) (Table 1). In addi-
tion to j > 15%, we explored derived allele frequency cutoffs
larger than 15% (j > 25% and j > 35%). We also tested 5% (j > 5%)
frequency cutoff as in Mackay et al. (2012).

In all simulations, the original MKT underestimates consider-
ably the a values (Figs. 2 and 3 and Supplementary Fig. 1) due to
the presence of SDM segregating at low frequencies, excluding
simulations where the contribution of SDM is negligible. Overall,
the aMKT and Grapes performed better under the presence of
SDM and achieved the best results when considering both unbi-
asedness and efficiency of the estimator (minimum variance)
(Fig. 2, Supplementary Fig. 1, and Supplementary Table 2). While
heuristic MKT approaches tend to underestimate a, Grapes tends
to slightly overestimate a in most of the scenarios, while aMKT
tends to provide slight underestimations (Supplementary Fig. 1
and Supplementary Tables 1 and 2).

As previously shown in Charlesworth and Eyre-Walker (2008),
a estimates converge to the actual value depending mainly on
the shape of the DFE (b) and the amount of adaptive evolution (a).
We considered 3 different values of b [0.3 (baseline), 0.2, and 0.1]
to test such effect. We observed the same trend for all MKT-
derived approaches: the underestimation for the different MKTs
is smaller the more leptokurtic DFE is, which in turn implies less
SDM. The same effect was found when increasing the rate of
adaptive evolution (from a ¼ 0:1 to a ¼ 0:7, Supplementary
Tables 1 and 2 and Fig. 3).

For all the simulated scenarios, the fwwMKT and the impMKT
behave similarly to the MKT, mainly depending on the frequency
cutoff. As expected, lower cutoffs (i.e. 5%) resulted in minor accu-
racy improvements in the estimation of a compared to the origi-
nal MKT approach, except when SDM contributed little to the SFS
(smaller b and larger a values). Conversely, larger cutoffs (i.e.
15%, 25%, or 35%) resulted in better estimates of a. Specifically, a
35% cutoff is large enough to deal with SDM and to perform esti-
mations similar to the aMKT and Grapes in all simulations. Both
the impMKT and the fwwMKT performed very similarly due to
the large amount of data considered from the simulations.
Contrarily, the eMKT was not able to deal with the presence of
SDM and higher frequency cutoffs did not improve the estima-
tions of a (Fig. 2, Supplementary Figs. 1–3, and Supplementary
Tables 1 and 2; see Discussion).

In scenarios simulating low levels of polymorphism in terms
of segregating sites (i.e. reduced number of simulated genes, or
reduced mutation rate h), the accuracy and efficiency of the
aMKT and Grapes diminishes (Fig. 3, Supplementary Fig. 4, and
Supplementary Table 3). Under these circumstances, the aMKT
could be applied to approximately 70% of the cases only, and pro-
vided worse estimations of a than the impMKT. We observe the
same trend when measuring the standard deviation of the esti-
mators (Supplementary Fig. 4). impMKT provided better results
in comparison to aMKT while showing similar accuracy to

Table 2. Contingency tables.

Polymorphism Divergence

(A) Definition of the MKT 2� 2 contingency table
Nonsynonymous PNeutral ¼ PN � Pwd PS

Synonymous DN DS

(B) Example of MKT 2� 2 contingency table. Including all
polymorphic sites
Nonsynonymous 11 15
Synonymous 17 8
2� 2 Fisher exact test; P-value¼ 0.093

(C) Example of fwwMKT 2� 2 contingency table. Removing all
polymorphic sites with a derived allele frequency below 15%
Nonsynonymous 11 � 7¼ 4 15
Synonymous 17 � 6¼ 11 8
2 � 2 Fisher exact test; P-value¼ 0.045

(D) Example of impMKT 2� 2 contingency table. Removing
the expected SDM with a derived allele frequency below 15%
[see Equation (2)]
Nonsynonymous 11 � 5¼ 6 15
Synonymous 17 8
2� 2 Fisher exact test; P-value¼ 0.017

J. Murga-Moreno et al. | 5
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Grapes (Supplementary Table 1 and Fig. 3). Similarly, the CIs
estimated by Grapes increased by 1 order of magnitude, from
range [0.01,0.06] (considering the other scenarios) to 0.16
(for the scenario with 2,000 simulated genes) and 0.19 (for the
scenario with h ¼ 0:0001) (Supplementary Fig. 1, 3 and 4 and
Fig. 3).

Estimation of a on the presence of recent positive
selection
Several studies have showed the contribution of slightly beneficial
mutations (SBM) to the SFS at medium/high frequencies over the
last years, representing a source of distortion in all MKT

Baseline (α = 0.4) α = 0.1 α = 0.7
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Fig. 2. a MKT estimations by the different MKT approaches under different SLiM simulated scenarios, specifically different simulated fractions of
adaptive mutations. Equivalent results under other SLiM simulated scenarios are available in Supplementary Fig. 1.

Fig. 3. Error biases associated with the a estimations for all of the scenarios and MKT approaches.
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approaches. These alleles can segregate in the frequency spectrum
and eventually fix in the population depending on the selective
strength. Multiple methods have been proposed to overcome this
limitation (Galtier 2016; Tataru et al. 2017). Nonetheless, many nat-
ural patterns remain unanswered, and they can be attributed to
the effect of linked selection, since methods that incorporate weak
selection assume that sites evolve independently. Uricchio et al.
(2019) proposed a new MKT approach that incorporates back-
ground selection (BGS), estimates the fraction of weak adaptive se-
lection, and discerns the role of linkage in a estimations.

We tested such effect following Uricchio et al. (2019) simula-
tions to evaluate SBM as well as BGS. We simulated the exact
global adaptation rate as it is done in the baseline simulation. As
a result, 50% of the a signal corresponded to the contribution of
weakly advantageous alleles following a point-mass distribution
with selection coefficient 2Nes ¼ 5. We chose this selection coeffi-
cient after exploring the impact of the population-scaled selec-
tion coefficients using the analytical estimations proposed by
Uricchio et al. (2019). Supplementary Fig. 6 shows that the impact
of population-scaled selection coefficients above 2Nes ¼ 100 on
the SFS is almost negligible.

In addition to the contribution of SBM to the fixation process,
one expects a higher concentration of SBM at high frequencies,
since the Hill–Robertson effect prevents them from reaching fixa-
tion due to linkage to other SBM or SDM when BGS is acting.
Under these assumptions, we modified the impMKT approach to
account for such an excess of nonneutral alleles at high frequen-
cies. Similarly to before, we imputed the expected number of
SDM at high frequency using the expected PN=PS for low- and
high-frequency cutoffs. The expected neutral nonsynonymous/
synonymous polymorphism ratio is given by the cutoff l and h:
PNðl< j< hÞ=PSðl< j< hÞ . In this special case, SDM are not removed from
the contingency table, but added to the nonsynonymous diver-
gence count. In addition, we executed Grapes using the Gamma-
exponential model and considered adaptive mutations using a
threshold of 2Nes > 5.

In addition to a possible excess at high frequencies, SBM may
also segregate all across the spectrum, depending not only on the
Hill–Roberston effect but also on the selective strength, the linkage
disequilibrium patterns and the fixation times (Supplementary
Fig. 6). Assuming that SBM can segregate at any frequency, the
impMKT cannot deal with weak adaptation, even imputing nearly
fixed variants. Therefore our heuristic approach, extending aMKT
results from Uricchio et al. (2019), can also be affected by the pres-
ence of SBM and BGS. Also Grapes, especially when BGS is acting
(Fig. 4 and Supplementary Table 5). All in all, the effect of linkage
and the contribution of weak selection at the gene level remain
unexplored. Thus, new approaches are needed to pinpoint genes
under weak positive selection.

Testing for the evidence of positive selection in
single genes
We estimated a at the gene level on D. melanogaster (Zambia, ZI;
197 individuals) and human (Africa, AFR; 661 individuals) popula-
tion data. Table 3 shows the mean values and the number of
analyses performed considering different MKT approaches. We
removed from the analysis those genes with zero divergence or
zero polymorphism, either for synonymous or nonsynonymous
sites.

Due to the amount of raw data, the original MKT was the ap-
proach that allowed us to estimate a on the largest number of
protein-coding genes: 12,024 (87%) genes in the D. melanogaster
Zambian population. The statistical significance for both positively

and negatively selected genes was determined using the Fisher’s
exact test; 1,495 and 1,331 were detected under positive and nega-
tive selection, respectively. The number of analyzable genes de-
creased 14% when applying the eMKT correction, from 12,024 to
10,340, but slightly increasing the number of genes under positive
selection, from 1,493 to 1,571. We found a decreased of 37% when
applying the fwwMKT correction, from 12,024 to 7,574 genes, as
well as in the number of genes under positive selection, from 1,495
to 929. More importantly, for both approaches we found a drop in
the number of genes under negative selection, from 1,131 to 700
and 38 genes for eMKT and fwwMKT respectively.

The impMKT was able to analyze the exact same number of
genes as the fwwMKT approach (7,588 genes), since impMKT
needs data to compute the PN=PS ratio above the threshold, as the
fwwMKT. However, the number of positively selected genes in-
creased from 1,495 in the original MKT approach or 929 in the
fwwMKT to 2,244 (Fig. 5a). Therefore, the impMKT increased the
detection of positive selection by 50% in the D. melanogaster
Zambian population compared to the original MKT (1,495 vs.
2,244 genes), by 141% compared to the fwwMKT (929 vs. 2,244)
and by 42% regarding eMKT (from 1,571 to 2,242). In addition, the
impMKT detected 792% more genes under negative selection
than the fwwMKT correction (from 38 in the fwwMKT to 339
genes in the impMKT). We noted a significant drop in the number
of genes under negative selection regarding the MKT and eMKT.
Nonetheless, since neither MKT nor eMKT is able to deal properly
with SDM, as shown in simulations, such trend was not unex-
pected.

We found similar patterns for the human dataset regarding
the MKT and fwwMKT. MKT was the methodology that estimated
a on the largest number of genes (13,078, 68%), as expected, while
fwwMKT and impMKT only analyzed 3,145 genes. Nonetheless,
the increase in the number of genes under positive selection
detected by the impMKT is especially significant, rising by 159%
(from 79 positively selected genes in the MKT to 203 in the
impMKT) (Fig. 5b), and the fwwMKT only detected 18 genes under
positive selection. Interestingly, contrary to D. melanogaster data,
eMKT detected less genes than MKT under positive selection.
Considering eMKT results from simulations regarding SDM and
the associated protein-coding DFE in humans (Booker 2020), we
determined that eMKT very sensitive to the underlying DFE.

Overall, in populations with low levels of polymorphism, the
impMKT allowed detecting genes under positive selection more
efficiently than the other methodologies because it does not re-
move all the data below a threshold, as the fwwMKT does. By just
removing the imputed fraction of SDM, the impMKT can main-
tain a reasonably good statistical power and, contrary to the
fwwMKT, is able to analyze data from datasets with low levels of
polymorphism, such as human data. We do not tested aMKT nor
Grapes since both methods are not performant or are inaccurate
on single-gene sequence data and preferably used in large pools
of genes or genome-wide levels.

Testing for the evidence of positive selection in
gene pooling data
Next, we explored the performance of the impMKT, compared to
the aMKT, Grapes and the original MKT approach, on pooled
gene data. By adding up polymorphism and divergence data from
multiple genes, this type of analysis increases the number of
polymorphic sites to estimate the SFS, which provides the statis-
tical power necessary to implement both the aMKT and ML
approaches. We created gene pools to obtain a reliable measure
of the average a. Specifically, we first selected 3,500 random
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Fig. 4. a estimations at simulations accounting for weak adaptation. Any of the proposed methods can correct linkage and weak adaptation at the
estimations. Although the method proposed by Uricchio et al. (2019) can overcome linkage and weak adaptation, a estimations at the gene level remain
unexplored and new approaches are required.

Table 3. Gene-by-gene analysis.

Population Set MKT eMKT 0.25 fwwMKT 0.25 impMKT 0.25

N a N a N a N a

ZI Analyzable 12,024 �0.721 6 (2.825) 10,340 �0.343 6 (1.582) 7,574 �0.031 6 (1.665) 7,574 �0.031 6 (1.665)
ZI Negative 1,131 �4.907 6 (7.044) 700 �3.798 6 (3.287) 38 �10.558 6 (10.472) 339 �4.698 6 (4.888)
ZI Positive 1,493 0.762 6 (0.135) 1,571 0.765 6 (0.134) 929 0.844 6 (0.095) 2,242 0.775 6 (0.121)
AFR Analyzable 12,786 �1.699 6 (3.206) 6,119 �1.077 6 (2.256) 3,145 �0.686 6 (2.225) 3,145 �0.686 6 (2.225)
AFR Negative 1,023 �7.433 6 (6.344) 499 �5.259 6 (4.402) 11 �12.695 6 (5.783) 236 �5.471 6 (4.713)
AFR Positive 76 0.813 6 (0.117) 66 0.794 6 (0.138) 18 0.893 6 (0.093) 203 0.759 6 (0.121)

Total number of analyzable, positively and negatively selected genes by MKT approach.

(a) (b)

Fig. 5. a) Estimated number of genes under positive selection in the D. melanogaster Zambian population detected by each MKT approach. b) Estimated
number of genes under positive selection in the human lineage African populations detected by each MKT approach.
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protein-coding genes from both the Drosophila and the human
datasets. Then, we resampled the genes 1,000 times with replace-
ment to create pools of 1, 2, 5, 10, 25, 50, 75, 100, 250, 750, and
1,000 genes on which we computed the SFS and estimated a

(Table 4).

D. melanogaster ZI population
Resampling analysis results in the D. melanogaster ZI population
showed that estimated a converges to an average value as more
and more genes are pooled (Fig. 6a). First, in the case of impMKT,
pools of 5 genes or more already allowed estimating a in �90% of
the cases, which corresponds to a mean number of polymorphic
sites of PN ¼ 137 and PS ¼ 183. A 100% of analyzable cases was
achieved in pools of 10 or more genes (Fig. 6b). Second, aMKT re-
quired larger pools to analyze the data; pools of 50 genes or more
allowed estimating a in �90% of the cases, which corresponds to
a mean number of polymorphic sites of PN ¼ 1; 250 and
PS ¼ 1; 549. At least 500 genes were required to estimate a in all of
the replicates (Fig. 6c).

Third, MKT and Grapes could analyze the vast majority of rep-
licates (except for a few replicates in bins with only 1 or 2 pooled
genes). Nonetheless, we noted 1.9-fold (from 1.2 to 2.3) and 8-fold
increase (from 1.2 to 9.7) in a variance regarding MKT and Grapes
compared to impMKT respectively at the first pool, showing the
lack of power on small dataset. As the number of genes grow,
the mean converging value of a was very similar for the impMKT,
the aMKT and MKT, and higher for Grapes (Fig. 6a), an expected
result considering previous results with simulated data (see pre-
vious section). In addition, impMKT showed similar (or higher) a

values than aMKT and was applicable to the smallest gene pools.

Human protein-coding genes
Due to the low polymorphism levels in human protein-coding
genes compared to D. melanogaster, the minimum number of
genes pooled to estimate accurate measures of a was larger, espe-
cially for aMKT (Fig. 7). Specifically, aMKT required pools of 500
genes or more to estimate a in �90% of the of the replicas, which
corresponds to a mean number of polymorphic sites of PN ¼ 5,658
and PS ¼ 3,922. More than 1,000 were required to estimate a in all
of the replicates (Fig. 7c). In the case of Grapes, we found that
most of the analyses can be performed; however, they showed a
x1.7 increment (from 3.4 to 5.8) increase in the a variance regard-
ing impMKT estimations. impMKT could estimate most replicates
with 10 or more genes pooled, which corresponds to a mean
number of polymorphic sites of PN ¼ 126 and PS ¼ 89. All the repli-
cates with 25 or more genes pooled (Fig. 7b) showed similar or
higher a values than aMKT.

Discussion
Effect of SDM on a estimation
SDM segregating at low frequencies impact the power of MKT
and the estimation of a (Templeton 1996; Akashi 1999; Fay et al.
2001, 2002; Bustamante et al. 2002, 2005; Bierne and Eyre-Walker
2004; Messer and Petrov 2013; Galtier 2016; Rousselle et al. 2019).
As Bierne and Eyre-Walker (2004) pointed out, unless the meth-
odology considers the presence of SDM, estimations using D. mel-
anogaster data are likely underestimating a. We verify such
statements by thoroughly exploring the MKT-derived approaches
using both in silico and empirical data, assessing the benefits and
drawbacks of each methodology, considering the nature of the
data and the study design. Simulations with SLiM 3 have been
carried out to benchmark the performance of the 4 MKT

methodologies and the impMKT under different evolutionary sce-
narios. Predefined a values were used to assess the closest esti-
mation. aMKT and Grapes are the best methods with respect to
unbiasedness and efficiency of estimated values of a. However,
their performance decreases in scenarios with a small number of
polymorphic variants (shorter genomic regions or lower mutation
rate) or could not even be applied due to low variant counts. Our
results are consistent with previous explorations of MKT-derived
approaches (Charlesworth and Eyre-Walker 2008; Messer and
Petrov 2013). Hence, we found similar results exploring aMKT
and Grapes in Drosophila and human genome sequence data and
showed similar accuracy in simulations. Overall, both
approaches allow efficient removal of SDM in all frequencies and
not only below a threshold as in fwwMKT or impMKT methods.

Strikingly, both procedures lack power when applied to indi-
vidual genes or small pooled datasets. Despite the high polymor-
phic and divergence levels in D. melanogaster, it is not enough for
the aMKT to fit the exponential curve and calculate a for single
genes, and the number of analyzable genes is dramatically re-
duced (see Table 3). We showed that pooled sets of genes allow
overcoming data limitations to estimate an overall a value (Boyko
et al. 2008; Eyre-Walker and Keightley 2009). Thus we explored
the minimum number of pooled genes to perform aMKT regard-
ing D. melanogaster and human populations. For aMKT we found
that a minimum of 500 genes is required to perform 1,000 repli-
cas when bootstrapping a set of 3,500 random genes (Fig. 6). Such
a number increased to more than 1,000 when using the human
dataset (Fig. 7). We found that Grapes can perform the estimation
most of the time (only a few negligible analyses were not per-
formed, see Figs. 6 and 7), considering gene-by-gene analysis or
pooled analysis. Nonetheless, we found extremely high variance
in a estimates and we noted that the associated CI to a estimation
for each bootstrapped datasets is only acceptable once the analy-
sis accounts for a minimum number of 50 in Drosophila and
humans (see Supplementary Fig. 8). The same trend is observed
in those simulated scenarios producing less polymorphism re-
garding the percentage of aMKT analysis and Grapes CIs
(Supplementary Figs. 1 and 3). Given the high levels of polymor-
phism in D. melanogaster compared to humans, the similar results
for both populations can be considered as general ones.

Such findings show the limitation of aMKT and Grapes (and
other ML methods) (Eyre-Walker and Keightley 2009; Racimo and
Schraiber 2014; Tataru et al. 2017) when performing MKT at the
gene-by-gene level or using small pooled datasets. Among non-
ML approaches, fwwMKT and impMKT produced quite similar
results. However, only when using higher frequency cutoffs than
the commonly used 15% they showed results close to those by
aMKT and Grapes (see Table 2 and Supplementary Table 2). Such
cutoffs can be astringent considering empirical data, especially in
the case of fwwMKT. Instead of removing all polymorphism at
low frequencies at both synonymous and nonsynonymous sites,
as fwwMKT does, the new impMKT separates PN into the number
of effectively neutral variants and the number of SDM, and only
removes the latter. In this way, impMKT allows increasing the
frequency cutoff without compromising the amount of data that
much. As a result, impMKT is the most powerful method to de-
tect selection at the gene-by-gene level, substantially increasing
the number of statistically significant genes under positive selec-
tion compared to other methodologies (see Fig. 5 and Table 3). In
the case of pooled analyses, impMKT reduced dramatically the
minimum number of genes required to perform the analysis in
both Drosophila and human datasets (5 and 10, respectively).
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Table 4. a estimates by pooled genes.

Bin
population

Test 1 2 5 10 25 50 75 100 250 500 750 1,000

ZI impMKT �0.015 (�2.332
to 0.915)

0.245 (�1.335
to 0.915)

0.528 (�0.133
to 0.898)

0.596 (0.176
to 0.874)

0.641 (0.403
to 0.828)

0.662 (0.486
to 0.799)

0.67 (0.53
to 0.783)

0.674 (0.557
to 0.774)

0.682 (0.611
to 0.75)

0.684 (0.633
to 0.729)

0.686 (0.647
to 0.722)

0.686 (0.652
to 0.717)

ZI aMKT 0.888 (0.888
to 0.888)

0.876 (0.865
to 0.894)

0.849 (0.817
to 0.877)

0.661 (0.25
to 0.864)

0.56 (0.17
to 0.821)

0.6 (0.352
to 0.775)

0.628 (0.448
to 0.767)

0.634 (0.482
to 0.762)

0.645 (0.544
to 0.729)

0.65 (0.583
to 0.709)

0.654 (0.595
to 0.703)

0.656 (0.607
to 0.696)

ZI Grapes �0.569 (�5.926
to 1.0)

0.4 (�0.843
to 0.992)

0.658 (0.177
to 0.927)

0.704 (0.394
to 0.916)

0.738 (0.551
to 0.876)

0.752 (0.623
to 0.86)

0.758 (0.655
to 0.848)

0.762 (0.672
to 0.839)

0.768 (0.714
to 0.82)

0.769 (0.73
to 0.804)

0.771 (0.74
to 0.799)

0.771 (0.745
to 0.795)

AFR impMKT �0.767 (�5.928
to 0.86)

�0.746 (�4.25
to 0.78)

�0.423 (�3.471
to 0.76)

�0.191 (�2.008
to 0.74)

0.023 (�0.862
to 0.6)

0.077 (�0.43
to 0.491)

0.081 (�0.361
to 0.429)

0.093 (�0.269
to 0.39)

0.098 (�0.142
to 0.306)

0.101 (�0.049
to 0.236)

0.101 (�0.015
to 0.213)

0.099 (�0.002
to 0.199)

AFR aMKT Nan (nan–nan) Nan (nan–nan) Nan (nan–nan) Nan (nan–nan) 0.487 (0.2
to 0.665)

0.25 (�0.245
to 0.744)

0.086 (�0.555
to 0.573)

0.082 (�0.586
to 0.536)

0.2 (�0.097
to 0.456)

0.189 (0.031
to 0.362)

0.176 (0.051
to 0.327)

0.166 (0.057
to 0.286)

AFR Grapes �1.66 (�8.995
to 1.0)

�0.922 (�6.572
to 1.0)

0.119 (�1.155
to 0.954)

0.19 (�0.605
to 0.76)

0.221 (�0.273
to 0.615)

0.237 (�0.121
to 0.537)

0.245 (�0.059
to 0.502)

0.245 (�0.005
to 0.463)

0.257 (0.101
to 0.396)

0.26 (0.152
to 0.353)

0.264 (0.175
to 0.342)

0.265 (0.194
to 0.335)

Each bin number corresponds to the number of pooled genes. Mean estimates and 95 percentiles estimates are shown by MKT approach and bin.
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Even though strongly deleterious (d), slightly deleterious
(dw) and effectively neutral (d0) mutations are commonly defined
given DFE ranges �10 > Nes;�10 < Nes < �1, and �1 < Nes
< 1, respectively, we observed mutations segregating in the
range �10 < Nes. Hence, if d is the proportion of mutations not
segregating because of strong purifying selection, as stated
above, we estimated dw including any segregating mutation be-
low the threshold Nes < �1. Supplementary Table 4 and
Supplementary Fig. 5 show impMKT unbiased estimations of d,
dw and d0 using 5% and 35% cutoffs. Similarly to a estimation, the
estimator requires larger cutoff than 5–15% (Charlesworth and

Eyre-Walker 2008; Mackay et al. 2012) to properly impute SDM
and estimate dw and d0 accurately. Hence, the new impMKT pro-
vides easier and faster estimations of d, dw, and d0 than ML
approaches, representing the actual mutation proportions sub-
ject to different selection regimes and quantitative measures of
the DFE along the genome or at the gene level.

The effect of pooling data
We showed that most MKT approaches could provide an accurate
estimate of the average a if data from a large number of genes are
collected (Hahn 2018). Therefore, the process of pooling genes to

(a) (a)

(c)

(d)

(e)

Fig. 6. Gene pooled analysis. A total of 3,500 random protein-coding genes were sampled from the ZI dataset. We pooled the genes to obtain SFS of 1, 2,
5, 10, 25, 50, 75, 100, 250, 750, and 1,000 genes by resampling them 1,000 times with replacement. a) a estimates with MKT correction. b) Proportion of
analysis performed by impMKT. c) Proportion of analysis performed by aMKT. d) Proportion of analysis performed by aMKT. e) Proportion of analysis
performed by Grapes.

(a) (b)

(c)

(d)

(e)

Fig. 7. Gene pooled analysis. A total of 3,500 random protein-coding genes were sampled from the human dataset. We pooled the genes to obtain SFS of
1, 2, 5, 10, 25, 50, 75, 100, 250, 750, and 1,000 genes by resampling them 1,000 times with replacement. a) a estimates with MKT correction. b) Proportion
of analysis performed by impMKT. c) Proportion of analysis performed by aMKT. d) Proportion of analysis performed by aMKT. e) Proportion of analysis
performed by Grapes.
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create single evolutionary entities is a proper strategy to over-
come the problem of lacking enough polymorphism data to con-
duct an MKT. In the majority of the performed analyses, this
process does not seem to affect the results. However, some cav-
eats must be taken into account when interpreting results
obtained by this procedure.

First, pooled genes do not necessarily share the same recombi-
nation context, GC content, or gene density rate, which also af-
fect the adaptive potential of genes. Although pooling genes by 1
or more features at a time have been widely used to disentangle
the potential drivers of adaptation (Castellano et al. 2016;
Moutinho et al. 2019; Uricchio et al. 2019; Rousselle et al. 2019;
Soni et al. 2021), such approaches can report a spurious associa-
tion between adaptation signals and other features if they are
strongly correlated (Huang 2021). Huang (2021) developed the so-
called MK regression to overcome biases of pooling analyses ap-
plied to 1 genomic feature at a time, by jointly evaluating the
effects of correlated genomic features on a estimation.
Nonetheless, MK regression is designed to measure the adapta-
tion rate at the genomic level, and consequently not the preferred
approach to pinpoint individual genes neither (Huang 2021).
Interestingly, we have noticed that MK regression followed the
strategy proposed by Fay et al. (2001) to deal with SDM. We pro-
pose to apply our impMKT approach instead, to preserve data
and extending the implementation at the gene-by-gene level.

Second, by pooling hundreds of genes, it is more difficult to de-
tect a signal of positive selection if it is due to a few genes of the
pool. In other words, all the evolutionary forces acting differently
on different genes contribute to the dilution of potential biologi-
cal signals.

Third, although this data pooling increases the power of
detecting selection, it could lead to the Simpson’s paradox
(Simpson 1951) if a significant trend in the 2� 2 contingency
tables disappears or reverses when the data is combined into a
single table (Stoletzki and Eyre-Walker 2011; Hahn 2018).
Regarding MKT data, this can happen when large differences in
the number of nonsynonymous fixations (DN) between genes lead
to incorrect inferences about selection operating in different
regions (Stoletzki and Eyre-Walker 2011).

Folded SFS vs. unfolded SFS
Because the unfolded SFS (uSFS) provides more evolutionary in-
formation, all the analyses shown here take advantage of it.
Nonetheless, uSFS needs that ancestral alleles are precisely esti-
mated. The inference of ancestral states requires genetic data for
at least 1 outgroup species and the application of ML methods.
Because we used a parsimony approach with a single outgroup to
estimate the uSFS, there may be polarization errors affecting our
empirical analyses. The misattribution of ancestral alleles can
also affect a and the MKT estimations (Hernandez et al. 2007). On
the one hand, an excess of high-frequency alleles can be attrib-
uted to hitchhiking of linked selected alleles or weak adaptation,
which can affect ML methods that infer the DFE by over-
estimating the role of positive selection. On the other hand, an
excess of high-frequency alleles will specially affect the asymp-
totic fit in the aMKT, resulting in an under-estimation of a. To
date, the method proposed by Keightley and Jackson (2018) is the
most sophisticated approximation to estimate the uSFS while
minimizing mispolarization errors. The method uses the genetic
data of 2 or more outgroup species, considers their phylogenetic
tree topology, and considers multiple nucleotide substitution
models.

Nonetheless, because having genetic data of outgroup species
is not always possible, we explored how the impMKT performs on
folded SFS (fSFS) data instead of uSFS. The fSFS analyses causes
a slight, affordable, decrease in the mean estimates of a (see
Supplementary Fig. 9), which is more pronounced as the fre-
quency cutoff increases. It should be noticed that by applying the
frequency cutoff on the fSFS, both the low-frequency and high-
frequency derived alleles are removed from the analyses, which
reduces the data for the estimation of a (and thus the statistical
power). The same trend occurs when using the fSFS in gene-by-
gene analyses for both Drosophila and humans, decreasing the
number of positively selected genes by 25% and 44%, respectively
(see Supplementary Table 6).

Nevertheless, using the fSFS and focusing only on the central
part of the frequency spectrum can be especially interesting in 2
cases. First, it is a better choice when mispolarization errors are
abundant, a situation which would add an additional bias to
SDM. The cutoff will potentially eliminate fictitious derived
alleles (due to mispolarization) at a high frequency that would
deviate the ratio PNðj>15%Þ=PSðj>15%Þ used in the imputation.
Second, the cutoff will eliminate the accumulation of SDM at
high frequencies due to interference between positively selected
and slightly deleterious alleles.

Data availability
Human and D. melanogaster processed data and the new impMKT
software implementation are available at imkt.uab.cat (Murga-
Moreno et al. 2019). The supporting figures as well as notebooks
and code used to perform the analyses can be found at https://
github.com/jmurga/mkt_comparison.

Supplemental material is available at G3 online.
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