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Abstract: The development of a sample substrate with superior performance for desorption and
ionization of analyte is the key issue to ameliorate the quality of mass spectra for measurements
of small molecules in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS).
Herein, the homogeneous sample substrate of gold nanoparticle multilayers (AuNPs-ML) with
hexagonal lattice was successfully prepared by self-assembly technique. With strong surface
plasmon resonance absorption and superior photothermal effect, the sample substrate of AuNPs-ML
exhibited high signal sensitivity and low background noise for the detection of model analyte of
glucose without additional matrixes in SALDI-MS. Furthermore, compared to merchant matrixes
of α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), the sample
substrate of AuNPs-ML was demonstrated to ameliorate the quality of mass spectra, including signal
strength, background interference and signal/noise (S/N) ratio. The sucrose and tryptophan were also
measured to show the extensive applications of AuNPs-ML sample substrate for the detections of
small molecules in SALDI-MS. Most importantly, the remarkable reproducibility of glucose mass
spectra with relative signal of 7.3% was obtained by the use of AuNPs-ML sample substrate for
SALDI-MS. The homogeneous sample substrate of AuNPs-ML greatly improved the quality of mass
spectra because of its strong absorption of laser energy, low specific heat, high heat conductivity and
extraordinary homogeneity. We believe that AuNPs-ML could be a practical sample substrate for
small molecule detection in SALDI-MS.

Keywords: gold nanoparticles; self-assembly; gold nanoparticle multilayers; sample substrate;
photothermal effect; reproducibility

1. Introduction

Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has been extensively
utilized for the analyses of small molecules (m/z < 500 Da) such as drugs, pesticides and
biomolecules [1–11]. With the applications of nanomaterials as the assisted matrixes, SALDI-MS has
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shown specific advantages included facile sample fabrication, strong sample signal, less background
noise and excellent salt tolerance [12–17]. Various nanomaterials such as semiconductor, metal, and
metal oxide have been widely applied as superior matrixes due to their intense light absorption, large
surface area and high stability, resulting in high signal/noise (S/N) ratio for small molecules [18–22].
Recently, the matrix of CeO2-carbon black nanocomposite has been utilized as a substrate in SALDI-MS
for the detections of drug doping beverages without pretreating processes of analytes in the fields of
forensic toxicologists [23]. Hydrothermal preparation of zinc oxide-reduced graphene oxide hybrid
has been developed as a matrix for the detection of both aromatic and aliphatic contaminants on
the wafer [24]. Nanostructured mesoporous germanium SALDI substrate has been proved for the
measurements of unlawful cocaine in the surroundings, including workplace and roadside [25].
With the use of HgTe nanostructures as a matrix and sucralose as an internal standard, the contents
of monosaccharides and disaccharides in honey samples have been measured with short time
(<30 min) and high reproducibility (relative standard deviation <15%) without time-consuming sample
pretreatment and purification [26]. Nanomaterial-based matrixes have been successfully demonstrated
for the detections of many small molecules by SALDI-TOF-MS. However, there are still some crucial
issues that need to be addressed such as the increase of signal intensity, decrease of background noise
and improvement of sample reproducibility.

For the nanomaterial-based matrixes, gold nanoparticles have shown outstanding performance
because of their unique surface plasmon resonance property, low specific heat and high heat
conductivity [27–30]. Gold nanoparticles have shown a wide surface plasmon absorption from
ultraviolet to visible light, corresponding to the laser wavelength in SALDI-MS. Furthermore, with
intense surface plasmon resonance and photothermal effect, gold nanoparticles can efficiently absorb
SALDI-MS laser energy and then transform the laser energy into heat for the increase of desorption
and ionization of analytes [31–34]. Moreover, with low specific heat and high heat conductivity, the
temperature of gold nanoparticles can be quickly increased and then the heat produced by gold
nanoparticles can be dissipated to the surroundings in order to facilitate the desorption and ionization
of analytes [35–37]. For example, the matrixes of bare gold nanoparticles have been used to cationize
small neutral carbohydrates captured on their surface in order to improve the desorption/ionization
efficiency in SALDI-MS [38]. Biomarkers of carcinoid tumors such as tryptophan, 5-hydroxytryptophan,
5-hydroxytryptamine, and 5-hydroxyindole acetic acid have been successfully measured in the urine
samples with the applications of gold nanoparticles as the matrixes by SALDI-MS [39]. One-pot
synthesis of gold nanoparticles conjugated with dopamine dithiocarbamate as the matrixes have
revealed a superior desorption and ionization capability for accurate measurement of low molecular
weight analytes including amino acid, drugs and peptides [40]. Gold nanoparticles have been
demonstrated as the matrixes for effective ionization of microbial cellular extract ingredients without
matrix interference [41]. Applications of gold nanoparticles have been proven as the outstanding
matrixes for the analyses of small molecules in SALDI-MS. However, the important crux of low
reproducibility of mass spectra still needs to be addressed for future developments of gold nanoparticles
as the matrixes.

The matrixes of nanomaterials included gold nanoparticles have suffered from low reproducibility
of mass signals due to inhomogeneous distributions of the nanomaterials on sample wells [42–45].
Recent studies have made a great effort to control the structure and the homogeneity of the assisted
nanomaterial matrixes to constitute homogeneous films on the steel plate to improve the reproducibility
of mass signals in SALDI-MS [46–49]. Homogeneous films of nanomaterials have been developed as the
SALDI substrates as well as the matrixes to increase the reproducibility of mass spectra. For instance,
layer-by-layer graphene oxide/gold nanoparticle thin films that have been prepared as a SALDI
substrate to analyze small molecules such as amino acids, saccharide and polypeptides in SALDI-MS
with the relative signal, varied less than 15% [50]. Hybrid nanoporous structures of layer-by-layer
electrostatic self-assembly of silver nanoparticles and reduced graphene oxide have been employed as
a facile platform for high-speed detection of carboxylic acid derivatives such as amino acids, fatty acids,
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and organic dicarboxylic acids with low matrix interference by SALDI-MS [51]. Gold nanoporous films
modified with cysteine have been fabricated and utilized as the SALDI substrates for the analyses of
various molecules included amino acids, drug, cyclodextrins, peptides, and polyethylene glycols with
relative signal less than 10% [52]. Langmuir-Blodgett films of shape-controlled silver nanocrystals with
large area have been manufactured as a matrix-free sample plate for glucose detection with relative
signal of 5.7% in SALDI-MS [53]. Although the utilizations of nanomaterial-based homogeneous films
as the SALDI substrates have revealed superior reproducibility of mass signal, the practical uses of
those thin films are still restricted due to the lack of a simple approach to fabricate large-scale and
high-quality thin films for SALDI-MS detections.

In this study, an amiable design was employed to self-assemble gold nanoparticles into AuNPs-ML
as shown in Figure 1. With a highly oriented structure, the homogenous AuNPs-ML was utilized as a
high-performance substrate for SALDI-MS measurement. With various layers, the optimal status of
AuNPs-ML sample substrate for measurement of small molecule of glucose was demonstrated without
extra matrix in SALDI-MS. Furthermore, the efficiency of AuNPs-ML for desorption/ionization of
glucose was investigated compared with merchant matrixes, including CHCA and DHB. To further
examine the performance of a sample substrate of AuNPs-ML, small molecules of sucrose and
tryptophan were measured in SALDI-MS measurements. Moreover, the reproducibility of mass spectra
of glucose was studied with the uses of AuNPs-ML sample substrates in SALDI-MS.
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Gold acetate (99.9%) was purchased from Alfa Aesar (Ward Hill, MA, USA). 1,2-hexadecandiol 
(90%), ethanol (95%), α-cyano-4-hydroxy-cinnamic acid (CHCA), and 2,5-dihydroxybenzoic acid 
(DHB) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 1-octadecene (ODE), oleic acid 
(OA), oleylamine (OLA), and acetonitrile (99.8%) were purchased from Acros Organics (Houston, 
TX, USA). Toluene (HPLC grade) was purchased from Fisher Scientific (Pittsburgh, PA, USA). 
Hexane (HPLC grade) was purchased from Duksan (Kyunggi, South Korea). 1,2-ethandithiol (EDT) 
was purchased from Fluka (St. Gallen, Swiss). 

2.2. Preparation of Gold Nanoparticles 

Gold nanoparticles were prepared via one-pot synthesis according to the previous study with 
some modification [54]. First, 20 mL of ODE, 2 mmol of OLA, 2 mmol of OA, 0.5 mmol of gold acetate, 
and 4 mmol of 1,2-hexadecanediol were added to a three-necked round bottle flask and then degassed 
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to 220 °C and further kept at 220 °C for 1 h for the synthesis of gold nanoparticles. After 1 h, the gold 

Figure 1. Schematic illustration of self-assembly of gold nanoparticles and fabrication of AuNPs-ML
sample substrate. Briefly, stock solution of gold nanoparticles was added dropwise on the surface
of deionized water in the trough. Afterward, a cover with a hole at the edge was covered onto the
trough. After evaporation for 24 h, the self-assembled gold nanoparticles were obtained on the surface
of deionized water. A steel plate was slowly pulled out of the sub-phase to transfer self-assembled
gold nanoparticles.

2. Materials and Methods

2.1. Chemicals

Gold acetate (99.9%) was purchased from Alfa Aesar (Ward Hill, MA, USA). 1,2-hexadecandiol
(90%), ethanol (95%), α-cyano-4-hydroxy-cinnamic acid (CHCA), and 2,5-dihydroxybenzoic acid (DHB)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). 1-octadecene (ODE), oleic acid (OA),
oleylamine (OLA), and acetonitrile (99.8%) were purchased from Acros Organics (Houston, TX, USA).
Toluene (HPLC grade) was purchased from Fisher Scientific (Pittsburgh, PA, USA). Hexane (HPLC
grade) was purchased from Duksan (Kyunggi, South Korea). 1,2-ethandithiol (EDT) was purchased
from Fluka (St. Gallen, Swiss).

2.2. Preparation of Gold Nanoparticles

Gold nanoparticles were prepared via one-pot synthesis according to the previous study with
some modification [54]. First, 20 mL of ODE, 2 mmol of OLA, 2 mmol of OA, 0.5 mmol of gold acetate,
and 4 mmol of 1,2-hexadecanediol were added to a three-necked round bottle flask and then degassed
under vacuum for 1 h at 130 ◦C. After that, under the nitrogen atmosphere, the mixture was heated
to 220 ◦C and further kept at 220 ◦C for 1 h for the synthesis of gold nanoparticles. After 1 h, the
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gold nanoparticles were obtained. For purification, the gold nanoparticle solution was precipitated by
ethanol and then centrifuged at 8000 rpm for 30 min. After removal of supernatant, the precipitation
of gold nanoparticles was redispersed in hexane. The washing steps were repeated several times.
The gold nanoparticles were finally dispersed in hexane for further experiments.

2.3. Fabrication of Self-Assembled Monolayer of Gold Nanoparticles

To fabricate the self-assembled monolayer (SAM) of gold nanoparticles, stock solution of gold
nanoparticles was first prepared by adding 700 µL of gold nanoparticle solution into 300 µL of
toluene. After, a glass petri dish (10 cm × 1.5 cm) was applied as trough to fabricate SAM of gold
nanoparticles. The trough of glass petri dish was sequentially cleaned by soap water, deionized water,
and ethanol and then dried in an oven at 70 ◦C. Before fabrication of SAM of gold nanoparticles,
75 mL of deionized water was added to the trough of glass petri dish. Afterward, 1 mL of stock
solution of gold nanoparticles was added dropwise on the surface of deionized water in the trough
by a pipette. A cover with a hole (3 cm2) at the edge was used to cover the trough of glass petri dish
with gold nanoparticles. Twenty-four hours after the evaporation of hexane and toluene, the SAM
of gold nanoparticles was obtained on the surface of deionized water. To prepare sample substrate
for SALDI-MS applications, the steel plate (1 cm × 1 cm) was slowly immersed into the trough of
glass petri dish. Following, the steel plate was slowly pulled out of the sub-phase to transfer SAM of
gold nanoparticles.

2.4. Gold Nanoparticle Multilayers as the Sample Substrates for SALDI-MS Measurements

For the fabrication of sample substrate of AuNPs-ML, SAM of gold nanoparticles was repeatedly
transferred onto the steel plate with the target layers. To increase the surface hydrophilicity of
AuNPs-ML, sample substrate of AuNPs-ML was immersed into EDT (2 mM) in acetonitrile for 90 s.
After the treatment of AuNPs-ML by 1,2-ethandithiol, 1 µL of analyte solution was straightly loaded
onto the sample substrate of AuNPs-ML and then the sample substrate was dried in a vacuum oven.
For SALDI-MS application, the sample substrate of AuNPs-ML with analyte was analyzed without
adding any additional matrix. Moreover, the analytes were also analyzed with the merchant matrixes,
which included CHCA (10 mg/mL) and DHB (20 mg/mL), to examine their efficiencies of SALDI-MS
measurements. First, 1 µL of CHCA and 1 µL of DHB were separately loaded onto steel plates and
then dried in a vacuum oven. Second, 1 µL of analyte solution was then deposited onto the merchant
matrix of CHCA or DHB and then dried in a vacuum oven. Finally, the steel plate with merchant
matrix and analyte was further analyzed by SALDI-MS.

2.5. SALDI-MS Measurements

Mass spectrometry (microflex, Bruker, Hamburg, Germany) was operated in positive-ion reflector
mode using a 1.25 m flight tube. The nitrogen laser with wavelength at 337 nm was utilized to illuminate
analyte on the sample substrate with pulse duration of 3 ns and frequency of 10 Hz. During the
nitrogen laser irradiation for desorption and ionization of analyte, the ions of analyte were maintained
with a delayed extraction period of 100 ns, and further accelerated through the linear time-of-flight
reflection before going into the mass analyzer. The accelerating voltages were applied in the range
from +20 to −20 kV. In the process of SALDI-MS detection, the laser power was tuned to be 130 µJ to
acquire the best quality of mass spectra with high signal intensity, minimal interference and excellent
S/N ratio. Each spectrum of analyte was generated by an average of 100 laser pulses. All experiments
were repeated at least three times to prove the reproducibility of the mass spectra.
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3. Results and Discussion

3.1. Structural and Optical Properties of Gold Nanoparticles

The gold nanoparticles prepared via one-pot synthesis were first characterized by transmission
electron microscopy (TEM, Hitachi HT7700, Tokyo, Japan) and UV-Vis absorption spectroscopy
(JASCO V-770 with ISN 923 Integrating Sphere, Easton, MD, USA) to investigate their structural
and optical properties. In TEM image of Figure 2a, the gold nanoparticles revealed nearly spherical
shape and uniform size. In Figure 2b, the histogram of size distributions of gold nanoparticle was
statistically counted on 100 nanoparticles in TEM image of Figure 2a. Gaussian fitting curve of the
histogram of size distributions for gold nanoparticle was also simulated as shown in Figure 2b. After
fitting a Gaussian curve to the histogram of size distributions for gold nanoparticle, the average
size of gold nanoparticles was calculated to be 8.2 nm. Moreover, the gold nanoparticles exhibited
an obvious surface plasmon resonance absorption at ~520 nm, as shown in absorption spectra
of Figure 2c. Furthermore, gold nanoparticles have shown a broad absorption at wavelength of
337 nm corresponding to the emission of nitrogen laser applied in SALDI-MS measurements. Taking
advantages of strong surface plasmon resonance absorption and superior photothermal effect, the
uniform gold nanoparticles can be a promising candidate for the preparation of homogeneous sample
substrate to improve desorption/ionization of analytes (m/z < 500 Da) by SALDI-MS.
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3.2. Characterizations of Self-Assembled Monolayer of Gold Nanoparticles

After preparation of gold nanoparticles, self-assembly technique was utilized to fabricate
monolayer film of gold nanoparticles. The SAM of gold nanoparticles was transferred onto copper grid
and then characterized by TEM. As shown in Figure 3a, gold nanoparticles were self-assembled into
two-dimensional monolayer film with hexagonal lattice. The homogeneous SAM of gold nanoparticles
with a highly oriented structure was obtained because of thermodynamic equilibrium [55]. Furthermore,
the absorption spectra of SAM of gold nanoparticles was measured by UV-Vis absorption spectroscopy.
As shown in the absorption spectrum of Figure 3b, the surface plasmon resonance absorption of SAM of
gold nanoparticles was extremely affected by the plasmon coupling between gold nanoparticles [56,57].
The SAM of gold nanoparticles exhibited strong and broad absorption band, from 300 nm to 700 nm.
Therefore, with superior homogeneity and strong absorption at a wavelength of 337 nm, the SAM
of gold nanoparticles could be applied as a potential sample substrate to improve spectral quality
and reproducibility in SALDI-MS. Most importantly, for analyses of biological samples, surface
hydrophilicity is a key parameter for development of the sample substrate in SALDI-MS. To increase
the surface hydrophilicity, the SAM of gold nanoparticles was treated by EDT [58]. Before and
after treatment of EDT, the surface hydrophilicity of SAM of gold nanoparticles was measured by
contact angle. As shown in Figure 3c,d, the contact angles were respectively measured to be 115◦ and
75◦, before and after EDT treatment. The results of contact angle measurements indicated that the
surface hydrophilicity of sample substrate of SAM of gold nanoparticles was successfully increased by
EDT treatment.
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3.3. Investigation of Gold Nanoparticle Multilayers as the Sample Substrates in SALDI-MS

For the development of sample substrate of AuNPs-ML, SAM of gold nanoparticles was repeatedly
transferred onto the steel plate. To investigate the performance of the sample substrate, AuNPs-ML
with 10, 15, 20, and 25 layers (AuNPs-ML10, AuNPs-ML15, AuNPs-ML20, and AuNPs-ML25) were
respectively applied as the sample substrates to analyze glucose (10−3 M) in MALDI-MS. The analyte
of glucose is often applied for the first examination of the capability of SALDI-MS substrate for small
molecule measurement. The mass spectrum of glucose (10−3 M) was first detected on the steel plate in
SALDI-MS as shown in Figure S1. There is no significant glucose signal with the application of steel
plate in SALDI-MS measurement. Moreover, the mass spectrum of sample substrate of AuNPs-ML15
was measured to examine the background signals in SALDI-MS, as shown in Figure S2. The background
signals of AuNPs-ML15 also showed no significant signal. With the uses of AuNPs-ML as the sample
substrates, the mass spectra of glucose were successfully obtained as shown in Figure 4. By using the
sample substrates of AuNPs-ML, the glucose was detected as the [Glucose+Na]+ ion with high signal
intensity in SALDI-MS. With the increases of AuNPs-ML layers from 5 to 10, the intensity of glucose
signal was increased and then achieved the maximal intensity with the use of sample substrate of
AuNPs-ML15 in SALDI-MS. The maximal intensity of glucose signal obtained with AuNPs-ML15 was
attributed to the fact that the sample substrate of AuNPs-ML15 exhibited higher absorption coefficient
at 337 nm than that of AuNPs-ML10. The absorption coefficients at 337 nm for AuNPs-ML10 and
AuNPs-ML15 were 0.46 and 0.57, respectively. AuNPs-ML15 with higher absorption coefficient at
337 nm can absorb more nitrogen laser and then transform into heat to facilitate desorption/ionization
of glucose during SALDI-MS measurement. However, the intensity of glucose signal decreased when
the AuNPs-ML layers were increased more than 15 layers. The decrease of signal intensity was
evidently shown from AuNPs-ML20 to AuNPs-ML25. The results can be ascribed to the fact that the
analyte of glucose penetrated into the sample substrate of AuNPs-ML, resulting in the difficulty for
desorption and ionization of glucose in the bottom layers in SALDI-MS. Therefore, the optimal sample
substrate of AuNPs-ML15 was applied for the following SALDI-MS measurements.
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Figure 4. Mass spectra of glucose with the application of AuNPs-ML as the sample substrates in
SALDI-MS. The concentration of glucose was 10−3 M. Peak identity: m/z 203.26, [Glucose+Na]+.

3.4. Merchant Matrixes and AuNPs-ML for SALDI-MS Measurements

To investigate the performance of AuNPs-ML sample substrate, merchant matrixes included
CHCA and DHB were employed to measure glucose (10−3 M) in SALDI-MS. As shown in Figure 5, the
interference coming from the matrix of CHCA was extremely strong for glucose detection in SALSI-MS.
With the additive of merchant assisted matrix of DHB, the weak intensity of glucose signal and the
low signal-to-noise ratio were obtained in comparison with the sample substrate of AuNPs-ML15.
Overall, the sample substrate of AuNPs-ML15 exhibited the highest intensity of glucose signal, the
lowest background noise and the excellent S/N ratio compared to that of merchant matrixes of CHCA
and DHB. The results demonstrated that AuNPs-ML15 has revealed the great potential for the use as a
sample substrate for the detections of small molecules without additional matrix in SALDI-MS.
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3.5. Detections of Sucrose and Tryptophan

To further examine the performance of sample substrate of AuNPs-ML15, small molecules of
sucrose (10−3 M) and tryptophan (10−3 M) were applied as analytes in SALDI-MS measurements.
As shown in Figure 6, the sucrose was detected as the [sucrose+H]+ and [sucrose+Na]+ ions and
the tryptophan was measured as the [tryptophan+H]+ ion. Both of the mass spectra of sucrose and
tryptophan exhibited strong signal intensities and low background signals. The results indicated
that very few fragment ions of the analytes can be detected with the use of sample substrate of
AuNPs-ML15 in SALDI-MS. Furthermore, the sample substrate of AuNPs-ML15 showed no significant
interference for the measurements of sucrose and tryptophan in SALDI-MS. Overall, AuNPs-ML15
was demonstrated as the sample substrate to obtain strong signal intensity and low background signal
for small molecules in SALDI-MS.
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3.6. Signal Reproducibility of AuNPs-ML Sample Substrate in SALDI-MS

To realize the practical application, the reproducibility of mass spectra is a common issue that needs
to be improved for the enhancement of reliability in SALDI-MS detection. Herein, AuNPs-ML-15 was
applied as a homogeneous sample substrate to improve the reproducibility of mass spectra. As shown
in Figure 7, the relative signal of [Glucose+Na]+ was estimated to be 7.3% with the application of
AuNPs-ML-15 sample substrate in SALDI-MS. Compared to merchant glucometer with the error
margin of relative signal of 15%, the sample substrate of AuNPs-ML-15 can provide an accurate and
precise approach for glucose measurement in SALDI-MS. The excellent reproducibility of mass spectra
could be attributed to the fact that the sample substrate of AuNPs-ML-15 exhibited strong absorption
at wavelength of 337 nm, low specific heat, excellent heat conductivity, and superior homogeneity.
With the strong absorption at wavelength of 337 nm, the sample substrate of AuNPs-ML-15 can
absorb more laser energy and then transform into heat by photothermal effect for the increase of
desorption and ionization of analyte in SALDI-MS. Furthermore, the temperature of AuNPs-ML-15
sample substrate can be rapidly increased to improve desorption and ionization of analyte because of
its low specific heat. With the excellent heat conductivity, the sample substrate of AuNPs-ML-15 can
swiftly transfer heat to analyte to induce desorption and ionization. Most importantly, the superior
homogeneity of AuNPs-ML-15 sample substrate can homogeneously transfer the heat to improve
desorption/ionization of analyte in SALDI-MS. Therefore, the limit-of-detection reached to 1 µM for
the glucose measurement with the application of AuNPs-ML15 as the sample substrate in SALDI-MS.
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To sum up, the analysis of analyte with the sample substrate of AuNPs-ML can provide a practical
approach by SALDI-MS.
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4. Conclusions

The homogeneous AuNPs-ML with hexagonal lattice was successfully prepared and served as
a sample substrate in SALDI-MS measurement. The sample substrate of AuNPs-ML15 revealed the
maximal signal intensity of glucose compared to AuNPs-ML10, AuNPs-ML20, and AuNPs-ML25
due to the increase of desorption and ionization of glucose in SALDI-MS. AuNPs-ML15 sample
substrate also revealed the best quality of glucose mass spectra including the highest signal intensity,
the lowest background noise, and the excellent S/N ratio in comparison with merchant matrixes of
CHCA and DHB. Various analytes including sucrose and tryptophan were simply measured by the
uses of AuNPs-ML15 sample substrate in SALDI-MS. Moreover, the sample substrate of AuNPs-ML-15
with strong absorption at wavelength of 337 nm, low specific heat, excellent heat conductivity, and
superior homogeneity can provide an accurate and precise approach for the measurements of small
molecules in SALDI-MS.
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