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Abstract

With the increasing availability of large-scale GWAS summary data on various traits, Men-

delian randomization (MR) has become commonly used to infer causality between a pair of

traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs,

as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-

effect meta-analysis model) is most powerful when all IVs are valid; however, when horizon-

tal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regres-

sion is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it

suffers from loss of power. We propose a two-component mixture of regressions to combine

and thus take advantage of both IVW and Egger regression; it is often both more efficient

(i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either

IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We

propose a model averaging approach and a novel data perturbation scheme to account for

uncertainties in model/IV selection, leading to more robust statistical inference for finite sam-

ples. Through extensive simulations and applications to the GWAS summary data of 48 risk

factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our pro-

posed methods could often control type I error better while achieving much higher power

than IVW and Egger regression (and sometimes than several other new/popular MR meth-

ods). We expect that our proposed methods will be a useful addition to the toolbox of Men-

delian randomization for causal inference.

Author summary

For causal inference, inverse-variance weighting (IVW) and Egger regression are two of

the most widely applied Mendelian randomization methods nowadays. IVW is the most

powerful under the perhaps too restrictive assumption that all IVs are valid, while Egger

regression is often unnecessarily too flexible in assuming all IVs to be invalid with uncor-

related pleiotropic effects. In spite of their usefulness, we point out their limitations: an
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IVW estimate of a causal effect would be biased if some/all IVs have directional pleiotro-

pic effects, and an Egger regression estimate has too large a variance, leading to its loss of

power. Accordingly we propose a mixture model to combine them to take advantage of

their strengths while overcoming their major limitations. Furthermore, we propose a

model-averaging approach and a novel data perturbation scheme to account for uncer-

tainties in model/IV selection, leading to more robust statistical inference. Through simu-

lations and applications to some publicly available large-scale GWAS summary data, we

demonstrate the superiority of our methods over IVW and Egger regression (and over

some other state-of-the-art MR methods in some scenarios).

Introduction

Mendelian randomization (MR) has become a widely used technique to infer causal relation-

ship between an exposure (e.g. a risk factor) and an outcome (e.g. a disease) using GWAS sum-

mary data, in which usually independent genetic variants (SNPs) are used as instrument

variables (IVs) [1–3]. To guarantee correct inference, as shown in Fig 1, a valid IV used in MR

must be:

1. associated with the exposure (X), i.e. γi 6¼ 0;

2. not associated with the outcome (Y) conditional on the exposure (X) and hidden con-

founder (U), i.e. αi = 0;

3. not associated with any hidden confounder (U), i.e. ϕi = 0.

When all IVs used in Mendelian randomization are valid (and uncorrelated), the inverse-

variance weighted (IVW) method is consistent and most powerful: it combines the IV-specific

ratio estimates most efficiently by inverse-variance weighting [4]. However, in the presence of

horizontal pleiotropy, where some or all IVs have direct effects on the outcome, the second IV

Fig 1. A causal diagram illustrating the three assumptions on a valid IV gi. Dashed lines (which are marked with a

red ‘cross’) correspond to violations of assumptions 2 and 3.

https://doi.org/10.1371/journal.pgen.1009922.g001
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assumption is violated and IVW may not be consistent unless the mean of the direct effects is

zero, a scenario of so-called “balanced pleiotropy”. More generally, Egger regression is applied

under a weaker assumption that the direct or pleiotropic effects of the genetic variants on the

outcome are independent of the genetic associations with the exposure (so-called InSIDE

assumption) [5]. It has been noted recently that Egger regression often suffers from a severe

loss of power, because it assumes that all IVs are invalid, which may be too extreme. Many

other methods have been proposed to deal with the violation of Assumption 2 or both

Assumptions 2 and 3, but most of them require either the plurality or the majority assumption

[6–9]. We note that Egger regression is the only method allowing all IVs to be invalid (with

possibly directional pleiotropy), and is easy to apply, both of which perhaps explain its

popularity.

Both IVW and Egger regression, as two of the most popular MR methods, impose too

extreme assumptions: while IVW (fixed effects) assumes that all IVs are valid, both IVW (ran-

dom effects) and Egger regression assume that all IVs are invalid; the truth is perhaps often

between the two. We acknowledge and take account of the possibility of having from zero to

all invalid IVs. Accordingly, we propose a two-component mixture of regressions model,

denoted mixIE, which can be viewed as the mixture of IVW (fixed effects) and Egger regres-

sion, and thus may be more efficient and more robust to the violation of IV Assumption 2; as

Egger regression, the proposed new method requires the IV Assumption 3 (so that InSIDE) to

hold, though we will show that it is more robust than Egger regression when the assumption is

violated. The model is fitted using a classification expectation-maximization (CEM) algorithm

[10, 11], selecting valid and invalid IVs to be used by IVW (fixed effects) and Egger regression

respectively. To account for uncertainties in model/IV selection, we propose a model-averag-

ing approach based on a few top selected models, in addition to the default IVW (fixed effects)

and Egger regression models. Furthermore, we propose a novel data perturbation scheme to

deal with more challenging situations where the true model is only weakly identifiable, e.g.

with many IVs having weak pleiotropic effects; it controls the type I error better in these chal-

lenging situations.

There are two other related methods based on mixture models as well, namely MR-Cont-

Mix [12] and MRMix [13]. MRMix assumes a four-component normal mixture model for

the underlying bivariate effect size distribution of all the SNPs for a pair of traits, and

MR-ContMix assumes a two-component normal mixture model for the ratio estimates (cor-

responding to valid and invalid IVs), while our proposed method is based on a mixture of

regressions model for GWAS summary statistics directly. All three mixture models include a

component for valid IVs and could potentially identify valid and invalid IVs. Another novel

and powerful method based on constrained maximum likelihood (cML) also selects and

(implicitly) removes invalid IVs by estimating the pleiotropic effect (if it exists) for each SNP

and then only uses valid IVs for statistical inference [14]. However, [14] shows in their simu-

lations that although MR-ContMix performed well in most scenarios, sometimes it per-

formed poorly probably due to the challenge of its pre-selection of a fixed tuning parameter.

At the same time, MRMix often performed well with mostly well controlled type 1 errors

and high power, but it might have either largely inflated or too conservative type 1 errors

while giving biased estimates. Here we will further compare mixIE with cML, MR-ContMix

and MRMix in our numerical studies. At last, MRMix, MR-ContMix and cML all require

the valid IV plurality condition, while mixIE, as Egger regression, could potentially handle

situations when all IVs are invalid but requiring the InSIDE assumption to hold; we also

show that mixIE is more robust than Egger regression when the InSIDE assumption is

violated.
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The rest of the paper is organized as follows. We first introduce mixIE and its variants

based on model averaging and data perturbation. We then show the advantages of our pro-

posed methods over IVW and Egger regression through extensive simulations. Finally we

apply and compare various methods on 48 risk factor-disease pairs and 63 trait pairs using

multiple publicly available GWAS summary datasets.

Methods

Overview

We consider the setup of two-sample Mendelian randomization. Suppose that we havem inde-

pendent SNPs, G1, . . ., Gm, as IVs, an exposure X, an outcome Y, and some hidden confounder

U; θ is the causal effect of the exposure on the outcome and is the parameter of interest. The

coefficient vector γxg represents the associations between SNPs and the exposure, and αyg the

direct effects of SNPs on the outcome that are not mediated through the exposure. The true

model is

X ¼ Gγxg þ Uþ ex;

Y ¼ yXþ Gαyg þ Uþ ey:
ð1Þ

where X, Y and G are the vectors for the observed exposure, outcome and genotypic scores

respectively, and ex and ey are the vectors for independent errors.

Given two independent GWAS summary datasets of traits X and Y with sample sizes nx and

ny respectively, we extract the data for m independent SNPs that are significantly associated

with X; that is, their marginal association parameter and variance estimates, ðb̂Xi; ŝ
2
XiÞ and

ðb̂Yi; ŝ
2
YiÞ, i = 1, . . ., m. The IVW model is

b̂Yi ¼ yb̂Xi þ �Ii; �Ii � N ð0; s2
I ŝ

2
YiÞ:

Fitting the above model using weighted least squares lead to the IVW estimate ŷIVW , which is

consistent for θ if all IVs are valid or have balanced pleiotropy. If all IVs are valid, s2
I ¼ 1,

which is specified under the fixed-effect (FE) IVW; on the other hand, if some IVs are invalid

but have balanced pleiotropy, s2
I > 1 is estimated under the random-effect (RE) IVW. Note

that IVW(FE) and IVW(RE) assume that all IVs are valid and invalid respectively. Throughout

this paper, if IVW is used alone (as a single MR method), it always refers to its RE version;

however, in our proposed mixIE, IVW(FE) is always used.

Egger regression is a simple modification to the above linear model without constraining

the intercept to be zero:

b̂Yi ¼ r þ yb̂Xi þ �Ei; �Ei � N ð0; s2
Eŝ

2
YiÞ: ð2Þ

As pleiotropic effects of genetic variants will lead to overdispersion, a random-effects analysis

should always be preferred by estimating s2
E � 1 in Egger regression [15]. Under the InSIDE

assumption, the Egger estimate ŷE of θ is consistent (as both the sample size and the number of

genetic variants tend to infinity).

To take the advantage of both IVW and Egger regression, we propose a two-component

mixture regression model for IVW and Egger regression respectively, called mixIE

for short. The two components correspond to modeling valid IVs and invalid IVs

respectively. If we know which IVs are valid and which are invalid, we would use the
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corresponding IVW(FE) and Egger regression models respectively. In practice, since we

do not know, we have a mixture of two regressions and the log-likelihood function (up to a

constant) as

lðy; r; c; p; fb̂Xi; b̂Yi; ŝ
2
YigÞ ¼

XK

i¼1

�
1

2

ðb̂Yi � yb̂Xi � rÞ
2

cŝ2
Yi

þ logðcŝ2

YiÞ

" #

þ
Xm

i¼Kþ1

�
1

2

ðb̂Yi � yb̂XiÞ
2

ŝ2
Yi

þ logðŝ2

YiÞ

" #

;

ð3Þ

where, among the unknown parameters, r is the average pleiotropic effect of invalid IVs, c is

the multiplicative over-dispersion parameter, and π = K/m is the proportion of invalid IVs;

we use fb̂Xi; b̂Yi; ŝ
2
Yig to represent the observed data. Here for simplicity of notation, we

denote the first K SNPs, G1, . . ., GK, as invalid IVs, and the remaining GK+1, . . ., Gm as valid

IVs. In practice, we do not know which IVs are invalid (and all the parameter values), thus

we apply the classification expectation-maximization (CEM), a variant of EM algorithm, to

classify IVs (and estimate the parameters) [10, 11]. Since the result of EM or CEM depends

on the choice of starting values and there may be multiple models fitting the data well, we

propose a model averaging approach, called mixIE-MA. We also propose a data perturba-

tion strategy to further take account of the uncertainty in model/IV selection, called mixIE-

MA-DP later.

Model fitting

The formulation of our approach lends itself to the classification EM algorithm [10]. Let zi
denote the unobserved indicator of whether IV/SNP i being invalid or not. For convenience,

let α = (θ, r, c, π) denote the set of all unknown parameters, and Di ¼ ðb̂Xi; b̂Yi; ŝ
2
YiÞ the

observed data for SNP i. The (t + 1)th iteration of CEM algorithm is defined as follows:

• E-step: calculate

t
ðtþ1Þ

i;0 ≔Pðzi ¼ 0jDi;α
ðtÞÞ

¼
f ðb̂Yi � y

ðtÞ
b̂Xi; ŝ

2
YiÞ � ð1 � p

ðtÞÞ

f ðb̂Yi � y
ðtÞ
b̂Xi; ŝ

2
YiÞ � ð1 � p

ðtÞÞ þ f ðb̂Yi � y
ðtÞ
b̂Xi � rðtÞ; cðtÞŝ2

YiÞ � p
ðtÞ
;

t
ðtþ1Þ

i;1 ≔Pðzi ¼ 1jDi;α
ðtÞÞ ¼ 1 � t

ðtþ1Þ

i;0 ;

where f(a, σ2) is the density function value at a for N ð0; s2Þ.

• C-step: classify SNP i as invalid IV if t
ðtþ1Þ

i;1 ⩾ 0:5, otherwise as valid IV, and let K̂ denote the

number of the classified invalid IVs. Again, for simplicity of notation, after possible rear-

rangement of the orders of the SNPs, we denote the first K̂ SNPs as invalid IVs and the rest

m � K̂ as valid IVs.
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• M-step: update the parameter estimates

pðtþ1Þ ¼
K̂
m
;

rðtþ1Þ ¼

XK̂

i¼1

b̂Yi � y
ðtÞ
b̂Xi

ŝ2
Yi

XK̂

i¼1

1

ŝ2
Yi

;

cðtþ1Þ ¼

XK̂

i¼1

ðb̂Yi � y
ðtÞ
b̂Xi � rðtþ1ÞÞ

2

ŝ2
Yi

K̂
;

y
ðtþ1Þ

¼

XK̂

i¼1

ðb̂Yi � rðtþ1ÞÞb̂Xi
cðtþ1Þŝ2

Yi

þ
Xm

i¼K̂þ1

b̂Yib̂Xi
ŝ2
Yi

XK̂

i¼1

b̂2
Xi

cðtþ1Þŝ2
Yi

þ
Xm

i¼K̂þ1

b̂2
Xi

ŝ2
Yi

:

We obtain the final estimates ðŷ; r̂; ĉ; p̂Þ ¼ ðyðtþ1Þ
; rðtþ1Þ; cðtþ1Þ; pðtþ1ÞÞ at the convergence. By

default, as in our simulations and real data analyses, we set r(0) = 0, c(0) = 1, π(0) = 0.2 and gen-

erate θ(0) randomly from � maxðjb̂Yi=b̂XijÞ to maxðjb̂Yi=b̂XijÞ as well as including 0 and point

estimates from IVW and Egger regression. The choice of π(0) = 0.2 is because that there is usu-

ally a small proportion of invalid IVs in many real data examples as shown later and in [14].

When r(0) = 0 and c(0) = 1, the two components are the same, thus we run two iterations of the

standard EM algorithm before starting the CEM.

To obtain the standard error of the estimated parameters, we take the approach proposed

in [16], which requires the computation of the gradients and the information matrix based on

the complete data log-likelihood. The details are given in Section A in S1 Text.

Model averaging

It is well known that the EM algorithm is sensitive to the choice of starting values while there

may be multiple good models, therefore we use model averaging to account for this uncer-

tainty. Specifically, we use different starting values to reach a few top candidate models, and by

default, we always include the fixed-effect IVW model (i.e. p̂ ¼ 0; ĉ ¼ 1; r̂ ¼ 0) and the Egger

regression model (i.e. p̂ ¼ 1) in the list of the top candidate models. A model is judged by its

Bayesian information criterion (BIC) [17]:

BIC ¼ � 2 � lðŷ; r̂; ĉ; p̂; fb̂Xi; b̂Yi; ŝ
2
YigÞ þ logðnyÞ � ð2þ 1fr̂ 6¼ 0g þ 1fĉ > 1gÞ;

where the indicator function 1fAg ¼ 1 or 0, depending on whether A is true or not. Based on

the BIC values of the various fitted models, we select up to 5 top models. Following [18], we

define the weight for model k = 1, . . ., 5 with BIC value BICk as

wk ¼
expð� BICk=2Þ

P5

j¼1
expð� BICj=2Þ

:

Now we combine the estimates ŷk from candidate models k = 1, . . ., 5 to have the final model-
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averaging estimate and its standard error as

ŷMA ¼
X

k

wkŷk;

SEðŷMAÞ ¼
X

k

wk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SEðŷkÞ
2
þ ðŷk � ŷMAÞ

2

q

:

Data perturbation

To further take account of the uncertainty in model selection/averaging, we propose a data

perturbation strategy [19]. Instead of applying the usual asymptotics that ignores the uncer-

tainty in model selection/averaging, we perturb the data to mimic generating multiple samples

from the data distribution. With each perturbed/generated sample, we repeat an estimation

procedure (as applied to the original data) so that the uncertainty in model selection/averaging

or other aspects can be taken account when, at the end, the empirical distribution of such esti-

mates from multiple perturbed samples is used for inference. This is similar to and can even

trace back to the little bootstrap method [20] in the context of model selection. We found that

the (more general) data perturbation scheme proposed in [14] did not perform well for mixIE

in some extreme situations (presumably because of the nature of Egger regression with the use

of invalid IVs), so we propose a modified one for mixIE specifically.

Since mixIE classifies IVs as valid or invalid, estimating the causal effect ŷ could be approxi-

mated via a fixed effect meta analysis of IVW estimate ŷI and Egger estimate ŷE based on the

sets of valid IVs and of invalid IVs respectively:

ŷ ¼
ŷI

SEðŷIÞ
2
þ

ŷE

SEðŷEÞ
2

 !

=
1

SEðŷIÞ
2
þ

1

SEðŷEÞ
2

 !

: ð4Þ

Similarly for mixIE-MA, we could classify IVs based on their model averaged posterior proba-

bilities. Accordingly, we propose the following data perturbation scheme for mixIE-MA:

Step 1: Perturb the observed data by b̂
ðbÞ
Yi ¼ b̂Yi þ �

�
i , where ��i � Nð0; ŝ2

YiÞ, and

ŝ
ðbÞ
Yi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðb̂ðbÞYi Þ
q

¼
ffiffiffi
2
p
� ŝYi.

Step 2: Apply mixIE-MA algorithm on the b-th perturbed dataset ðb̂Xi; b̂
ðbÞ
Yi ; ŝ

ðbÞ
Yi Þ and obtain

the corresponding estimated sets of valid IVs and invalid IVs. The estimated causal effect

ŷðbÞ could be approximated by Eq (4) with (ŷ
ðbÞ
I ; SEðŷ

ðbÞ
I Þ) and (ŷ

ðbÞ
E ; SEðŷ

ðbÞ
E Þ) estimated from

IVW and Egger regression respectively.

Step 3: Further perturb the data for the set of invalid IVs by b̂
ðbÞ�
Yi ¼ b̂Yi þ ŝ

ðbÞ��i , where ŝðbÞ is

the estimated inflation factor in Egger regression model (2) for the set of invalid IVs identi-

fied above.

Step 4: Apply Egger regression to the new perturbed data b̂
ðbÞ�
Yi and obtain ŷ

ðbÞ�
E .

Step 5: Apply fixed-effect meta analysis to combine ŷ
ðbÞ
I and ŷ

ðbÞ�
E , obtaining ŷðbÞ� for the b-th

perturbed dataset as follows:

ŷðbÞ� ¼
ŷ
ðbÞ
I

SEðŷðbÞI Þ
2
þ

ŷ
ðbÞ�
E

SEðŷðbÞE Þ
2

 !

=
1

SEðŷðbÞI Þ
2
þ

1

SEðŷðbÞE Þ
2

 !

:
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We repeat the above steps B times and obtain the mean and standard deviation of fŷðbÞ�g
B

b¼1

as the final point estimate and standard error for mixIE-MA-DP. We could also use the pro-

portion of the times when SNP i being identified as invalid out of the B data perturbations as

the posterior probability estimate t̂ i;1 for mixIE-MA-DP. By default we used B = 200 in our

simulations and real data analysis.

It is noted that the DP on GWAS summary data is equivalent to the bootstrap on the corre-

sponding individual-level data. Suppose the GWAS individual level data are {(Yj, Zij): j = 1, 2,

. . ., n} for outcome Y and SNP/IV i (both centered at mean 0). For model Yj = Zij βYi + eYij
with iid eYij � Nð0; s2

eiÞ, we obtain the ordinary least square (OLS), or equivalently maximum

likelihood, estimate b̂Yi � NðbYi; s2
YiÞ. If we apply the parametric bootstrap by generating

YðbÞj ¼ Zijb̂Yi þ e
ðbÞ
Yij with iid eðbÞYij � Nð0; s2

eiÞ, it is easy to verify that, conditional on b̂Yi, the cor-

responding OLS estimate b̂
ðbÞ
Yi � Nðb̂Yi; s2

YiÞ, the same distribution (with s2
Yi replaced by its

estimate ŝ2
Yi) used in Step 1 in our DP procedure. In fact, based on the results in [21] (Section

7.2.2), the conclusion holds (asymptotically) for other three types of the bootstrap: residual

bootstrap (by resampling residuals), nonparametric bootstrap (by resampling pairs (Yj, Zij))
and external/wild/multiplier bootstrap.

Goodness-of-fit testing

In mixIE, invalid IVs are modeled according to Egger regression, which requires the InSIDE

assumption. Thus, in principle mixIE and the proposed data perturbation scheme would also

require the InSIDE assumption to hold. On the other hand, it is known that the InSIDE

assumption is difficult to test [22–24]. A general way for model checking is to compare our

proposed model with some other methods that do not require the InSIDE assumption, such as

cML, MRMix and MR-ContMix, though it only works if other assumptions for the latter meth-

ods hold (e.g. the plurality of valid IV assumption). Specifically, we evaluate the consistency

between our estimates with that of another method; any inconsistency might be due to the vio-

lation of the InSIDE or other assumptions of the two methods being compared. Here we call it

goodness-of-fit (GOF) testing, though it is perhaps more in line with and can be used for trian-

gulation [25].

To compare two different methods on a given dataset, one has to account for the correlation

between the two estimates from the two methods, which is not trivial. We propose using a gen-

eral data perturbation scheme similar to that of [14] (but under no measurement error

(NOME) assumption as adopted by IVW and Egger regression, thus by mixIE) for such a pur-

pose. Specifically, we propose the following procedure: Staring with b = 1,

Step 1: Perturb the data to generate b̂
ðbÞ
Yi ¼ b̂Yi þ �

�
Yi with ��Yi � Nð0; ŝ2

YiÞ independently;

Step 2: Apply mixIE-MA and another method, such as cML-MA, to the perturbed dataset

ðb̂Xi; b̂
ðbÞ
Yi ; ŝ

2
YiÞ and obtain the corresponding y

ðbÞ
m and y

ðbÞ
c ;

Step 3: Calculate their difference, d
ðbÞ
¼ y

ðbÞ
m � y

ðbÞ
c , and let b b + 1.

We repeat the above steps for B = 200 times and obtain the empirical distribution of

fd
ðbÞ�
g
B

b¼1
. If the 95% percentile interval of {δ(b)�} does not cover 0, then we conclude that the

results of mixIE-MA and the other method (not requiring InSIDE) are inconsistent with each

other, suggesting possible violation of the InSIDE assumption for mixIE, or of some other

assumptions required by the two methods. In such a case, cautions should be taken in inter-

preting the causal results.
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Other MR methods

We compared mixIE-MA and mixIE-MA-DP with other popular two-sample MR methods,

including random-effect IVW model, Egger regression, MR-Mix [13], MR-ContMix [12],

weighted-median [6] and a new method called constrained maximum likelihood (cML) [14].

We applied cML with its model averaging version based on BIC, called cML-MA for short,

and its data perturbation version, called cML-MA-DP.

GWAS data

Primary real data example. We applied our proposed methods and other MR methods to

48 pairs of risk factor-disease GWAS summary data following [26], including 12 risk factors

and 4 diseases. For each risk factor-disease pair, we used the set of LD-independent SNPs as

IVs as described in [26] (in their S4 Table), and applied all methods to the GWAS summary

statistics of these SNPs.

Secondary real data example. Following [14], we also applied our proposed methods to

63 trait pairs whose genetic correlations are not significant, suggesting that they are unlikely to

be causally related. For each pair, we used the code provided in its Supplementary to extract

the GWAS summary statistics for analysis.

Simulation set-ups

Main simulations. Similar to the set-ups in [27], we simulated data according to Eq (5),

U ¼ Gϕug þ eu;

X ¼ Gγxg þ Uþ ex;

Y ¼ yXþ Gαyg þ Uþ ey;

ð5Þ

in which

1. the genotype scores of m SNPs/IVs (G) were generated independently from Binomial(2,fi),
where for each SNP i its MAF fi was generated independently from a uniform distribution

Uð0:1; 0:3Þ;

2. the IV strengths γxg were generated from a left-truncated normal distribution: form = 10,

an IV strength was generated from N ð0; 0:152Þ left-truncated at 0.15 (i.e. any value gener-

ated would be larger than 0.15); for m = 30, it was generated from N ð0; 0:12Þ left-truncated

at 0.1; form = 100, it was from N ð0; 0:052Þ left-truncated at 0.05;

3. for K = m � (p_invalid) invalid IVs, we consider three scenarios:

(a). Balanced pleiotropy and InSIDE satisfied, where pleiotropy effects αyg were generated

independently from N ð0;
ffiffiffiffiffiffiffiffiffi
0:15
p 2

Þ and ϕug = 0;

(b). Directional pleiotropy and InSIDE satisfied, where αyg were generated from

N ð0:1;
ffiffiffiffiffiffiffiffiffiffiffi
0:075
p 2

Þ and ϕug = 0;

(c). Directional pleiotropy and InSIDE violated, where αyg were generated from

N ð0:1;
ffiffiffiffiffiffiffiffiffiffiffi
0:075
p 2

Þ and ϕug were generated from Uð0; bÞ;

4. eu, ex, ey were generated from N ð0; 1Þ independently.

The summary data for genetic associations were calculated for the exposure and the out-

come on non-overlapping sets of individuals, each consisting of n individuals. For scenarios
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(a) and (b), we varied θ from {0,0.2}, p_invalid from {0, 0.3, 0.5, 0.7, 1} and sample size nx = ny
= n = 10 000 or 50 000. To further compare the power, we also tried a smaller effect size θ from

{±0.01, ±0.05, ±0.1, ±0.15}, p_invalid from {0.3,0.5,0.7} for m = 30 and n = 50 000. For scenario

(c), we considered different correlated pleiotropy effects by varying b from {0.1,0.4,0.7}.

As one reviewer suggested, we also considered different sample sizes for the exposure and

the outcome. Details are given in Section B.1.4 in S1 Text.

Secondary simulations with weak invalid IVs. Following [14], we simulated data with

many invalid IVs with weak effects, called “weak invalid IVs” throughout. We generated

m = 50 IVs with 60% invalid IVs and with sample size n = 20 000. The IV strengths γi’s were

generated independently from N ð0; 0:01Þ. Pleiotropic effects αi’s for the first 30 IVs were gen-

erated independently from N ð0; hy=mÞ. Then we set ŝXi ¼ ŝYi ¼ 1=
ffiffiffi
n
p

and generated GWAS

summary data b̂Xi � N ðgi; ŝ2
XiÞ and b̂Yi � N ðy � gi þ ai; ŝ2

YiÞ, where θ is the causal effect of

interest. We varied hy from {0.1,0.2,0.4} and θ from {-0.2,-0.1,-0.05,0,0.05,0.1,0.2}.

For each setup, we did 1000 simulations. We compare our proposed methods mixIE-MA

and its data perturbation version mixIE-MA-DP with cML-MA, cML-MA-DP, Egger, IVW,

MR-Mix, MR-ContMix and weighted-median. For mixIE-MA, mixIE-MA-DP and Egger

regression, we used the original coding of SNPs throughout the simulations.

Results

Simulations

Main simulations. We compared our proposed methods with 6 most popular and new

MR methods under three scenarios: InSIDE satisfied, directional pleiotropy; InSIDE satisfied,

balanced pleiotropy and InSIDE violated, directional pleiotropy. Here we only show some rep-

resentative results for n = 50000 while all others are given in Section B.1 in S1 Text.

InSIDE satisfied. Fig 2 shows the empirical type 1 error and power of different methods

for directional pleiotropy under the InSIDE assumption. First, Egger regression was the only

method that could control type 1 error across all scenarios, followed by mixIE-MA-DP and

cML-MA-DP that could control type 1 error well except in the more extreme scenarios with

all IVs being invalid. But Egger regression also had the lowest power across all scenarios. As

expected, IVW had inflated type 1 error in the presence of directional pleiotropy (but not in

that of balanced pleiotropy). However, as shown in Section B.1.2 in S1 Text, IVW had very low

power in the scenarios of balanced pleiotropy even though it could control the type 1 error,

while mixIE-MA-DP was able to control the type 1 error well and had much higher power

except when all IVs were invalid. Our proposed method mixIE-MA had inflated type 1 error

as the proportion of invalid IVs increased, but this could be improved by mixIE-MA-DP with

data perturbation; the latter point was also reflected by cML-MA and cML-MA-DP. MR-Mix

was able to control type 1 error in many scenarios except when m = 10 and/or all IVs were

invalid, and it also performed too conservatively in the cases with all valid IVs. MR-ContMix

performed well with 30% invalid IVs but began to have inflated type 1 error when more than

50% IVs were invalid; and weighted-median also had much inflated type 1 error when there

were more than half of invalid IVs probably due to the violation of its majority of valid IV

assumption. Second, data perturbation was able to further take account of the uncertainty in

model selection. We see that mixIE-MA could have inflated type 1 error as the proportion of

invalid IVs increased, probably because of incorrectly classifying IVs. In contrast, mixIE-

MA-DP was able to control type 1 error in all scenarios but that of p_invalid = 1, and even

when all IVs were invalid, it still had much lower type 1 error than the original method. On

the other hand, data perturbation might lose some power as compared with the original
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method, but the loss was acceptable especially when we had a large sample size as shown here.

We can see that even when 70% IVs were invalid, there was not much power loss.

Fig 3 shows the distributions of the causal parameter estimates by each method when 70%

IVs were invalid with directional pleiotropy under InSIDE. In general, cML-MA and

cML-MA-DP had the smallest MSE as shown here and in S1 Text. The performance of our

proposed methods was less stable with a small number of IVs (i.e. m = 10). However, as m
increased, mixIE-MA-DP had comparable MSEs with that of cML-MA-DP. In addition, as

shown in S1 Text, mixIE-MA-DP could have slightly higher power than cML-MA-DP when

the sample sizes or effect sizes were small. MR-ContMix also yielded (almost) unbiased esti-

mates with small variances as mixIE and cML methods, while MRMix was slightly biased

towards 0 as shown in Fig 3B. And again, Egger regression and IVW gave a very wide range of

estimates, and the IVW estimates were biased in the presence of directional pleiotropy.

Fig 4 shows the estimated proportions of invalid IVs by mixIE-MA in different scenarios.

We can see that it was able to estimate the proportion of invalid IVs reasonably well, but

Fig 2. Simulation results with directional pleiotropy and InSIDE satisfied. A: Empirical type-I error; B: Power with sample size n = 50 000. Each row corresponds to

m = 10, 30, 100 SNPs and each column corresponds to 0, 30%, 50%, 70%, 100% invalid IVs.

https://doi.org/10.1371/journal.pgen.1009922.g002
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Fig 3. Simulation results with directional pleiotropy and InSIDE satisfied. Empirical distributions of the estimates of the causal effect θ by the methods with

n = 50000 and 70% invalid IVs. A: θ = 0. B: θ = 0.2.

https://doi.org/10.1371/journal.pgen.1009922.g003

Fig 4. Estimates of the proportion of invalid IVs by mixIE-MA with n = 50 000 under directional pleiotropy and InSIDE satisfied. The upper row corresponds to

θ = 0 and the lower one to θ = 0.2; each column corresponds tom = 10, 30, 100 respectively.

https://doi.org/10.1371/journal.pgen.1009922.g004
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under-estimated it when the proportion of invalid IVs was high. We argue that this was proba-

bly due to the weak identifiability of the mixture model: in such a scenario, the few points

close to any line going through the origin point could be reasonably regarded as valid IVs. As

shown in Fig 5A, although mixIE-MA identified most of the IVs to be invalid, the 4 (blue)

points were identified to be valid IVs, driving a causal estimate of 1.34 with p-value < 0.05 and

resulting in a type 1 error. While in Fig 5B, mixIE-MA-DP classified all IVs as invalid and gave

a point estimate of 0.61 with p-value 0.54. In Fig 5C, using data perturbation, mixIE-MA-DP

was able to identify more than 100 times out of 200 perturbations that those 4 IVs were invalid.

As shown in the histogram of the causal estimates ŷðbÞ� from 200 data perturbations in Fig 5D,

there is a peak around the original estimate 1.34, a small peak around the true value 0, and

some negative estimates. Again, from this example we can see that, first, data perturbation was

able to account for some model selection uncertainties; second, when mixIE-MA estimated a

high proportion of invalid IVs, the result might be unreliable.

InSIDE violated. Fig 6 shows the empirical type 1 error and power of different methods

in the presence of directional pleiotropy and with the violation of the InSIDE assumption to

Fig 5. A simulated data example with n = 50 000, m = 30, θ = 0, p_invalid = 1 under directional pleiotropy and InSIDE satisfied. A: Causal estimate and identified

invalid IVs by mixIE-MA. B: Causal estimate and identified invalid IVs by mixIE-MA-DP. C: Posterior probability of each IV being invalid. D: Histogram of ŷðbÞ� from

200 perturbations.

https://doi.org/10.1371/journal.pgen.1009922.g005
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different degrees form = 30 IVs. Other results are shown in Section B.1.3 in S1 Text. First,

when the correlated pleiotropy (ϕug) was relatively small compared to the directional pleiot-

ropy (e.g. when b = 0.1), our proposed method mixIE-MA-DP was still able to control the type

1 error and achieve high power. Also as shown in Fig 7, mixIE gave unbiased estimates when

b = 0.1. In contrast, Egger regression yielded inflated type 1 error and highly biased estimates,

so did IVW and weighted-median. Other methods such as MRMix and MR-ContMix also had

inflated type 1 error when the proportion of invalid IVs was high. However, as the degree of

InSIDE assumption violation increased (i.e., the effect size of correlated pleiotropy increased),

as expected, the performance of our proposed method went down as with larger inflated type 1

error and more biased estimates. On the other hand, it still performed more robustly than

Egger regression, which almost completely broke down. We also point out that, unlike when

the InSIDE assumption held as shown before, the data perturbation version mixIE-MA-DP

Fig 6. Simulation results with directional pleiotropy and InSIDE violated. A: Empirical type-I error; B: Power with sample size n = 50 000 andm = 30. Each column

corresponds to b = 0.1, 0.4, 0.7 and each row corresponds to 30%, 50%, 70% invalid IVs.

https://doi.org/10.1371/journal.pgen.1009922.g006
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performed worse than mixIE-MA when the effect size of correlated pleiotropy was large. This

is probably due to the fact that the proposed data perturbation scheme depends on the InSIDE

assumption. In terms of estimation and inference, cML-MA-DP performed most robustly

among all methods when the proportion of invalid IVs was small (e.g. 30%) regardless of the

degrees of the violation of the InSIDE assumption—it could control the type 1 error well while

yielding unbiased estimates. In terms of estimation, MRMix performed robustly as well—it

could give (almost) unbiased estimates in most of the scenarios.

We conclude that when the InSIDE assumption is violated moderately and/or the propor-

tion of invalid IVs is small, our proposed methods still have an edge over most of the popular

MR methods, especially compared with Egger regression and IVW. As the degree of the viola-

tion increases, it still performs more robustly than Egger regression, IVW and weighted-

median.

In summary, with the motivation of balancing and combining IVW and Egger regression,

in most of the scenarios, our proposed methods were able to boost statistical power dramati-

cally over Egger regression while controlling the type 1 error satisfactorily. The proposed

methods were also able to control the type 1 error much better than IVW (except when all IVs

were invalid with balanced pleiotropy and InSIDE satisfied) and improved the power in many

scenarios. In general, as we mentioned before, under the InSIDE assumption, when mixIE-MA

gives a high estimated proportion of invalid IVs (e.g. > 70%), we suggest that mixIE-MA-DP

could give more reliable results and we could even go with Egger regression when (almost) all

IVs are invalid, which might be conservative; on the other hand, when mixIE-MA gives a

small estimated proportion of invalid IVs (e.g. < 20%), the original method and its data per-

turbation version mixIE-MA-DP are expected to give good and similar results.

Fig 7. Simulation results with directional pleiotropy and InSIDE violated. Empirical distributions of the estimates of the causal effect θ by the methods with n = 50

000, θ = 0.2 and 70% invalid IVs. A:m = 30. B:m = 100. Each column corresponds to b = 0.1, 0.4, 0.7.

https://doi.org/10.1371/journal.pgen.1009922.g007
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Model checking. We applied the proposed GOF testing procedure under the main simu-

lation scenario (c) with directional pleiotropy and InSIDE violated, under which the plurality

of valid IV assumption held. We used n = 50 000 and θ = 0.2, and varying proportions of

invalid IVs and degrees of violation of the InSIDE assumption. We compared mixIE-MA with

three other methods, cML-MA, MRMix and MR-ContMix, and the corresponding tests are

referred as GOF-cML, GOF-MRMix and GOF-ContMix respectively. Fig 8 shows the rejection

rates of the three tests for 30 or 100 IVs. First, when the degree of violation of InSIDE assump-

tion was small (b = 0.1) and/or the proportion of invalid IVs was small (30%), mixIE and cML,

MR-ContMix had good consistency, while there was some inconsistency between mixIE and

MRMix. This was perhaps because the estimates of MRMix were biased towards the null. Sec-

ond, when the proportion of invalid IVs was high (70%), the rejection rate of GOF-MRMix

increased as the degree of the InSIDE violation (i.e. b) increased, since the estimates of mixIE

became more biased while MRMix still yielded stable estimates as shown in Fig 7. Meanwhile,

Fig 8. Simulation results for GOF testing with directional pleiotropy and InSIDE violated (while the plurality assumption for other three methods holding). θ =

0.2 and n = 50 000. The y-axis gives the rejection rate that the results from two methods were consistent, while the x-axis gives the increasing degree of InSIDE being

violated. A:m = 30. B:m = 100. The two columns correspond to 30% and 70% invalid IVs respectively.

https://doi.org/10.1371/journal.pgen.1009922.g008
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GOF-cML and GOF-ContMix had low rejection rates when m = 100 because the other two

methods both gave biased estimates as mixIE with the same bias direction and to a similar

degree (Fig 7B). In short, the proposed GOF testing was able to capture inconsistency among

different methods, which could be due to the violation of the InSIDE assumption if other

assumptions of mixIE and the other method held. It also depended on the performance of the

other method being compared with mixIE.

Simulations with weak invalid IVs. Fig 9 shows the empirical type 1 error and power

when hy = 0.1 for different methods; the complete results are given in Section B.2 in S1 Text.

In agreement with [14], cML-MA-DP, Egger regression, IVW and our proposed method mix-

IE-MA-DP could control the type 1 error across different scenarios, while MR-ContMix gave

the highest type 1 error. mixIE-MA-DP was much more powerful than both Egger regression

and IVW. It was also slightly more powerful than cML-MA-DP, especially with weaker direct

effects of invalid IVs when hy = 0.1, in which case it was more challenging for cML-MA-DP to

identify invalid IVs. Also, as shown in Supplementary, mixIE-MA-DP was unbiased while

cML-MA-DP had slight under-estimation biases towards the null. We also note that the power

for Egger regression shown here was larger than the one shown in [14] because we did not re-

orient SNPs for Egger regression for the purpose of fair comparison.

Computational time. We did simulations to compare the computational time for each

method. The details are given in Section E in S1 Text. In summary, our proposed methods run

reasonably fast. The computational time of mixIE-MA is comparable to that of cML-MA and

faster than weighted-median and MRMix, but slower than IVW, Egger regression and

MR-ContMix. As expected, with data perturbation it takes longer to run mixIE-MA-DP,

though it is still quite feasible: with 200 perturbations and 50 starting points within each per-

turbation, it only took less than a minute with 10 to 100 IVs on a Macbook laptop.

Fig 9. Simulation results with many invalid IVs having weak pleiotropic effects. Empirical type-I error (for θ = 0) and power (for θ 6¼ 0) curves with sample size

n = 20000 and hy = 0.1.

https://doi.org/10.1371/journal.pgen.1009922.g009
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Primary real data example

Main analysis. We compared our proposed methods with other methods to identify

causal effects of 12 risk factors for cardiometabolic diseases on coronary artery disease (CAD),

stroke and type 2 diabetes (T2D), as well as asthma, which largely served as a negative control.

The sample sizes for the traits are summarized in Table 1. Following [14], we classified the 48

pairs into 4 categories: 19 pairs considered causal or likely causal as supported by the literature,

17 pairs correlated but unknown to be causal or with conflicting evidence, 10 pairs unrelated,

and 2 pairs considered non-causal.

In the main analysis, we re-oriented SNPs such that all IVs were positively associated with

the exposure as recommended for Egger regression [15]; the results when we did not re-orient

the SNPs are shown in Section C.2.3 in S1 Text as a sensitivity analysis. In Fig 10 we compare

mixIE-MA-DP and mixIE-MA with Egger regression, IVW, cML-MA-DP and cML-MA.

Table 2 compares the total numbers of the pairs identified to be significant by different meth-

ods at the significance level 0.001 (with a Bonferroni adjustment 0.05/48� 0.001). First, mix-

IE-MA and mixIE-MA-DP identified more causal risk factor-disease pairs than Egger

regression and IVW. Egger regression only identified 6 known or likely causal pairs, while our

proposed methods identified 13 pairs. As an example, for the causal BF-T2D pair, both mix-

IE-MA and mixIE-MA-DP gave some significant results while both Egger regression and IVW

yielded only marginally significant ones. Both mixIE-MA and cML-MA identified the same

single invalid IV and gave similar estimates. In contrast, IVW would be affected by the invalid

IV and thus gave a smaller estimate with an only marginally significant p-value. See Section

C.1.1 in S1 Text for more details.

Second, as shown in Table AG in S1 Text, among the 48 risk factor-disease pairs, most of

the pairs had less than 20% IVs identified to be invalid by mixIE-MA. In agreement with the

simulations, mixIE-MA-DP and mixIE-MA gave similar results in general when the (esti-

mated) proportion of invalid IVs was small. However, they might give different results for

some of the pairs with a high proportion of invalid IVs. For example, for (causal) FG-T2D

Table 1. Genome wide association studies for 4 common diseases and 12 risk factors.

Abbreviation Trait Sample size Number of variants used in MR1 Reference

TG triglycerides 188577 122–128 [28]

LDL low-density lipoproteins 188577 173–184 [28]

HDL high-density lipoproteins 188577 188–197 [28]

Height body height 253288 977–986 [29]

BMI body mass index 322154 88–90 [30]

BF body fat percentage 100716 9–10 [31]

BW birth weight 153781 54–65 [32]

DBP diastolic blood pressure 757601 1108–1345 [33]

SBP systolic blood pressure 757601 1106–1324 [33]

FG fasting glucose 46186 17 [34]

Smoke ever regular smoker 1232091 114–129 [35]

Alcohol drinks per week 941280 44–54 [35]

CAD coronary artery disease 547261 [36]

Stroke any stroke 446696 [37]

T2D type 2 diabetes 69033 [38]

Asthma asthma 142486 [39]

1 This is the range of the number of variants used in the analysis for the risk factor (exposure), which would be slightly different based on the disease (outcome). Specific

numbers are given in Table AG in S1 Text.

https://doi.org/10.1371/journal.pgen.1009922.t001
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Fig 10. Results of various methods to detect causal relationships among 48 risk factor-disease pairs.

https://doi.org/10.1371/journal.pgen.1009922.g010
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pair, mixIE-MA identified about 40% of 17 SNPs to be invalid IVs and a significant causal

effect (p-value < 0.001), while mixIE-MA-DP did not give a significant result. Another exam-

ple is for the (causal) TG-CAD pair, mixIE-MA identified about 50% of 128 SNPs to be invalid

IVs and had a p-value > 0.05, but mixIE-MA-DP gave a p-value < 0.001. See Section C.1.2 in

S1 Text for more details.

Third, it is notable that mixIE-MA-DP was one of the only two methods that did not give a

false positive for the HDL-CAD pair. The other one was Egger regression, which however is in

general low-powered.

For model checking, due to the heavy computation burden of GOF-MRMix, we only

applied GOF-cML and GOF-ContMix to compare our proposed mixIE with cML and

MR-ContMix. It turned out that, at the 95% confidence level, there was only one pair,

SBP-CAD, for which the (causal) estimate of mixIE was inconsistent with those from cML and

MR-ContMix, though the three estimates were 0.031, 0.037 and 0.039 with only small differ-

ences, and all three were statistically significant (with 1324 SNPs/IVs). Nevertheless, cautions

should be taken in interpreting the results for this pair.

Some sensitivity analysis results are included in Section C.2 in S1 Text.

Secondary real data example

Now we consider an example of 63 trait pairs that are not genetically correlated and thus are

unlikely to be causally related. It can serve as a negative control to examine whether an MR

method can control type I error satisfactorily. The main challenge with this example arises due

to that some invalid IVs with only weak pleiotropic/direct effects are difficult to identify. The

trait pairs include 13 traits: fasting proinsulin (FP), height, homeostasis model assessment of

beta-cell function (HOMA), LDL, rheumatoid arthritis (RA), schizophrenia (SCZ), T2D, age

at smoking, anorexia nervosa, childhood IQ, ever/never smoked, former current smoker, and

infant head circumference. We applied the mixIE methods to these 63 genetically uncorrelated

trait pairs. Following [14], we show the Q-Q plots of our proposed methods for the 53 pairs,

which excluded 10 pairs with only 2 IVs. As shown in Fig 11, consistent with our simulation

results, while mixIE-MA seemed to have inflated type I error, its data perturbation version

mixIE-MA-DP appeared to be able to control the type I error well. The detailed results are

given in Table AI in S1 Text. In contrast, as shown in the Supplementary of [14], MRMix and

MR-ContMix yielded inflated type I errors too.

Discussion

We have proposed mixIE, a new method to combine two of the most popular MR approaches,

namely IVW and Egger regression, aiming to maintain each one’s strengths while overcoming

Table 2. Numbers of significant pairs among 48 risk factor-disease pairs at the significance cutoff of p-value< 0.001.

Causal Correlated Unrelated Non-causal

mixIE-MA 13 7 0 1

mixIE-MA-DP 13 3 0 0

Egger 6 1 0 0

IVW 12 4 0 1

cML-MA 15 6 0 1

cML-MA-DP 14 5 0 1

MR-ContMix 11 5 0 1

Weighted-Median 12 2 0 1

https://doi.org/10.1371/journal.pgen.1009922.t002
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their main limitations. We have found that model averaging performed better than the usual

asymptotics-based statistical inference for finite samples, and thus proposed a model averaging

approach as the default to implement mixIE, denoted mixIE-MA. We have also proposed a

data perturbation-based version, mixIE-MA-DP, which can be more robust in accounting for

model selection uncertainties, especially in more challenging situations (e.g. with many invalid

IVs of small effects) for model selection with small sample sizes. We note that our proposed

data perturbation scheme is novel in that it is applicable to GWAS summary data while dealing

with the presence of both valid and invalid IVs at the same time. As shown in simulations and

real data analyses, mixIE improved the power of Egger regression while controlling type I

error rates well in most of the scenarios. It can handle directional pleiotropic effects by identi-

fying invalid IVs while IVW cannot (with severely inflated type I error rates). Even in cases

with balanced pleiotropy, mixIE could be often much more powerful than IVW (with a ran-

dom-effect model). It also had some edge over its strong competitor cML in some scenarios

with many weak invalid IVs. We have further demonstrated the usefulness of data perturba-

tion through simulations and real data examples where it could better identify invalid IVs in

some challenging scenarios. We also proposed a model checking procedure to compare our

method with other methods, which do not require the InSIDE assumption, by evaluating the

consistency of their estimates.

There are a few limitations of our proposed mixIE. First, like Egger regression, strictly

speaking, our proposed method requires the InSIDE assumption to hold, and thus can be

problematic with correlated pleiotropy (when the InSIDE assumption is violated). However, as

shown in our simulations, even when the InSIDE assumption did not hold, mixIE still could

often control type 1 error relatively close to a nominal level with decent power unless the

degree of violation is dramatic; the reason is due to its (often much larger) dependence on the

IVW estimate with valid IVs (than that on the Egger regression estimate). Relatedly, it is

Fig 11. Q-Q plots for 53 (likely) null trait-pairs in the secondary real data examples. Left panel: mixIE-MA; right panel: mixIE-MA-DP.

https://doi.org/10.1371/journal.pgen.1009922.g011
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unclear yet how commonly correlated pleiotropy is present and what its typical effect size

would be in real data. Although our proposed goodness-of-fit testing is able to detect inconsis-

tency between the results from mixIE and another method, suggesting possible violation of the

InSIDE assumption, it can be due to other reasons (i.e. other assumptions being violated). Sec-

ond, inherited from Egger regression, mixIE may be sensitive to the coding/orientation of IVs.

But as shown in the real data application, our proposed method was more robust than Egger

regression, again due to its dependence on the IVW estimate with (detected) valid IVs. Until a

better approach is available, we would follow the same guideline to SNP reorientation for

Egger regression. Third, as a mixture model, mixIE may suffer from the weak identifiability

issue, especially when the proportion of invalid IVs is close to 1. We alleviate this problem by a

model averaging approach with both IVW and Egger regression models added in the list of the

candidate models, as well as by data perturbation to better identify the set of (weak) invalid

IVs. Fourth, as in typical MR, we assume and choose SNPs to be independent throughout this

article. Extensions to the use of correlated SNPs may gain power in other applications, includ-

ing transcriptome-wide association studies [40–44]. Furthermore, like most of summary-data

based MR, we select and apply the instrument variables from and to the same exposure GWAS

dataset, which could lead to biased inference because of selection bias [45]. Finally, more appli-

cations to real data, including comparisons with other MR methods, are warranted [3, 14, 27].

Supporting information

S1 Text. Supplementary file describing standard error estimation, additional simulation

results, additional real data analysis results and computational time.

(PDF)
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