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Abstract

Paraquat is a toxic herbicide that may induce acute lung injury, circulatory failure and death. The present work aimed
at investigating whether there is systemic inflammation and vascular dysfunction after paraquat exposure and
whether these parameters were related. There was neutrophilia and accumulation of neutrophils in lung and
bronchoalveolar lavage of animals given paraquat. This was associated with an increase in serum levels of TNF-a. In
rats given paraquat, the relaxant response of aortic rings to acetylcholine was not modified but the contractile
response to phenylephrine was greatly reduced. Endothelium removal or treatment with non-selective (L-NAME) or
selective (L-NIL) inhibitors of inducible nitric oxide synthase (iNOS) restored contraction of aortas. There was greater
production of nitric oxide (NO), which was restored to basal level by L-NIL, and greater expression of iINOS in
endothelial cells, as seen by Western blot analyses and confocal microscopy. Blockade of TNF-a reduced pulmonary
and systemic inflammation and vascular dysfunction. Together, our results clearly show that paraquat causes
pulmonary and systemic inflammation, and vascular dysfunction in rats. Vascular dysfunction is TNF-a dependent,
associated with enhanced expression of iINOS in aortic endothelial cells and greater NO production, which accounts
for the decreased responsiveness of aortas to vasoconstrictors. Blockers of TNF-a may be useful in patients with
paraquat poisoning.
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Introduction vasoconstrictors is disrupted, resulting in a disturbance in
vascular resistance [9]. Vascular dysfunction associates with

Paraquat (1,1’-dimethyl-4,4’-bipyridinium dichloride) is a non- an intense neutrophilic response in the lungs seen after various

selective and contact herbicide used worldwide and cause high
mortality rate (more than 50%) after accidental or deliberate
self-poisoning [1]. Acute lung injury (ALI) is the main
consequence of such poisoning due to active polyamine uptake
transport systems that concentrate paraquat rapidly into type I
epithelial cells of alveoli [2,3,4]. The mechanism of paraquat-
induced cytotoxicity is not completely clear, but it is known that
paraquat undergoes a redox cycling reaction, resulting in the
oxidation of NADPH to NADP*, which lead to the production of
reactive oxygen species [5] causing lipid peroxidation [6], cell
damage [7] and consequent inflammatory reaction [8].

Acute lung injury is known to cause changes in the
pulmonary vasculature. The balance between vasodilators and
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stimuli and cytokines, such as TNF-a, appear to play a major
pathogenic role [10,11]. The mechanism underling vascular
malfunctioning in paraquat intoxication is largely unknown and
most studies have focused on direct in vitro vascular effects of
paraquat. In this regard, it is well known that paraquat is
capable of producing superoxide, hence decreasing
endothelium-dependent  vasorelaxant responses [12,13].
However, these data are not in line with the vascular collapse
that follows paraquat intoxication and that greatly contributes to
early mortality of patients with paraquat poisoning [14,15]. To
date there are no studies focusing on systemic inflammatory
response and the impact for the systemic vascular
responsiveness after toxic exposure to paraquat. The purpose
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of this study was to evaluate systemic inflammatory response
and systemic vascular responsiveness during paraquat
intoxication. A better understanding of the mechanisms
involved in vascular alterations induced by paraquat poisoning
may lead to more effective therapies.

Materials and Methods

Ethics Statement

All experimental protocols were conducted in accordance
with guidelines for the humane use of laboratory animals and
were approved by the animal ethics committee of the Federal
University of Minas Gerais (protocol # 051/08).

Animals

We used 10-12-week-old male Wistar rats obtained from the
University animal facility. Free access was allowed to standard
diet and tap water. The animals were divided in two groups
named paraquat-treated and time-matched vehicle control
group. The animals were dosed with a single intraperitoneal
injection of paraquat (20 mg.Kg"', Syngenta, Sdo Paulo, SP,
Brazil) dissolved in saline. This dose of paraquat was
previously found to induce ALI in rats [16]. 24 hours after
paraquat poisoning the rats showed weight loss, irregular
breathing, dyspnea, pulmonary edema and increased lipid
peroxidation in plasma, kidney and lung confirming the
development of ALl in our animals [16]. In some experiments,
the soluble tumor necrosis factor (TNF) receptor fusion protein
(etanercept; 1 mg.Kg) was injected subcutaneously 1 h before
paraquat, and 1h or 6 hs after paraquat. Animals were killed 24
hours after paraquat administration by decapitation. The aorta
was removed and bronchoalveolar lavage (BAL), blood and
lung tissue were carefully collected to be used in experiments.

Bronchoalveolar lavage

Bronchoalveolar lavage (BAL) was performed to obtain
leukocytes from alveolar spaces [17] and to measure lung
edema [18]. The trachea was exposed and a 1.7-mm-outside
diameter polyethylene catheter was inserted. BAL was
performed by washing the lungs three times with three different
1-ml aliquots of phosphate buffered saline (PBS). BAL samples
(2.0 ml each) were centrifuged at 600 x g for 5 minutes at 4°C.
The supernatant was stored to analyze total protein content
and the cell pellet used to evaluate the number of infiltrating
leukocytes. The pellet containing cells from the BAL fluid was
resuspended in 100 pl of PBS containing 3% bovine serum
albumin (BSA) and an aliquot diluted in Turk solution 1:10.
Total leukocyte counts were then performed in a Neubauer
chamber using an optical microscope (Standard 25, Zeiss,
Germany). Differential counts were obtained from cytospin
(Shandon 1ll) preparations by evaluating the percentage of
neutrophils on a slide stained with Panoptic. Analysis was
carried out under an immersion objective 100X and at least 300
cells were counted. Leukocyte types were defined using
standard morphological criteria. Total protein content was
measured by the Lowry method [19].
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Quantification of Neutrophil and Macrophage
Accumulations in Lung Tissue

The extent of neutrophil accumulation in lung tissue was
measured by assaying myeloperoxidase (MPO) activity, as
previously described [20] and the infiltration of mononuclear
cells into the lungs was quantified by measuring the levels of
the lysosomal enzyme N-acetyl-B-D-glucosaminidase (NAG)
which is present in high levels in activated macrophages [21].
Briefly, before lung removal, the pulmonary vasculature was
perfused with 3 ml of PBS through the right ventricle, and the
organ was removed and frozen at -80°C. After thawing, the
tissue (0.1 g of tissue per 1.9 ml of buffer) was homogenized in
a pH 4.7 buffer 1 (0.1 M NaCl, 0.02 M Na,PO,, 0.015 M Na
L,EDTA), centrifuged at 12.000 x g, 4°C for 10 minutes and the
pellet was resuspended in 200 pl of buffer 1 + 1.5 ml of 0.2%
NaCl solution + NaCl 1.6% and glucose 5% and thereafter was
again homogenized. This solution was divided for MPO and
NAG measurements.

Myeloperoxidase (MPO) Activity Measurement

After further centrifugation (12.000 x g at 4°C for 15 minutes),
the pellet was resuspended in 0.05 M Na ;PO, buffer (pH 5.4)
containing 0.5% hexadecyl-trimethylammonium  bromide
(HTAB; Sigma, St. Louis, MO, USA) and re-homogenized.
Samples were transferred into 1.5-ml microtubes followed by
three freeze-thaw cycles using liquid nitrogen. Then they were
centrifuged at 12.000 x g, 4°C for 15 minutes to perform the
assay. The assay employed 25 puyl of 3.4-56-
tetramethylbenzidine (TMB; Sigma, St. Louis, MO, USA),
dissolved in dimethyl sulfoxide (DMSO; Merck, Darmstadt,
Germany) at a final concentration of 1.6 mM, 100 pl of H,O,,
dissolved in phosphate buffer (pH 5.4) containing HTAB in a
final concentration of 0.002% vol/vol and 25 pl of sample
obtained. The reaction was started at 37°C for 5 minutes in a
96-well microplate by adding the supernatant and the TMB
solution. After that, H,0, was added and followed by a new
incubation at 37°C for 5 minutes. The reaction was stopped by
adding 100 pl of 1 M H,SO, and quantified at 450 nm in a
spectrophotometer (E...; Molecular Devices, Sunnyvale, CA,
USA). Results were expressed as change in absorbance
(optical density, OD) per milligram of wet tissue.

N-acetyl-B-D-glucosaminidase (NAG) Activity
Measurement

After a further centrifugation (12.000 x g at 4°'C for 15
minutes), the pellet was resuspended in 0.9% NaCl solution,
containing 0.1% Triton X-100 (Promega, Madison, WI, USA)
and re-homogenized to perform the assay. Samples (100 pl)
were incubated for 10 min at 37°C with 100 pl of substrate p-
nitrophenyl-N-acetyl-B-D-glucosaminidase (Sigma, St. Louis,
MO, USA) prepared in citrate/sodium phosphate buffer (0.1 M
citric acid, 0.1 M Na,HPO,; pH 4.5) to yield a final
concentration of 2.24 mM. The reaction was stopped by the
addition of 100 pl of 0.2 M glycine buffer (0.8 M glycine, 0.8 M
NaCl, 0.8 M NaOH; pH 10.6). Hydrolysis of the substrate was
quantified at 405 nm in a spectrophotometer (E,.,.; Molecular
Devices, Sunnyvale, CA, USA). NAG activity was expressed as
change in OD per milligram of wet tissue.

September 2013 | Volume 8 | Issue 9 | 73562



Quantification of Neutrophils in blood

After sacrifice of the animals, 20 ul of blood was collected
and mixed with Turk solution for total number of cells counting
in a modified Neubauer chamber and 10 pl of blood was
collected for evaluating the percentage of neutrophils on a slide
stained with May-Grunwald-Giemsa.

Assessment of cytokine concentrations in serum

TNF-a and interleukin 1beta (IL-18) concentration were
measured in serum of animals, using ELISA with commercially
available antibodies and according to the instructions supplied
by the manufacturer (R&D Systems, Minneapolis, MN, USA).
Serum was obtained from coagulated blood (15 min at 37°C,
then 30 min at 4°C) and stored at -20°C until further analysis.
Serum samples were analyzed at a 1:1 dilution in the assay
dilution buffer.

Rat aortic rings preparation and mounting

The animals were killed 24 hours after paraquat
administration; the thoracic aorta was carefully removed and
cleaned of fat and connective tissue, as previously described
[22]. Segments of 2.0-3.0 mm in length were removed and
placed into Krebs—Henseleit solution of the following
composition (mM): NaCl, 135; KCl, 5; KH,PO,, 1.17; NaHCOQO;,
20; MgSO,, 1.4; CaCl,, 2.5 and glucose 11. The segments
were then mounted on a myograph at 37°C and continuously
gassed with carbogenic mixture (95% O, and 5% CO,), under a
tension of 1.0 g, for 1 h equilibration period. The presence of a
functional endothelium was assessed by the ability of
acetylcholine (1 pM) to induce more than 80% relaxation of
vessels pre-contracted with phenylephrine (0.1 uM). In certain
experiments the endothelium was removed mechanically, by
rubbing the intimal surface, as previously described [23].
Phenylephrine was added in increasing cumulative
concentrations (0.0001-10 pM). In some experiments, after 30
min washing, the vessels were incubated for 30 min with the
non-selective inhibitor of nitric oxide synthase (NOS), L-N©-
Nitroarginine Methyl Ester (L-NAME, 300 uM, Sigma, St. Louis,
MO, USA), or the selective inhibitor of endothelial nitric oxide
synthase (eNOS), N&-Nitro-L-Arginine (L-NNA, 1 uM, Sigma,
St. Louis, MO, USA) or the selective inhibitor of inducible nitric
oxide synthase (iINOS), L-N8-(1-Iminoethyl) lysine hydrochloride
(L-NIL, 10 pM, Calbiochem, San Diego, CA, USA) and a
second cumulative concentration-response curve for
phenylephrine was constructed and compared with the first
one. Concentration-response curves were also constructed for
acetylcholine (0.001-100 yM) in vessels pre-contracted with
sub-maximal concentration of phenylephrine (0.1 uM). In
another set of experiment, the acute in vitro effect of paraquat
was evaluated. To this end, concentration—-response curves for
acetylcholine (0.001-100 pM) were constructed in vessels
removed from control animals and pre-incubated with paraquat
(5 pM) for 20 minutes. Mechanical activity recorded
isometrically by a force transducer (World Precision
Instruments, Inc., Sarasota, FL, USA) was fed to an amplifier-
recorder (Model TBM-4; World Precision Instruments, Inc.) and
to a personal computer equipped with an analogue-to-digital
converter board (DI-720; Datag Instruments, Inc.), using
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Windaqg data software

Instruments, Inc.).

acquisition/recording (Dataq

Nitrite measurement

Nitric oxide (NO) was determined indirectly measuring the
concentration of nitrite by using 2,3-diaminonaphthalene (DAN;
Sigma, St Louis, MO, USA) fluorescent method according to
[24]. Briefly, endothelium-intact segments of aorta were
maintained in tubes containing Krebs—Henseleit solution (1 ml)
at 37°C for 15 minutes. After removal of the perfusate the
segments of aorta were left in the presence of 1 ml Krebs—
Henseleit solution containing L-NIL (10 pM) for further 15
minutes. For nitrite measurements 100 pul of perfusate in each
condition was mixed with 10 pl of 0.05 mg/ml DAN. After 10
minutes incubation at 20°C protected from light, the reaction
was stopped with 10 pl of 2.8 M NaOH. Formation of
fluorescent product was measured using a fluorescent plate
reader (Cary Eclipse Microplate reader, VARIAN, Inc.) with
excitation at 360 nm and emission read at 440 nm with a gain
setting at 100%.

Western Blot Analysis

Western blot was performed as previously described [16].
Briefly, the frozen aorta with the endothelial layer was
homogenized in lysis buffer (in mM): 150 NaCl, 50 Tris-HCI, 5
EDTA.2Na, and 1 MgCl, containing 1% Triton X-100 and 0.5%
SDS plus a cocktail of protease inhibitors (SigmaFAST, Sigma,
St. Louis, MO, USA) and phosphatase inhibitors (20 mM NaF;
0.1mM Na ;VO,). 40 ug of protein were denatured and
separated in denaturing SDS/7.5% polyacrylamide gel.
Proteins were transferred onto a polyvinylidene fluoride
membrane (PVDF - Immobilon P; Millipore, Billerica, MA,
USA). Blots were blocked at room temperature with 3% non-fat
dry milk in PBS plus 0.1% Tween 20 (PBS-T) before incubation
with rabbit polyclonal anti-iNOS; (1:2000; Santa Cruz
Biotechnology, Santa Cruz, CA, USA), rabbit polyclonal anti-
eNOS; (1:2000; Sigma, St Louis, MO, USA) or mouse
monoclonal anti-B-actin (1:2500; Santa Cruz Biotechnology,
Santa Cruz, CA, USA) at room temperature. The
immunocomplexes were detected by chemiluminescent
reaction (ECL* kit, Amersham, Les Ulis, France) followed by
densitometric analyses with software ImageJ.

Confocal microscopy

Immunolocalization of INOS was performed according to [25]
with some modifications. Briefly, cold methanol-DMSO (1: 1
vlv) fixed cryosections (10 pm) of the thoracic aorta from
control and paraquat-poisoned rats were fixed in cold acetone
for 15 minutes and rinsed in PBS wash buffer (1% BSA + 0.3%
Triton X-100, in PBS). Following appropriate blocking
procedures (3% BSA + 0.3% Triton X-100 in PBS, 30 minutes),
cross reactivity of secondary antibodies with the alternating
primary antibodies was removed. Slides were incubated with
rabbit anti-iINOS (Santa Cruz Biotechnology, 1:100) overnight
at 4°C followed by incubation with goat anti-rabbit secondary
antibody conjugated with Alexa Fluor 633 (1:200, Invitrogen,
Carlsbad, CA, USA) for 1 h. The sections were examined with
a Zeiss LSM 510 confocal microscope (Thornwood, NY, USA)
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Figure 1. Paraquat-poisoning produces TNF-a-mediated edema and neutrophil accumulation in the lungs. Pulmonary
permeability (A) and neutrophil accumulation in the lungs (B) of control, paraquat-poisoned (PQ) and paraquat-poisoned rats after
treatment with etanercept. The total protein content was used as an index of protein leakage due to alveolar-microvascular
membrane injury. Myeloperoxidase (MPO) activity was used as an index of neutrophil influx into the lungs. Results are shown as
protein content (mg/ml) or MPO index and represent the mean + SE of five animals in each group. *p<0.05; **p<0.01 and
***n<0.001.

doi: 10.1371/journal.pone.0073562.9001

with excitation at 633 nm and emission at 650 nm. Lung and systemic inflammation
Fluorescence intensity (measured using ImageJ® software Paraquat poisoning caused considerable lung edema (Figure
1.42q; Wayne Rasband, NIH) in paraquat-poisoned aorta was 1A) and accumulation of neutrophils in lung tissue (Figure 1B)
expressed as relative fluorescence intensity (arbitraries units). and BAL (Figure 2B). There was also significant blood
Ten fields per slide of endothelial layer were measured. The neutrophilia (Figure 2D). However, there was no macrophage
mean of fluorescence from each slide was plotted and infiltration in the lung, as assessed by measuring NAG (OD)
analyzed using GraphPad Prism 4 (Graphpad Software Inc., La  per 100 mg of tissue: 0.97 + 0.07 and 0.92 + 0.07, control and
Jolla, CA, USA). paraquat, respectively, and the total number of leukocytes in
BAL and blood were unaltered (Figure 2A and Figure 2C). The
Statistical analysis concentrations of the cytokines IL-18 and TNF-a were
Results are expressed as means + SE. Two-way analysis of evaluated in serum of control and paraquat-poisoned rats.
variance (ANOVA) was used to compare concentration— Paraquat poisoning produced a significant increase in the

response curves. Student’s t-test and One-way ANOVA was concentration of TNF-a (Figure 3B) in the serum but had no
used in the other experiments. All statistical analyses were effects on the concentration of IL-18 at 24 h (Figure 3A).

considered significant when p < 0.05. Treatment of animals with etanercept reduced pulmonary
permeability, neutrophil accumulation in lungs, BAL and blood
Results (Figure 1A, B and Figure 2B,D) and TNF-a in serum (Figure

3B) to the control level.

Paraquat-induced mortality

A mortality of approximately 25% was observed, 24 hs after ~ vascular Response

paraquat administration. However, no mortality was seen after Acetylcholine induces endothelial-dependent vasorelaxation
etanercept given before paraquat exposure, or 1h or 6 hs after ~ in vitro. The vasorelaxant response of the rat aorta to
paraquat exposure. acetylcholine was impaired in isolated vessels treated in vitro

with paraquat (5 puM) for 20 minutes (Figure 4). Therefore,
paraquat causes endothelial dysfunction in vitro.

In order to access systemic vascular responsiveness 24 hs
after paraquat poisoning, aortas were stimulated with relaxant
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Figure 2. Paraquat produces accumulation of neutrophils in bronchoalveolar lavage (BAL) and neutrophilia. Effect of
paraquat-poisoning (PQ) on total number of leukocytes and neutrophil in BAL (A, B) or in blood (C, D). TNF-a blockade by
etanercept restore neutrophil number to the control level in BAL (B) and blood (D). Results are shown as the mean + SE of five

animals in each group. *p<0.05; **p<0.01 and ***p<0.001.
doi: 10.1371/journal.pone.0073562.g002

and contractile agents. As shown in Figure 5A, acetylcholine-
induced vasorelaxation was not different in control animals and
those subjected to ALI by paraquat. In contrast, phenylephrine-
induced vasoconstriction was severally impaired in
endothelium-intact aortic rings from the ALI group (Figure 5B).
Removal of the endothelium restored vascular response of
aortas from the ALI group to the level of control vessels (Figure
5C), suggesting a role of endothelial factors in the impaired
phenylephrine-induced vasoconstriction.

PLOS ONE | www.plosone.org

Non-selective inhibition of NOS with L-NAME (300 uM) also
leveled vascular contractions of the control and ALl groups
(Figure 6A). Selective inhibition of eNOS with L-NNA (1 puM)
increased the contractile response in both control and ALI
groups. However, contraction of vessels from ALl rats
remained impaired (Figure 6B). Interestingly, selective
inhibition of iINOS in vitro with 10 uM L-NIL (Figure 6C) or in
vivo inhibition of TNF-a by etanercept (Figure 6D) completely
restored contractile response to phenylephrine in endothelium-
intact aortic rings from ALI animals, as seen with endothelial

September 2013 | Volume 8 | Issue 9 | 73562



Paraquat Induces Systemic Vascular Failure

0.25 12
E‘ *kk -
© 0.20 2 10
: g
o _— - 8
s 0.15 -
2 L3 s
——

< 0.10 - g .
5 R ——
= 0.05 2 x

0.00 0 -

Control PQ Control PQ PQ + Etanercept

Figure 3. TNF-a concentration is increased in the serum of paraquat-poisoned animals. Effect of paraquat-poisoning (PQ) on
(A) IL-1B (n=11-12) and (B) TNF-a (n=5) concentration in serum. Results are shown as the mean + SE ***p<0.001.
doi: 10.1371/journal.pone.0073562.g003
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denuded (C) aortic rings from control and paraquat-poisoned animals. The values are mean + SE from five experiments. ***p<0.001.

doi: 10.1371/journal.pone.0073562.g005

removal and L-NAME. However, L-NIL did not alter contractile
response in endothelium-denuded aortic rings from both
groups (data not show). In separate experiments, we evaluated
basal production of nitrite as an indicator of NO production. As
seen in Figure 7, there was higher basal NO production in
endothelium-intact aorta from paraquat-poisoned rats, as
compared to control animals. Pre-incubation of the vessels with
L-NIL (10 pM) restored basal values of NO production in
paraquat-treated group to the same level of the control.
Therefore, together the above results show an impaired
contractile response probably due to an increase in INOS
expression and NO production in endothelial cells. Moreover,
these results show that in vivo activation of TNF receptors are
necessary for contractile dysfunction.

eNOS and iNOS expression

Next we investigated whether there was enhanced
expression of NOS in endothelial cells of aortas 24 hs after
paraquat poisoning and whether TNF-a was relevant for this
expression. Expression of eNOS and iINOS was evaluated by
Western blot. As shown in Figure 8, the expression of eNOS
was similar in endothelium-intact aortic rings from control and
paraquat-poisoned animals. In contrast, the level of iINOS
expression in aortic rings from paraquat-poisoned animals was
approximately 4.0-fold higher compared to control vessels.
Confocal analysis to immunolocalize iINOS concurred with our
previous findings and showed intense staining for this isoform
only in the endothelial cells layer of the aortas from paraquat-
poisoned animals. No immunostaining for iINOS was observed
in control group (Figure 9). Treatment of animals with
etanercept reduced iNOS-dependent vascular dysfunction and
iNOS expression to levels similar to those found in control
animals, as shown by functional experiments (Figure 6D) and
Western blot analysis (Figure 8B).

Discussion

The major findings of our study can be summarized as
follows: 1) Paraquat induced significant pulmonary and
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systemic inflammation when given to rats; 2) Paraquat
administration caused marked contractile, but not relaxant,
dysfunction of the aorta; 3) Vascular dysfunction was
associated with increased INOS expression, enhanced NO
production and was blocked by selective iNOS inhibitors; 4)
TNF-a is necessary for INOS expression and iINOS-dependent
vascular dysfunction. Therefore, our studies suggest a central
role of TNF-a in driving paraquat-associated vascular
contractile dysfunction.

Paraquat is one of the most clinically significant herbicides in
terms of morbidity and mortality. Moreover, most treatments
used for paraquat poisoning are not effective, suggesting a
major need for novel therapies [26]. The pathogenesis of
paraquat toxicity consists of two distinct phases. The initial
stage involves acute damage to several organs and death may
occur during this period and is associated with pulmonary,
renal, and circulatory failure. Patients surviving this stage may
evolve to the second stage, which is characterized by damage
almost exclusively to the lungs. Extensive pulmonary fibrosis
ensues, resulting in dyspnea, cyanosis, and eventually death
from respiratory failure (for review see 1).

Although circulatory failure is present and contributes to
increased mortality in the early stage of paraquat poisoning,
there are little data available on vascular responsiveness after
toxic exposure to paraquat. In this study, we showed that
paraquat induces pulmonary and systemic inflammation,
characterized by neutrophilia, pulmonary neutrophil influx and
elevated circulating levels of TNF-a. It is largely accepted that
paraquat accumulates preferentially in lungs due to an active
polyamine uptake transport systems that concentrate paraquat
rapidly into the type Il epithelial cells of the alveoli [2]. In lungs
paraquat induces oxidative stress [27,28] and inflammation
[29,30,31,32]. Indeed, the pathogenesis of ALl induced by
paraquat is driven by an aggressive inflammatory reaction with
increased polymorphonuclear cells [32] and TNF-a [33] that
increases the permeability of the alveoli-capillary unit. Our
results are in accordance with the statements above as we
found increased lipid peroxidation in lungs (data not shown),
accumulation of neutrophils in lungs and BAL and increased

September 2013 | Volume 8 | Issue 9 | 73562



A
— 15.0; o Control
£ u Control +L-NAME
£ 1251coPQ
> * PQ + L-NAME
£ 10.0 .
S 7.5
2
© 5.0
F .
k=
O 2.57
(@]

0.0 . . v .

-9 -8 7 -6 5
Log [Phenylephrine] M

C
—~ 15.07 o Control
£ u Control + L-NIL
g 12.5{0 PQ
pd ¢ PQ +L-NIL
£ 10.04
- *kk
S 7.5
2
& 5.0
b=
o 2.5
(&)

0.0-

Log [Phenylephrine] M

Contraction (mN/mm) 00

Contraction (ImN/mm) O

Paraquat Induces Systemic Vascular Failure

-
(&)
o

‘Y10 Control
s Control +L-NNA

12.510 PQ

® PQ + L-NNA

—
N o
)

5.04

2.51

e
(=)

Log [Phenylephrine] M

10 Control
o PQ
14 PQ + Etanercept

EX 2

- e e
o N S N O
2 & o w ©°

N
-l

e
o

-8 -7 -6 -5

Log [Phenylephrine] M

-9

Figure 6. Nitric oxide and TNF-a mediate vascular dysfunction in paraquat-poisoned animals. Effect of (A) L-NAME (300
puM), (B) L-NNA (1 pM), (C) L-NIL (10 pM) and (D) in vivo treatment with etanercept on phenylephrine-induced contraction in
endothelium-intact aortic rings from control and paraquat-poisoned (PQ) animals. The values are mean + SE from five experiments.
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pulmonary  permeability. The increased number of
polymorphonuclear cells and the lung edema observed in this
study are consistent with other studies in which ALI is induced
by distinct stimuli [11,34,35].

Although pulmonary inflammation has extensively been
investigated in paraquat-induced ALI, results regarding
systemic inflammation have not been reported yet. In the
present study, we showed that, in addition to local
inflammation, neutrophil number and TNF-a levels were
increased in the systemic circulation, which is consistent with
the occurrence of systemic inflammation. It is interesting to
note that pulmonary concentration of paraquat can be 6 to 10
times higher than those in the plasma, and that the compound
is retained in the lungs even when blood levels start to
decrease [3]. Therefore, although systemic exposure to
paraquat may contribute to systemic inflammation, it is more
likely that systemic inflammation is a consequence of the
excessive pulmonary response to high levels of the herbicide.

PLOS ONE | www.plosone.org

There are several studies which have shown that paraquat
can cause endothelial dysfunction in vitro. However, there are
no reported studies on the mechanisms that underlie the
systemic vascular failure that develops in vivo after paraquat
exposure. Consistent with data from the literature [12], in this
work we found a strong decrease in vascular relaxant response
when the aortas of animals were directly exposed to paraquat.
Formation of reactive oxygen species has been implicated in
the mechanistic events of in vitro paraquat-induced endothelial
dysfunction [36,37]. However, when vessels were removed
from paraquat-poisoned animals, no difference in relaxant
response was found. This is substantially different from the in
vitro findings and suggests that a direct effect of paraquat in
vivo on endothelial cells is unlikely. In contrast to the normal
relaxant response, we found a major decrease in contractile
responses of the aorta to phenylephrine. Based on our results,
the mechanism that underlies the decrease in responsiveness
of the rat aorta to contractile agents is suggested to be the
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increased NO basal production as consequence of increased
expression of iINOS in endothelial cells. The following results
support the above idea: 1) Endothelium removal and selective
inhibition of INOS with L-NIL restored contraction from
paraquat-poisoned aortas to the same level as those of control
animals; 2) The basal level of NO production was increased in
vessels of animals exposed to paraquat and L-NIL restored
concentrations of NO to the level of control; 3) INOS was highly
expressed in the endothelial layer of the aortas from animals
poisoned with paraquat but was absent in control vessels.

The cytokine TNF-a has been shown to play a major role in
driving the expression of iINOS in inflammatory states [38,39].
In our experiments, there was increased systemic production of
TNF-a, which is consistent with a possible role of this cytokine.
It has been reported that neutrophils exposed to paraquat
showed high production of TNF-a and enhanced degradation of
IkB-a, allowing increased activity of NF-kB [40]. It is largely
accepted that NF-kB activates transcription of various
inflammatory genes, including iNOS [41,42], which produces
massive amounts of NO independent of elevations in
intracellular calcium level [38]. Not only was TNF-a increased
after paraquat exposure, but more importantly treatment of

PLOS ONE | www.plosone.org

animals with etanercept prevented lung edema, neutrophil
accumulation in BAL, lungs and blood, TNF-a level in serum
and iNOS expression in aorta. Notably, vascular
responsiveness was recovered after blockade of TNF-a with
etanercept. Together, these data support our assumption that
exposure of animals to toxic doses of paraquat induces
pulmonary and systemic inflammation that leads to increase in
serum TNF-a and consequent TNF-a-dependent iNOS
expression in the aortic endothelium, production of high
amounts of NO and decreased vascular responsiveness to
contractile agents.

In conclusion, paraquat poisoning produces a systemic
inflammatory response with elevated levels of TNF-a. This
cytokine increases the expression of iNOS in the endothelial
cell layer of the aorta, increasing basal production of NO,
impairing the contractile vascular response. Hence, the results
found in this work are in line with the systemic vascular failure
that develops in vivo in paraquat-poisoned patients. Moreover,
our results suggest that inhibition of TNF-a by etanercept may
be useful in cases of paraquat poisoning, a possibility that
deserves careful clinical trials.
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