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Comprehensive molecular characterization of head and neck squamous cell carcinoma (HNSCC) has led to the
identification of distinct molecular subgroups with fundamental differences in biological properties and clinical
behavior. Despite improvements in tumor classification and increased understanding about the signaling pathways
involved in neoplastic transformation and disease progression, current standard-of-care treatment for HNSCC mostly
remains to be based on a stage-dependent strategy whereby all patients at the same stage receive the same
treatment. Preclinical models that closely resemble molecular HNSCC subgroups that can be exploited for dissecting
the biological function of genetic variants and/or altered gene expression will be highly valuable for translating
molecular findings into improved clinical care. In the present review, we merge and discuss existing and new
information on established cell lines, primary two- and three-dimensional ex vivo tumor cultures from HNSCC patients,
and animal models. We review their value in elucidating the basic biology of HNSCC, molecular mechanisms of
treatment resistance and their potential for the development of novel molecularly stratified treatment.
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Background

Head and neck cancer is the seventh most common cancer
type by incidence and mortality, with 890,000 new cases
and 450,000 deaths worldwide in 2018 [1]. Treatment
remains challenging with current therapies resulting in
five-year survival rates below 50% for patients with locally
advanced disease [2]. Drug resistance and toxicity limit the
efficacy of chemotherapeutics such as cis- or carboplatin,
5-fluorouracil, and taxanes. The introduction of targeted
agents such as cetuximab, nivolumab or pembrolizumab
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improved the outcome but did not overcome the problem
of primary or acquired treatment resistance in the majority
of patients [3—5]. Only very few biomarkers are currently
used in clinical practice or have actually proceeded towards
validation for routine use [6]. Reliable preclinical models
are therefore critical to better understand the molecular
mechanisms involved in HNSCC treatment resistance and
progression, and to develop more effective therapeutic
strategies.

Immortalized cell lines derived from HNSCC tumors
represent a valuable tool for functional analysis of treat-
ment resistance. Drug screening in monolayer cell cultures
remain the common approach for identifying novel thera-
peutic agents. However, three-dimensional (3D) cultures
which more closely represent tumor tissue architecture and
cellular environment [7] might be superior for predicting
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drug efficacy in patients. Indeed, large variations in radi-
ation and drug sensitivity have been shown in studies using
3D cell cultures, similar to those found with in vivo tumors.
Even if 3D cultures are useful to study the interactions
between different cell populations, they do not fully repro-
duce the complexity of HNSCC. Thus, development of
novel therapies might ultimately require clinically relevant
animal models of HNSCC that accurately represent the
cellular and molecular changes associated with the initi-
ation and progression of human cancer. In this respect,
carcinogen-induced HNSCC models, transgenic animals
and transplantable xenograft models have entered the field
of HNSCC research. This review describes the mostly used
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preclinical models of HNSCC (schematically depicted in
Fig. 1) and gives an overview of their strengths and limita-
tions. We also discuss new approaches of personalized
treatment selection based on these models.

Ex vivo models

Immortalized HNSCC cell lines

Four decades ago, first protocols for ex vivo cultures of
HNSCC cells have been reported [8, 9]. After resolving
prior obstacles such as fibroblast overgrowth and de-
pendence on feeder layers with these protocols, HNSCC
cell lines were successfully established. Culture
techniques have been further improved since then, and
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Fig. 1 Schematic overview of approaches to generate preclinical HNSCC models. a Patient-derived models are mainly generated from surgical
tumor tissue. After mechanical and enzymatic dissociation, tumor cells are grown in vitro as 2D cell monolayers on plastic or 3D spheroid
structures in extracellular matrix (ECM). For generation of patient-derived xenografts (PDX), tumor fragments are transplanted subcutaneously in
immunocompromised mice. Classical patient-derived models are characterized by the absence of human immune and stromal cells. b Genetically
engineered mouse models of oral squamous cell carcinoma can be generated by selective activation of oncogenes or inactivation of tumor
suppressor genes (TSGs) in epithelial cells. ¢ Delivery of 4-Nitroquinoline 1-oxide in the drinking water of mice over several weeks promotes oral
cavity carcinogenesis at high incidence
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various HNSCC cell lines stably growing over numerous
passages have been generated. A detailed description of
all available HNSCC cell lines would be beyond the
scope of this review. We would thus like to refer the
reader to two previous review articles [10, 11]. Since im-
mortalized HNSCC cell lines can be easily maintained
and expanded, they have broadly been used to study
genetic alterations and biological responses to chemical
and genetic perturbations, to identify potential molecular
targets, and to develop novel small-molecule and bio-
logical therapeutics [12, 13]. More recently, evidence has
been provided that these cell lines can also be used for
studying intratumoral heterogeneity and clonal evolution
occurring under therapy pressure [14]. Data from such
comprehensive molecular and functional studies in these
models have been assembled in libraries like the Cancer
Cell Line Encyclopedia (CCLE), representing a valuable
repository of human cancer diversity [15, 16].

Although HNSCC cell lines grown in two-dimensional
(2D) monolayer cultures continue to be important
models in the search for new therapeutic approaches for
this disease, they generally suffer from their inability to
reflect the histological nature, three-dimensional (3D)
architecture and structural and functional differences of
the tumor in vivo. These limitations significantly influ-
ence the informative value of in vitro studies evaluating
the efficacy of established and novel treatment modal-
ities for HNSCC in monolayer cultures. Indeed, notable
differences in sensitivity of 2D versus 3D cultures from
HNSCC cell lines were reported for radiation [17] and
drug treatment, e.g. with cisplatin [18], cetuximab [18, 19]
and the mTOR inhibitor AZD8055 [19]. Comparative mo-
lecular analysis of cells growing in 2D versus 3D cultures
provided possible explanations for lower sensitivity of cells
in 3D cultures, like the expression and activation of genes
associated with DNA repair [17], and increased expression
levels of genes associated with epithelial-mesenchymal
transition and stemness [18] under 3D conditions.

Genetic instability and the occurrence of clonal selec-
tion during in vitro culture [20] are further potential
limitations of cancer cell lines, and can explain why find-
ings involving cell lines are often difficult to reproduce.
Indeed, comprehensive analysis of strains from the
commonly used MCF7 breast and A549 lung cancer cell
lines revealed extensive genomic variation across strains
which was associated with variation in biologically
meaningful cellular properties. Importantly, when the
strains were tested against 321 anti-cancer compounds,
considerably different drug responses were observed,
with at least 75% of compounds strongly inhibiting some
strains but being completely inactive in others. This
study clearly underlines the urgent need for improved
ex vivo models to support maximally reproducible
cancer research.
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Advanced ex vivo models of HNSCC

Kopf-Maier and colleagues were the first to establish a
method which allowed human carcinoma cells from
different histological entities including squamous cell
carcinomas (SCCs) of the pharynx to reorganize in vitro
to “organoid structures” [7]. They showed that these
organoid cultures maintained the critical properties of
the in vivo state, such as the 3D architecture, the growth
of heterogeneous cell types from an individual carcinoma
and the morphological differentiation under relatively sim-
ple experimental conditions [7]. In a subsequent study,
the same group demonstrated that these organoid cultures
can be used for drug testing, and that the response data
obtained thereof were concordant with patients’ response
to therapy [21]. The authors were the first to propose
organoid cultures as personalized in vitro drug testing
platform, allowing the prediction of individual chemosen-
sitivity of carcinomas within few days [21].

Since then, techniques to grow tissues in vitro in 3D
as organotypic structures have been refined. Protocols
have been developed for establishing organoids from
adult and embryonic stem cells which are able to self-
organize into 3D structures that reflect the tissue of
origin (for a review see Clevers, 2016 [22]). The first
adult stem cell-derived organoid cultures were estab-
lished from mouse intestinal stem cells that were placed
in conditions mimicking the intestinal stem cell niche
[23]. Conditional reprogramming induced by adding R-
spondin-1, epidermal growth factor (EGF) and Noggin
to the culture medium, and embedment of the cells in
an extracellular matrix-providing basement membranes
extract, has been shown to stimulate adult stem cells to
self-renew, proliferate and form differentiated offspring,
resembling the intestinal epithelium [23-25]. This tech-
nique, initially developed to study infected, inflammatory
and neoplastic tissue from the human gastrointestinal
tract, has not only been used for the establishment of
organoid cultures from a variety of human normal tissue
but also patient-derived tumor tissue. These studies have
significantly enlarged and improved the set of available
cancer models.

More recently, the early findings by Képf-Maier and col-
leagues [21] of HNSCC organoid cultures being a suitable
in vitro drug testing platform were confirmed by several in-
dependent studies. Though considerable differences in the
success rates of establishing primary long-term growing
organoid cultures from HNSCC patients were reported
(30% [26] versus 65% [27]), all studies so far unanimously
described that organoids retain many properties of the
original tumor, including intratumoral heterogeneity [28],
mutation profile and protein expression patterns [27, 29].
In addition, it was shown that organoids retained their
tumorigenic potential upon xenotransplantation [27]. Re-
sponses to drug treatment in vivo were found to be similar
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to the IC50 calculated from organoids by drug sensitivity
assays in vitro [26] Moreover, radiosensitivity data from
organoid testing correlated with clinical response in
patients [27]. Importantly, not only treatment-related
effects in tumors but also unwanted therapy side effects in
normal tissue can be studied in organoid models. For
example, patient-derived salivary gland organoids have
been used for dissecting the molecular basis of hyposaliva-
tion, a frequent severe side effect of radiation [30].

A further study identified primary 2D cell cultures from
HNSCC patients’ tumors as additional valuable ex vivo
HNSCC model [31]. Here, individualized large-scale
screening of anti-cancer therapeutics reproducibly identi-
fied drugs displaying anti-tumor activity in matched
patient-derived xenograft (PDX) models, thereby providing
additional evidence that primary HNSCC cultures could be
used to support therapeutic decision making in a routine
clinical setting [31].

Organoid cultures of human normal, dysplastic, and ma-
lignant tongue tissues have also been used for reproducing
the major steps of tongue tumorigenesis [32]. Histomor-
phometry, immunohistochemistry, and electron micros-
copy analyses in 3D co-cultures of tongue-derived primary
keratinocytes and fibroblasts in collagen matrix showed that
the stratified growth, cell proliferation, and differentiation
were comparable between co-cultures and their respective
native tissues, however, they largely differed in cultures
grown without fibroblasts [32]. These results support previ-
ous studies showing an important role of cancer-associated
fibroblasts in the pathogenesis of HNSCC [33]. These data
together with broad evidence from the literature on tumor-
promoting effects of the tumor microenvironment (TME)
[33] strongly argue for future use of more advanced preclin-
ical models comprising all major TME components. New
protocols are nowadays available for generation of
organoids containing beside stromal cells also the patient’s
immune cells [34]. Thus, although organoid culture have
limitations [35], such as the consumption of considerable
time and resources and the incorporation of undefined
extrinsic factors that may influence the outcome of experi-
ments (Table 1), these cultures might represent suitable
models to develop and optimize future treatment strategies
including immune-oncology drugs.

Animal models

Carcinogen-induced animal models of oral cancer

Most human SCCs are known to be induced by chronic ex-
posure to carcinogens. Initially, experimental approaches of
inducing oral malignant tumors chemically always failed,
because the oral mucosa was more resistant to the action
of chemicals than skin. Finally, using 9, 10 dimethyl-1, 2,
benzanthracene (DMBA) HNSCC could be successfully in-
duced in hamster cheek pouch as an animal model [36, 37].
Resembling the scenario in patients, carcinogenesis of the
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mucosa occurred in four successive stages: hyperplasia,
atypical hyperplasia, carcinoma in situ, and squamous cell
carcinoma [37]. However, there were difficulties in distin-
guishing between changes of the epithelium caused by
direct contact with the carcinogen versus true premalignant
transformation because changes were transient and revers-
ible in the DMBA-induced cheek tumors. In addition,
DMBA-induced tumors did not possess many of the histo-
logical features of differentiated HNSCC and did not closely
resemble early human lesions. More importantly, the tumor
occurred in the hamster cheek pouch which represents an
immunodeficient area absent in humans, so this model did
not mimic human HNSCC very well. Although DMBA was
subsequently widely employed in hamster and rat oral
cancer models, it proved to be difficult to induce oral car-
cinoma with DMBA in mice [38]. 4-Nitroquinoline 1-oxide
(4-NQO), a water-soluble quinolone derivative, was then
introduced as potent inducer of oral tumors. Administra-
tion of 4-NQO with drinking water or its topical applica-
tion resulted in multiple dysplastic, preneoplastic, and
neoplastic lesions after long-term treatment in both rat and
mouse models, and these lesions closely resembled human
oral cavity neoplastic transformation. After several modifi-
cation, the model was standardized by Tang et al. [39], who
showed that delivery of 4-NQO in the drinking water of
C57BL/6 mice for 16 weeks promotes oral cavity carcino-
genesis at high incidence.

By recapitulating the sequence of events and the type
of lesions seen during human carcinogenesis, the above-
described carcinogen-induced animal models provide an
excellent in vivo system for studying key driver events of
oral carcinogenesis. These models have also been
broadly used for the development of cancer chemopre-
vention strategies [40] whereas fewer studies have taken
advantage of these animal models to evaluate the efficacy
of drugs for treatment of established tumors. One major
limitation as drug screening platform is the extended
time needed to complete the evaluation of the effects of
a test compound (Table 1). Most carcinogen-induced
animal models of HNSCC require up to 40 weeks to
develop full-fledged carcinomas, and even longer if
metastasis is the study endpoint. In this context, a recent
report from Wang and colleagues offers a potential
shortcut by using 4NQO-derived cell line-induced
tongue tumor xenografts as an alternative more expedi-
ent syngeneic mouse model [41].

The major advantage of the 4NQO-induced animal model
is its suitability to study effects of carcinogenic and genetic
factors in tumorigenesis especially in an immunocompetent
environment. It thus provides a suitable platform for accel-
erating the development of immunotherapeutic regimens in
HNSCC [41]. The model has also successfully been
used to investigate the role of putative cancer stem

cells in treatment resistance, recurrence, and
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Table 1 Advantages and limitations of preclinical HNSCC models
Preclinical Major advantages Limitations Pathogenesis  Low- High Precision  Immune-
model modelling throughput  throughput  oncology® oncology®
drug drug
screening screening
Immortalized - low expenses - chromosomal instability - ++ ++ - -
cell lines - ease of maintenance - low retention of genetic
- amenable to genetic features
manipulation
Primary 2D - high take rate - no resemblance of tumor - ++ + ++ -
cultures - moderate expenses architecture and cellular
- amenable to genetic microenvironment
manipulation
Organoids - resemblance of tumor - time and cost consuming ++ ++ + ++ ++
architecture - poorly validated HNSCC
- retention of genetic model
heterogeneity - unknown effects of mouse-
- reconstitution with derived ECM components
stroma-immune compo- on cell behavior
nents possible
Patient-derived - retention of histological - time and cost consuming - ++ - + +
xenografts and genetic features of - reconstitution of immune
original tumor system challenging
- tumor- (mouse-) stroma
interactions
Carcinogen - close resemblance of OC - extended time until ++ + - - +
induced mouse  tumors development of carcinomas
models - retention of genetic - not all HNSCC sites can be
heterogeneity modelled
- immunocompetent
model
Genetically - recapitulation of tumor - time and cost consuming ++ + - - +
engineered initiation and progression - unpredictable frequency and

mouse models - modeling of complex
processes, e.g. tumor
angiogenesis

- immunocompetent
model

tumor formation rare in
HNSCC

latency of tumor formation
- genetic alterations driving

Potential applications were judged as suitable (++), possible (+), not very suitable (+) or unsuitable (-)
The suitability of the models for individual response prediction® and development of immune-oncology drugs® is given

OC oral cavity, ECM extracellular matrix

metastasis. Its potential for developing novel thera-
peutic strategies targeting not only the proliferative
tumor bulk but also the relatively quiescent subpopu-
lation of cancer stem cells has been established [42].

Genetically engineered mouse models

While DNA damage by chemicals occurs randomly,
according to the tumor evolution theory random acqui-
sition of mutations across the genome is followed by
selection of clones harboring genetic changes that facili-
tate cell survival and proliferation. Molecular profiling
studies have identified several putative driver genes con-
tributing to cancer development in HNSCC. However,
these molecular studies did not provide direct evidence
for causality or detailed insight into the biological mech-
anisms by which these genes drive tumor development.
Although carcinogen-induced animal models can closely
recapitulate the heterogeneous landscape of genomic al-
terations in human primary tumors [43], only a fraction

of these mutations drive tumorigenesis by affecting on-
cogenes or tumor suppressor genes, but many mutations
are passengers with no clear contribution to tumor
development. These studies also do not reveal whether
drivers are essential for tumor maintenance and may
therefore be of limited use for designing effective thera-
peutic strategies. In contrast, preclinical model systems
such as genetically engineered mouse models (GEMMs)
provide an experimentally tractable approach in which
the biological effects of specific mutations can be studied
in detail in a controlled genetic background. In the next
chapters, we describe key findings from previous studies
based on GEMMs in HNSCC.

Few GEMMs associated with spontaneous HNSCC
formation in the absence of chronic carcinogen exposure
have been described so far (Table 2). A genetically engi-
neered mouse model of oral cancer was first introduced
by Schreiber and colleagues [44]. After crossing mice
transgenic for the v-Ha-ras gene with transgenic mice
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Table 2 Transgenic models of HNSCC
Transgenic modification Promotor Anatomical site Prevalence Onset (months) Reference
Spontaneous models
E6/E7/mrasR12 K14 oC 100 3-4 [44]
KrasG12/Tp53¢</ae! K14 100 <1 [45)
KrasG12/KLF4%e/a K14 21 <1 [46)
KrasG12/SMAD4"/°! K14 ocC na. 3-4 [47]
SMAD4ede! K14 oc 74 10 [47)
4NQO-induced models
GRHL 394! K14 oC L, P 40 3-4 48]
PTENeVde K14 ocC 100 1-2 [49]
miR-211 K14 T n.a. 3 [50, 51]
miR-31 K14 80 3 [52]

Abbreviations: K14 keratin 14, OC oral cavity, T tongue, L larynx, P pharynx, n.a. not available

that harbored E6/E7 of human papilloma virus (HPV)-
16, the development of tumors at the mouth, ear and
eye beginning at about 3 months of age was observed
[44]. By 6 months, 100% of the bi-transgenic animals
had developed oral tumors while the prevalence in either
of the two single-transgenic groups was 0% [44]. The pre-
requisite of a second genetic hit for tumorigenesis was also
reported for a transgenic model of K-rasS**P, in which a
tamoxifen-inducible Cre recombinase under the control of
the keratin-14 (K14) promoter was used for targeting the
endogenous K-ras locus [45]. In the single-transgene
model, only large papillomas in the oral cavity and hyper-
plasias in the tongue were observed after 1 month of tam-
oxifen treatment [45]. However, if mice were crossed with
floxed p53 conditional knockout mice, 100% of the com-
pound mice developed tongue carcinomas as early as 2
weeks after tamoxifen induction [45]. Beside expression of
viral oncogenes E6/E7 and loss of TP53, homozygous dele-
tion of the transcription factor kriippel-like-factor 4 (KLF4)
[46] and heterozygous deletion of SMAD4 [47] have been
identified as second genetic hits which in concert with an
oncogenic driver mutation promote oral tumor formation
at high prevalence (Table 2).

Despite recapitulating HNSCC progression, the suit-
ability of the above-described HNSCC models as plat-
form for exploring novel molecular targeted treatment
approaches remains somehow questionable, considering
that the genetic alterations driving tumorigenesis in
these animals are absent or only rarely found in HNSCC
patients. Overall, mutations in HRAS and KRAS were
detected in only 6 and 0.2% of HNSCC patients, and
homozygous deletion of KLF4 and SMAD4 in 0 and 4%
of cases, respectively. Moreover, cases harboring one of
the compound tumor-prone genotypes of the GEMMs
described above have not been identified in The Cancer
Genome Atlas (TCGA) HNSCC cohort [53]. A GEMM
of spontaneous HNSCC more closely resembling the

molecular features of the human disease might be the
single gene-knockout model of SMAD4 in head and
neck epithelia (HN-Smad4®/?") reported by Bornstein
and colleagues [47]. Indeed, although homozygous
deletion is rare, SMAD4 heterozygous loss is detected in
30-35% of primary HNSCCs [53, 54] associated with
downregulation of Smad4 expression levels [53]. More
recently, significant intratumoral heterogeneity of SMAD4
loss in primary HNSCC tumors has been reported [54].
Interestingly, in ex vivo cultures derived from PDX, the
cell subpopulation displaying heterozygous SMAD4 loss
by deletion or reduced expression outcompeted cells with
wildtype SMAD4 genotype from the parental tumor, sug-
gesting a survival advantage of Smad4-deficient cells [54].
In further support of the suitability of this single-knockout
GEMM, HNSCC from HN-Smad4“*/**! mice exhibited in-
creased genomic instability [47], which correlated with
downregulated expression and function of genes encoding
proteins in the Fanconi anemia/BRCA DNA repair path-
way [47], also linked to HNSCC susceptibility in humans
[55]. Moreover, both normal head and neck tissue and
HNSCC from HN-Smad4®®®" mice exhibited severe
inflammation which has also been linked to pathogenesis
in humans [56] where oral bacteria and inflammatory
mediators associated with periodontal disease may be co-
factors in the initiation and promotion of oral SCC [57].
Since the original report in 2009, the HN-Smad4%"/!
model has been used for analyzing in detail the molecu-
lar processes involved in HNSCC tumorigenesis. To our
knowledge, it has not yet been exploited for the develop-
ment of novel therapeutic strategies. This restraint might
be explained by a median onset time of 40 weeks for
tumor development in this model, a limitation similar to
carcinogen-induced animal models of oral cancer (Table
2). The integration of carcinogen treatment to accelerate
tumor formation in single-transgene GEMMs might thus
represent an appropriate way to resolve this limitation,
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as already successfully demonstrated in studies of
GEMMs harboring a deletion in a tumor suppressor
gene (GRHL3 [48], PTEN [49]) or overexpressing onco-
genic microRNAs [50-52] (Table 1).

Patient-derived xenograft models

The development and improvement of severely
immune-deficient mouse strains has remarkably in-
creased the availability of PDX models for cancer
research. Successful establishment of HNSCC PDX
models has been reported by several research groups
[58—62]. In our own series, an overall engraftment rate
of 48% was observed [60], however, engraftment rates
seemed to largely vary between distinct patient sub-
groups [60, 61]. The limiting factors for engraftment
have not yet been clearly identified. Site of implantation
and mouse strains seem to influence the take rate.
Moreover, pathological risk factors like tumor histology
and HPV status are important determinants of PDX
formation. In general, undifferentiated HPV-negative
tumors displaying aggressive growth are more likely to
engraft. Accordingly, the rate and kinetics of PDX
engraftment have been associated with an unfavorable
prognosis of patients [61-63]. Contrary to HPV-negative
tumors, HPV-associated HNSCC tumors frequently fail to
engraft. Since these tumors are growing at immune-
associated sites such as the tonsil or base of tongue, their
transplantation to immunodeficient mice lacking im-
munologic control of virally infected cells bears the risk of
co-transferring Epstein-Barr virus (EBV) positive B-cells.
As a result, uncontrolled B-cell proliferation and trans-
formation to EBV+ lymphoma frequently occurs [60, 61].
Since the proliferation rate of these artificial lymphomas is
much higher than tumor cell proliferation in transplanted
tissue fragments of SCC, the original tumor transplants
are frequently overgrown [60, 61]. Thus, histopathologic
validation of PDX by a board-certified pathologist is
essential to confirm the squamous cell carcinoma hist-
ology of the model.

The question of how well PDX resemble the primary
patient tumor has been addressed by many groups. As
shown for other tumor entities, established HNSCC
models in mice display histopathologic features like the
original patient tumor [59-62]. Comprehensive genetic
analysis of primary tumors and derived PDX models by
next generation sequencing revealed similar patterns and
allelic frequencies of molecular aberrations [60, 62]. The
correlation between mutational profiles of original tu-
mors and derived models was significantly higher for
PDX (R=0.94) compared to cell lines (R=0.51) [64].
Methylome analysis also showed high concordance be-
tween PDX and patient tumors. Indeed, an average of
only 2.7% of the assayed CpG sites underwent major
methylation changes as a result of transplanting tumors
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to mice [65]. Furthermore, gene expression studies
showed the overall relatedness of parental tumors with
their PDX, as confirmed by their clustering together in
unsupervised hierarchical clustering analysis [59, 60]. In
contrast to increasing evidence for genome and tran-
scriptome profiles matching between PDX and primary
HNSCCs, only few data exist for protein expression. A
first preliminary analysis of PDX tissue using reverse-
phase protein array (RPPA) revealed protein profiles
comparable to the TCGA HNSCC protein expression
data [66], suggestive of similarity between original tissue
and derived model also at this level.

A key feature of PDX is the conservation of a stromal
compartment. Even though human stroma is replaced
by mouse stroma within the first passages, an integrated
stroma remains which makes the evaluation of com-
pounds targeting this compartment or crosstalk between
stromal compartment and tumor cells possible. Further,
tumors grown in mice build up their own tumor vascu-
lature which offers the opportunity of evaluating the
angiogenic network and interference with compounds
targeting angiogenesis. After model establishment, tu-
mors grown in mice can be harvested, vitally frozen and
whenever needed thawed and re-transplanted to mice.
Overall, PDX can be considered a suitable method for
tumor tissue expansion, and a promising preclinical
model system for mechanistic studies and the develop-
ment of therapeutic strategies.

With the recent advent of immunotherapy in the treat-
ment algorithm of many cancer types including HNSCC,
the lack of a functional immune environment in PDX has
become a major obstacle to overcome. Different strategies
have been proposed to implement an immune system in
immunodeficient mice. In the landmark study of Mosier
and colleagues [67], it was shown that the injection of hu-
man peripheral mononuclear cells (PBMCs) resulted in the
stable long-term reconstitution of a functional human im-
mune system in mice with severe combined immunodefi-
ciency (SCID). Thus, immunoproficient PDX models could
be generated by transfer of patient's PBMCs into the PDX-
bearing mice. However, proper immune cell development
and T-cell priming are lacking in this approach, resulting
in the absence of certain lineages of human immune cells
in mice [67]. More sophisticated immune reconstitution
protocols subsequently developed are based on the transfer
of human CD34+ stem cells into NSG mice, as well as
implanting human fetal thymus and liver tissue under the
kidney capsule of these mice [68, 69]. This approach re-
sulted in the long-term engraftment and systemic reconsti-
tution of a complete human immune system including
multilineage human immune cells consisting of T-, B-,
NK-, dendritic cells and macrophages [68, 69]. Unfortu-
nately, this method is not feasible for a large number of
PDX due to the complexity of the model. A more
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promising procedure has been proposed in melanoma
where tumor-infiltrating T lymphocytes (TILs) isolated
from the tumor tissue used for PDX generation were ex-
panded in vitro by human interleukin 2 (IL2) before injec-
tion in tumor-bearing PDX mice [70].

The potential of PDX models to guide patient treatment
The value of PDX to guide individual patient treatment
decision remains to be clarified. In general, patient-to-
PDX correlations in different tumor entities comparing
treatment responses between mice and patients have
been done using retrospective data on clinical outcome.
To our knowledge, no such comparisons at sufficiently
large sample sizes have been performed in HNSCC. Ob-
stacles for the worthiness of such approaches comprise
drug dosage in mice which usually reflects the maximum
tolerated dose, dose variability within different mouse
strains and especially the definition of a clinically mean-
ingful endpoint. In the clinical setting, tumor responses
are determined by RECIST. In mice, a very heteroge-
neous set of possible endpoints has been used to deter-
mine the efficacy of single-drug treatments, including
tumor regression expressed as relative growth inhibition,
tumor volume in comparison to a control group, tumor
growth inhibition and time to endpoint. Further general
model limitations are the high cost of PDX establish-
ment, varying engraftment rates and times from first
transplantation to treatment screening results. So far, in
our large collection of almost 80 HNSCC PDX models
we have been unable to establish a predictive value of
drug-specific tumor responses in the xenograft model.
Nevertheless, several companies advertise PDX as a tool
to predict treatment response. In 2016, Champions
Oncology launched a feasibility trial (NCT02752932) to
explore the predictive value of PDX. Unfortunately, no
results have been published until now.

The main disadvantage of PDX is the prolonged time
needed for model establishment and expansion com-
pared to organoids, making their future use as individual
drug screening platform in clinical routine less likely. In
addition, re-constitution with patient-derived TME com-
ponents which are missing in both models generated by
current protocols should be achieved much easier in
organoids than in xenograft mouse models. This will
allow inclusion of anti-cancer therapies affecting the
TME (e.g. everolimus, bevacizumab, anti-PD-1/PD-1L
antibodies) in future ex vivo screening approaches.

Conclusions

Understanding the molecular mechanisms involved in
the treatment resistance and progression of the disease,
and elaborating new treatment strategies in preclinical
models will significantly contribute to advance clinical
management of HNSCC. While assays using HNSCC
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cell lines are essential for understanding HNSCC biology
and drug development, they cannot serve as preclinical
prediction model for the individual cancer patient. Orga-
noid cultures resembling more closely the in vivo state
may be more suitable in this respect, despite limiting
factors such as higher costs and more elaborate main-
tenance required for these ex vivo cultures. GEMMs are
useful in vivo models to interrogate the role of specific
genes and genetic modifications in the pathogenesis of
HNSCC. However, no single model described so far
seems to be perfect for investigation of the pathogenesis
and treatment of HNSCC. Though more studies are
clearly needed to refine organoids and/or PDX as
diagnostic tools for individual prediction of therapy
response, it can be envisioned that the combination of
molecular profiling of tumors together with drug testing
in organoid models might significantly advance precision
medicine in head and neck cancer, and improve the
chances for patients to receive a treatment tailored to
their tumor.
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