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Identification of hub genes
and biological pathways
in glioma via integrated
bioinformatics analysis
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Abstract

Objective: Glioma is the most common intracranial primary malignancy, but its pathogenesis

remains unclear.

Methods: We integrated four eligible glioma microarray datasets from the gene expression

omnibus database using the robust rank aggregation method to identify a group of significantly

differently expressed genes (DEGs) between glioma and normal samples. We used these DEGs to

explore key genes closely associated with glioma survival through weighted gene co-expression

network analysis. We then constructed validations of prognosis and survival analyses for the key

genes via multiple databases. We also explored their potential biological functions using gene set

enrichment analysis (GSEA) and gene set variation analysis (GSVA).

Results: We selected DLGAP5, CDCA8, NCAPH, and CCNB2, as four genes that were abnormally

up-regulated in glioma samples, for verification. They showed high levels of isocitrate dehydro-

genase gene mutation and tumor grades, as well as good prognostic and diagnostic value

for glioma. Their methylation levels were generally lower in glioma samples. GSEA and GSVA

analyses suggested the genes were closely involved with glioma proliferation.

Conclusion: These findings provide new insights into the pathogenesis of glioma. The hub genes

have the potential to be used as diagnostic and therapeutic markers.
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Introduction

Glioma is a refractory malignant tumor
prone to relapse, which is associated with

poor prognosis and whose pathogenesis
remains unclear.1 The 2016 update of the

World Health Organisation classification
of central nervous system tumors integrated
molecular characteristics such as mutations

in isocitrate dehydrogenase genes (IDH),2

the 1p/19q codeletion,3 and the H3 K27M

mutant4. The use of these novel molecular
biological markers offers promising future

diagnostic and therapeutic targets. For
example, the IDH mutation status provides

important information for the accurate
diagnosis and prognosis of glioma.5,6

With the recent application of microar-
rays and high-throughput sequencing tech-

nology, molecular targeted therapy enables
the possibility of individualized treatments

following the accurate identification and
inhibition of tumor gene mutations.7

Although the use of different technology

platforms or small sample sizes is associated
with limitations and inconsistencies,

these can be overcome by applying robust
regression analysis (RRA) as an integrated

bioinformatics method, particularly in
cancer research.8,9

In this study, through the comprehensive
application of many advanced bioinformat-

ics methods, we integrated multiple gene
expression omnibus (GEO) datasets to

explore genes that are differentially
expressed in glioma, and investigated their

potential biological functions. The study
workflow is shown in Figure 1.

Materials and methods

Identification of glioma GEO datasets

Four eligible glioma datasets (GSE4290,
GSE7696, GSE50161, and GSE68848)

were downloaded from the GEO database.
The selection criteria were as follows: (1)

the collection of gliomas and corresponding

adjacent or normal tissues; (2) including

more than 60 samples; and (3) microarray

datasets on the same platform. In addition-

al, microarray datasets from the Oncomine

database were used to analyze hub gene

expression differences between glioma sam-

ples and normal tissues. A total of 693

glioma samples were downloaded from the

Chinese Glioma Genome Atlas (CGGA

http://www.cgga.org.cn) database, and

702 glioma samples were obtained from

The Cancer Genome Atlas (TCGA) data-

base. GEO dataset information and

comprehensive demographic information of

patients are shown in Table 1 and Table 2,

respectively. The study protocol was

approved by the Clinical Medical Research

Ethics Committee of the First Affiliated

Hospital of Bengbu Medical College.

Screening of robust DEGs

Each GEO dataset was normalized to iden-

tify DEGs through R package Limma.

Next, RRA was used to integrate the results

to obtain the most significant DEGs. 10,11 |

log2FC|� 1 and adjusted P-value< 0.05

were considered statistically significant for

the DEGs.

Gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis

GO annotation and KEGG pathway anal-

yses were conducted for identified DEGs

using the R package clusterProfiler. GO

terms or KEGG pathways with adjusted

P< 0.05 were considered statistically

significant.

Weighted gene co-expression network

analysis (WGCNA)

The top 4000 up-regulated DEGs (accord-

ing to P value) from RRA analysis
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Figure 1. Study workflow.
GEO, gene expression omnibus; CGGA, Chinese Glioma Genome Atlas; TCGA, The Cancer Genome Atlas;
GO, gene ontology; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and
Genomes; WGCNA, weighted gene co-expression network analysis; GSVA, gene set variation analysis.

Table 1. Details of eligible datasets.

Dataset ID Platform Sample Tumor (n) Normal (n)

GSE4290 GPL570 glioma 153 23

GSE7696 GPL570 glioma 80 4

GSE50161 GPL570 glioma 49 13

GSE68848 GPL570 glioma 228 28
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underwent WGCNA analysis with expres-

sion profile data and clinical data from
TCGA using R package WGCNA. This

aimed to identify co-expressed gene mod-

ules, and to explore the relationships
between the gene network and the pheno-

type of concern, as well as the core genes in
the network. Within R package WGCNA,

the adjacent coefficient and the joint

strength between nodes were determined.
A suitable soft threshold (b value) was pre-

computed by the pick soft-threshold func-
tion, and the adjacent matrix and

topological overlap matrix (TOM) were
obtained according to the b value. TOM

was employed to characterize functional

modules in the co-expressed network by
hierarchical clustering. Next, the memory

network under the selected b value was ver-

ified to determine whether it was scale-free.
The topological matrix obtained was clus-

tered with dissimilarity between genes, then
gene trees were cut into different modules

by the dynamic tree cut algorithm (with

a minimum of 30 genes in the module).
The eigengene of each module was then cal-

culated, and modules with relevance >0.8
were merged. The module closely related

to survival was determined according to
the correlation between clinical traits and

Table 2. Baseline characteristics of study patients.

Variable TCGA cohort CGGA cohort GSE7696 GSE4290 GSE50161 GSE68848

No. of patients 702 693 84 176 62 256

Normal 5 4 23 13 28

Tumor 697 693 80 153 49 228

Age (years)

�60 159 83 20

<60 536 609 64

Unknown 7 1

Sex

Female 297 295 21

Male 398 398 59

Unknown 7 4

Tumor grade

G2 258 188 45

G3 270 255 31

G4 168 249 77

Unknown 6 1

IDH status

Mutant 91 356

Wild-type 34 286

Unknown 577 51

Radiotherapy

No 190 113

Yes 71 509

Unknown 441 71

Pharmacotherapy

No 105 151

Yes 156 457

Unknown 441 85

TCGA, the Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; IDH, isocitrate dehydrogenase.
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module eigengenes. This correlation was

assessed to identify the relevant clinically

significant module. Gene significance (GS)
reflects the correlation between gene expres-

sion and certain clinical features. Hub genes

related to key modules were screened

by setting a GS >0.4 and module member-

ship (MM) >0.8. Enrichment analysis was

then performed of KEGG pathways for the
key module.

Diagnosis and prognostic analysis of key

genes

Differences in gene expression were validat-

ed between glioma and normal samples

based on the Oncomine database. Using R

package ggstatsplot, the pathological grade

and IDH mutation status of key genes were
verified in CGGA and TCGA databases.

Sample information for key genes down-

loaded from these two databases was

divided into high and low expression

groups, and Kaplan–Meier survival curves

of hub genes were plotted with R packages
survminer and survival. Next, receiver oper-

ating characteristic (ROC) curves were plot-

ted to evaluate the diagnostic values of hub

genes using the pROC R package.

Univariate and multivariate Cox regression

analyses using SPSS v. 21.0 software (IBM
Corp, Armonk, NY, USA) of patient age,

sex, IDH mutation status, use of radiother-

apy and chemotherapy, and the mutation

status of cyclin B2 (CCNB2), non-SMC

condensin I complex subunit H (NCAPH),

cell division cycle associated 8 (CDCA8),
and disks large-associated protein 5

(DLGAP5) genes were used to evaluate

the impact of these factors on the prognos-

tic value in glioma patients based on TCGA

database.

Methylation analysis

Version 3.0 of DiseaseMeth (DiseaseMeth

3.0, http://diseasemeth.edbc.org) is an

online database that analyzes abnormal

methylation in human diseases. Its sample

size has been increased to 17,024 samples by

including TCGA, GEO, and Sequence

Read Archive data.12 DiseaseMeth 3.0

was used to analyze the methylation

levels of key genes between glioma and

normal tissues.

Analysis of tumor-infiltrating immune cells

The tumor immune estimation resource

(TIMER; https://cistrome.shinyapps.io/

timer/) is a comprehensive resource that

systematically analyzes immune infiltrates

using the TIMER algorithm across vari-

ous cancer types.13 TIMER was used to

explore whether there was a link between

identified key genes and tumor immune

cells.

GSEA and GSVA analysis

The R package clusterProfiler was applied

to carry out GSEA of key genes, while

R package GSVA was used to discover

potential pathways associated with key

genes. Each key gene was divided into

high expression and low expression groups

based on median expression levels with

TCGA-LGGGBM data. GSEA and

GSVA analyses were performed based on

the downloaded gene set “c2.cp.kegg.v7.0.

entrez.gmt” (MSigDB, http://software.

broadinstitute.org/gsea/msigdb/index.jsp).

Results

Identification of integrated DEGs in

glioma

Four GEO datasets were standardized and

the following DEGs were screened out:

GSE4290: 1268 up-regulated genes, 1412

down-regulated genes; GSE7696: 754 up-

regulated genes, 924 down-regulated

genes; GSE50161: 2665 up-regulated
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genes, 2288 down-regulated genes; and
GSE68848: 1193 up-regulated genes, 1593
down-regulated genes in glioma samples
compared with normal samples. These
DEGs were then integrated using the
RRA method to identify the most
significant. DEG integration from four

GEO datasets screened 551 up-regulated
and 817 down-regulated DEGs (Figure 2).
The top two significantly up-regulated genes
were RRM2 (P< 0.01, adjPvalue< 0.01) and
TOP2A (P< 0.01, adjPvalue< 0.01), while
SV2B (P< 0.01, adjPvalue< 0.01) and
GJB6 (P¼<0.01, adjPvalue< 0.01) were

Figure 2. Differentially expressed genes between the two groups of samples in each dataset. (a) Volcano
plot of GSE4290. (b) Volcano plot of GSE7696. (c) Volcano plot of GSE50161 and (d) Volcano plot of
GSE68848.

6 Journal of International Medical Research



the top two significantly down-regulated

genes. The top 20 up-regulated and down-

regulated DEGs are shown as a heatmap in

Figure 3.

Enrichment analysis

GO analysis showed that the up-regulated

DEGs were mainly enriched in biological

processes (BP) including extracellular struc-

ture organization, cellular components

(CC) including collagen-containing

extracellular matrix, and molecular func-

tions (MF) including extracellular matrix

structural constituents (Figure 4a). KEGG

pathway analysis found that the phosphoi-

nositide 3-kinase (PI3K)-Akt signaling

pathway, cell cycle, and focal adhesion

were associated with these genes (Figure

4b). Down-regulated DEGs were shown to

be mostly enriched in BP including

the modulation of chemical synaptic trans-

mission and regulation of trans-synaptic

signaling, CC including presynapses, and

Figure 3. Heatmap of robust DEGs determined by RRA analysis. Red indicates up-regulation; blue rep-
resents down-regulation. The number in each rectangle represents the logarithmic fold change.
DEG, differentially expressed genes; RRA, robust regression analysis.
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Figure 4. GO and KEGG enrichment analysis of DEGs. (a) GO terms for up-regulated genes. (b) KEGG
analysis of up-regulated genes. (c) GO terms for down-regulated genes and (d) KEGG analysis of down-
regulated genes.
BP, Biological Process; CC, Cellular Component; MF, Molecular Function; GO, gene ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes.
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MF including gated channel activity
(Figure 4c). KEGG pathway analysis
revealed they mainly participated in the cal-
cium signaling pathway and neuroactive
ligand–receptor interactions (Figure 4d).

WGCNA and key module analysis

Glioma clinical data such as survival time
and survival status from TCGA were
included in WGCNA (Figure 5a). Using
a scale-free network, nine modules were
identified by setting the soft-thresholding
power as 12 (scale free R2¼ 0.94) (Figure
5b–5d). The green module was found to be
most closely associated with glioma survival
prognosis (correlation coefficient¼ 0.52,
P< 0.01 with survival status; correlation
coefficient¼ –0.29, P< 0.01 with survival
time; Figure 5e–5f). A total of 501 genes
were identified in the green module by
drawing a scatter plot of Intramodular
Connectivity vs Module Membership
(Figure 6a). By setting MM >0.8 and GS
>0.4, 19 hub genes were identified from the
green module: KIF23, MELK, CDK1,
ASPM, CDC20, BUB1, CCNB2, BUB1B,
AURKB, NUSAP1, PBK, TPX2, TOP2A,
KIF11, TTK, RRM2, NCAPH, CDCA8,
and DLGAP5. KEGG pathway analysis
showed that these genes were mainly
involved in the p53 signaling pathway, the
cell cycle, and DNA replication (Figure 6b).

Diagnostic and prognostic value of hub
genes in Oncomine, CGGA, and TCGA
databases

From the 19 genes selected above, four
(CCNB2, NCAPH, CDCA8, and
DLGAP5) were screened that have rarely
been studied before to validate their diag-
nostic and prognostic value. Based on the
Oncomine database, the mRNA expression
levels of all four genes were shown to be
significantly increased in glioma samples
compared with normal samples (P< 0.01,

Figure 7a). These hub genes were signifi-

cantly up-regulated in high-grade glioma

tissues, and their IDH wild-type level was
also higher than that of the mutant in the

CGGA database (P< 0.05, Figure 7b–7c)

and TCGA database (P< 0.05, Figure 7d–

7e). Kaplan–Meier curves indicated that the

expression of these genes was associated

with poor patient prognosis (P< 0.01,
Figure 8). ROC curves revealed their high

diagnostic value in identifying glioma

(Figure 9: CCNB2 area under the curve

[AUC]: 0.967; NCAPH AUC: 0.919;

CDCA8 AUC: 0.879; and DLGAP5 AUC:

0.947) based on the TCGA-LGGGBM
dataset. Univariate and multivariate Cox

analyses showed that these genes could be

considered independent clinical prognostic

factors based on TCGA cohort (Table 3).

Methylation analysis of key genes

DiseaseMeth v.3.0 was used to verify the
methylation levels of DLGAP5, CDCA8,

NCAPH, and CCNB2 in glioma and peri-

tumoral normal tissues. Mean methylation

levels of DLGAP5, CDCA8, and NCAPH

were significantly lower in glioma com-

pared with peri-tumoral normal tissues
(P¼), while methylation levels of CCNB2

were slightly higher in glioma compared

with peri-tumoral normal tissues (P<0.01,

Figure 10).

Relationship between gene expression

and tumor purity and immune infiltration

TIMER was used to explore the association

of key gene expression levels with tumor
purity and the infiltration of immune cells

such as B cells, CD4þ T cells, CD8þ
T cells, neutrophils, macrophages, and den-

dritic cells. DLGAP5, CDCA8, NCAPH,

and CCNB2 were significantly positively

correlated with tumor purity (P< 0.01).
However, no correlation or only a weak

association was observed between hub

Chen et al. 9



Figure 5. Co-expression network construction and identification of the key module. (a) Hierarchical
clustering dendrogram of samples from TCGA-LGGGBM RNA-seq data. (b) Analysis of the scale-free fit
index and the mean connectivity for various soft-thresholding powers. (c) Testing the scale-free topology
when b¼ 12. (d) Dendrogram of genes with dissimilarity based on topological overlap. (e) Correlation
between module eigengenes and clinical traits. Each cell contains the correlation and P-value and (f) Gene
significance across different modules.
TCGA, The Cancer Genome Atlas.
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gene expression and immune infiltration

(Figure 11).

GSEA and GSVA analysis of hub genes

Finally, GSEA and GSVA analyses of the

potential biological function of key genes

showed that DLGAP5, CDCA8, NCAPH,

and CCNB2 were all enriched in

KEGG_DNA_REPLICATION, KEGG_

HOMOLOGOUS_RECOMBINATION,

and KEGG_ MISMATCH_REPAIR

pathways (P< 0.01, Figure 12a–12d).

These gene sets had high enrichment

scores and were mainly associated with

tumor development. GSVA verified that

the gene sets were mainly enriched in the

high expression groups of DLGAP5,

CDCA8, NCAPH, and CCNB2, further

suggesting that the genes promote tumor

proliferation (Figure 12e–12h).

Discussion

Despite treatments such as comprehensive

surgery, radiotherapy, and chemotherapy,

patients with glioma still have a poor

prognosis. Therefore, it is essential to
actively explore the pathogenesis of gliomas
and identify possible molecular targets.
Many such targets have been discovered
with the application of high-throughput
sequencing; however, inconsistencies exist
between DEGs in different studies.14 On
the basis of previous work, we comprehen-
sively analyzed hub genes associated with
survival and prognosis in glioma, but
which have rarely been studied or have
been reported in other tumors but not in
glioma,15–19 using RRA and WGNA bioin-
formatics methods. A co-expression net-
work previously constructed using
WGCNA showed that some hub genes cor-
related with clinical traits of glioma samples
in CGGA and TCGA datasets.20,21 In the
current study, four GEO datasets were
enrolled to screen key genes by RRA,
which identified 551 significantly up-
regulated and 817 significantly down-
regulated DEGs in glioma compared with
normal tissue samples.

GO analysis of the integrated DEGs
showed that up-regulated genes were
enriched in extracellular structure

Figure 6. Identification of hub genes and KEGG functional annotation of the core module. (a) Scatter plot
of genes in green module and (b) KEGG analysis for genes within the green module.
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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organization, collagen-containing extracel-

lular matrix, and mitotic nuclear division,

which are all involved in the development

of glioma;22,23 furthermore, several identi-

fied KEGG pathways such as PI3K-Akt

signaling, cell cycle, p53 signaling, and

focal adhesion pathways are associated

with glioma pathogenesis.24 The PI3K/Akt

pathway is closely involved with glioma

growth, angiogenesis, and chemotherapy

Figure 7. Verification of key genes in multiple databases. (a) CDCA8, DLGAP5, NCAPH, and CCNB2
expression levels between glioma and normal tissues in the Oncomine database. (b–c) Expression of CDCA8,
DLGAP5, NCAPH, and CCNB2 with different grade gliomas and IDH mutation status in the CGGA database
and (d–e) Expression of CDCA8, DLGAP5, NCAPH, and CCNB2 with different grade gliomas and IDH mutation
status in TCGA database.
CDCA8, cell division cycle associated 8; DLGAP5, disks large-associated protein 5; NCAPH, non-SMC con-
densin I complex subunit H; CCNB2, cyclin B2; IDH, isocitrate dehydrogenase; CGGA, Chinese Glioma
Genome Atlas; TCGA, The Cancer Genome Atlas.

12 Journal of International Medical Research



Figure 8. Kaplan–Meier survival curve of DLGAP5, CDCA8, NCAPH, and CCNB2 based on the CGGA
dataset (a) and TCGA dataset (b).
DLGAP5, disks large-associated protein 5; CDCA8, cell division cycle associated 8; NCAPH, non-SMC con-
densin I complex subunit H; CCNB2, cyclin B2; CGGA, Chinese Glioma Genome Atlas; TCGA, The Cancer
Genome Atlas.

Figure 9. ROC curves for CCNB2, NCAPH, CDCA8, and DLGAP5.
ROC, receiver operating characteristic; AUC, area under the ROC curve; CCNB2, cyclin B2; NCAPH, non-
SMC condensin I complex subunit H; CDCA8, cell division cycle associated 8; DLGAP5, disks large-associated
protein 5. Yellow: DLGAP5 AUC¼ 0.947; blue: CDCA8 AUC¼ 0.879; black: CCNB2 AUC¼ 0.967; red:
NCAPH AUC¼ 0.919.
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resistance, while TP53 mutations are asso-

ciated with the epithelial–mesenchymal

transition process of glioma and tumor

growth.25 This suggests that these DEGs

are closely related to the development of

glioma.
Following WGCNA gene co-expression

network construction, 19 key genes were

identified which play an important role in

glioma pathogenesis. Of the four genes

rarely studied in glioma that were selected

for exploration of their diagnostic and

prognostic value, NCAPH is closely associ-

ated with chromosome stability. Its

encoded protein is a member of the Barr

family, and it plays a key role in controlling

cell proliferation during mitosis and meio-

sis. 26 Previous studies have suggested that

NCAPH enhances proliferation, migration,

and invasion in many cancers; for example,

NCAPH expression is up-regulated and

associated with poor prognosis in prostate

cancer27 and colon cancer.28,29 However, its

role in glioma remains unclear.

CCNB2, a member of the cyclin family

of proteins, plays a key role in the G2/M

transition. It is also highly expressed in

many malignancies, including human hepa-

tocellular carcinoma where it is associated

with poor prognosis.30 Moreover, decreased

CCNB2 expression was found to inhibit

invasion and metastasis in bladder

cancer.31 However, its mechanism in glio-

mas is still unknown.
CDCA8, an important component of the

vertebrate chromosomal passenger com-

plex, is highly expressed in many malignant

tumors and promotes tumorigenesis. Gao

et al. found that CDCA8 knockdown inhib-

ited proliferation and enhanced the apopto-

sis of bladder cancer cells.32 Previous

research also reported CDCA8 as a key

mediator of estrogen-stimulated cell prolif-

eration in breast cancer cells,33 but its role

in glioma remains unclear.
DLGAP5 encodes a microtubule-

associated protein whose abnormal expres-

sion can lead to tumor development. Xu

Figure 10. Methylation level analysis of key genes in glioma and peri-tumoral normal tissues. (a) DLGAP5;
(b) CDCA8; (c) CCNB2; and (d) NCAPH.
DLGAP5, disks large-associated protein 5; CDCA8, cell division cycle associated 8; CCNB2, cyclin B2; NCAPH,
non-SMC condensin I complex subunit H.
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et al. reported that the overexpression of

DLGAP5 was associated with poor progno-

sis in breast cancer,34 while DLGAP5 expres-

sion was shown to be up-regulated in liver

cancer and associated with poor prognosis.35

In the present study, we found that the

expression of CCNB2, NCAPH, CDCA8,

and DLGAP5 was significantly up-regulated

in glioma compared with normal tissues. In

addition, the genes have been associated with

high levels of wild-type IDH and high malig-

nancy.36,37 Moreover, ROC curves suggested

they are promising diagnostic biomarkers

and independent prognostic predictors, and

could be used as therapeutic targets for

glioma.

DiseaseMeth 3.0 showed that NCAPH,

CDCA8, and DLGAP5 were hypomethy-

lated, while CCNB2 was hypermethylated

in glioma samples. Furthermore, the

expression of all four genes was positively

correlated with tumor purity, but there was

limited association with immune infiltra-

tion. GSEA and GSVA analyses showed

that cell cycle-related KEGG pathways

were enriched in the high expression

groups of key genes, confirming their asso-

ciation with glioma proliferation.
In summary, using multiple bioinformat-

ics analyses, we identified four hub genes

(CCNB2, NCAPH, CDCA8, and DLGAP5)

whose expression was significantly up-

Figure 11. Relationship between key gene expression levels and immune infiltration in glioma. (a) NCAPH;
(b) CDCA8; (c) CCNB2; and (d) DLGAP5.
NCAPH, non-SMC condensin I complex subunit H; CDCA8, cell division cycle associated 8; CCNB2, cyclin B2;
DLGAP5, disks large-associated protein 5.
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Figure 12. GSEA and GSVA analysis of hub genes. Gene sets significantly enriched in the high expression
group for (a) CDCA8; (b) NCAPH; (c) DLGAP5; and (d) CCNB2. GSVA enrichment heatmaps for hub genes (e)
NCAPH; (f) CCNB2; (g) CDCA8; and (h) DLGAP5.
GSEA, gene set enrichment analysis; CDCA8, cell division cycle associated 8; NCAPH, non-SMC condensin I
complex subunit H; DLGAP5, disks large-associated protein 5; CCNB2, cyclin B2; GSVA, gene set variation
analysis.
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regulated in glioma tissues compared with
normal tissues. These genes might contribute
to the development of glioma, and could
serve as therapeutic and prognostic bio-
markers. However, further experiments are
needed to confirm their biological value.
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