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Abstract
Biosensor-based devices are pioneering in the modern biomedical applications and will be the future of cardiac health care. 
The coupling of artificial intelligence (AI) for cardiac monitoring-based biosensors for the point of care (POC) diagnostics 
is prominently reviewed here. This review deciphers the most significant machine-learning algorithms for the futuristic 
biosensors along with the internet of things, computational techniques and microchip-based essential cardiac biomarkers 
for real-time health monitoring and improving patient compliance. The present review also discusses the recently devel-
oped cardiac biosensors along with technical strategies involved in their mechanism of working and their applications in 
healthcare. Additionally, it provides a key for the ontogeny of an effective and supportive hierarchical protocol for clinical 
decision-making about personalized medicine through combinatory information analysis, and integrated multidisciplinary 
AI approaches.
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Introduction

Cardiovascular diseases (CVDs) and stroke are at the top 
causing death globally. World Health Organization (WHO), 
approximate death of 17.7 million people due to CVDs in 
2015 which represented 31% of all global deaths (WHO 
2017). Among these deaths, approximately 7.4 million were 
due to coronary heart disease, and 6.7 million were due to 
stroke (Gorgieva et al. 2018). Early and quick diagnosis is 
crucial for successful prognosis of CVD and stroke. In this 
regard, many cardiac-specific biomarkers such as myoglobin, 
B-type natriuretic peptide (BNP), cardiac troponin I (cTnI), 
C-reactive protein (CRP), and interleukins, interferons are 

identified which are detected using optical (colorimetric, 
fluorescence, luminescence, surface plasma resonance 
(SPR) and fiber optics/bio-optrode), acoustic (CMOS Si 
chips), electrochemical (potentiometric, amperometric and 
impedimetric transducers), and magnetic-based biosensors 
(Qureshi et al. 2012). Although significant advances in bio-
sensors generations have been achieved, these face some 
serious limitations. Most of the developed biosensors fol-
low a classical approach where tests are carried out in cen-
tral laboratories that required several hours or days for final 
results. Further, for CVD diagnosis patients should meet at 
least two of three conditions: elevation of blood biomarker 
levels, characteristic chest pain and diagnostic electrocar-
diogram (ECG) alterations. But half of the CVD patients 
even admitted to emergency departments show normal ECG 
pattern which makes CVD diagnosis more difficult (Herring 
and Paterson 2006). Thus, there is the vital demand for more 
sensitive, reliable, cost-effective diagnostic platform which 
can also help in the real-time detection and monitoring of 
the health of CVD patients.

Recent advances in the field of artificial intelligence (AI) 
using machine learning and its successful use in biomedi-
cal sciences have cast new areas and tools in creating novel 
modeling and predictive methods for clinical use including 
cardiac diseases (Kavakiotis et al. 2017). Cardiac datasets 
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from Keele University, Congenital Heart Disease datasets 
(CHD) by Government of UK and Cleveland’s heart disease 
diagnosis data set from the California University in Ervin, 
etc. have been developed. They store the information that 
is accessible freely for heart disease prediction using AI. 
This strategy can be used for the development of point of 
care (POCT) testing kit that can be used as an important 
diagnostic tool in a remote area where basic facilities are not 
available. Furthermore, XPRIZE DeepQ Tricorder biosensor 
enabled with AI has been developed by Chang  et al. (2017) 
that can accurately diagnose 12 common diseases (anemia, 
urinary tract infection, diabetes, atrial fibrillation, stroke, 
sleep apnea, tuberculosis, chronic obstructive pulmonary 
disease (COPD), pneumonia, otitis media, leukocytosis, 
and hepatitis A) and capture five real-time vital signs (blood 
pressure, ECG, body temperature, respiratory rate, and oxy-
gen saturation). The elaboration of biosensors enabled with 
AI, or next-generation biosensors are probably one of the 
most promising ways to solve the current problems. Moreo-
ver, AI can help in creating more efficient wearable medical 
devices for real-time monitoring of heart rate, rhythm and 
thoracic fluid (Pevnick et al. 2017). The holistic viewpoint 

for the easy and fast CVD diagnostics using different forms 
of cardiac biomarkers and biosensor is depicted in Fig. 1. 
Nevertheless, this review will highlight recent advances in 
wearable devices specifically employed for heart diseases 
coupled with big data and the internet of things (IoT).

Characteristics of the ideal smart biosensor

An ideal biosensor must promise that it meets the accom-
panying prerequisites such as response specificity towards 
the analyte, highly delicate and ready to catch low levels 
of the analyte (Thévenot et al. 2001). It must have a high 
recurrence of the reaction and shorter recuperation time. It 
must have structural and functional stability during its whole 
cycle of operation and ready to identify little volume analyte. 
It must be versatile in utility and savvy. It must be custom-
ized to address specific health issues and able to transmit the 
biomedical data wirelessly to the designated healthcare. The 
design of such biosensors and their ability to generate the 
huge amount of data for therapeutics provide them real-time 
decision-making abilities (Stefano and Fernandez 2017). For 

Fig. 1  Schematic for holistic diagnosing using different biomarkers, biosensors, and AI-based techniques
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designing the improved biosensor, the necessary attributes 
are required. A representative Fig. 2 shows the fishbone dia-
gram representing attributes of an ideal futuristic biosen-
sor. Biosensors having all such properties can respond to 
many troublesome and uncertain issues. Technical strategies 
involved in biosensor development are nanotechnologically 

based, which depends upon either the label-based detection 
or label-free detection. Also, Nanotechnology enables the 
manipulation of materials at the nanoscale and has shown 
potential to enhance sensitivity, selectivity and lower the 
cost of a diagnosis (Savaliya et al. 2015). Figure 3 shows 
the strategic classification of biosensors on technical ground 

Fig. 2  Strategic classification of biosensors on the basis of transduction

Fig. 3  Fishbone diagram representing attributes of an ideal biosensor
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based on detection of the pathogen that integrates. Label-
based biosensors are highly reliable, and the target detection 
is based on specific properties of label compounds fabricated 
with an immobilized target protein, while the label-free bio-
sensors have a wide range of applications in the field of 
medicine and healthcare because they can detect the mol-
ecules which are difficult to tag or not labeled (Citartan et al. 
2013; Sang et al. 2016).

Furthermore, biosensors such as fluorescence resonance 
energy transfer (FRET) microscopy can be used for real-
time visualization of second messengers in living cells and 
detection of alkaline phosphatase in human serum (Kraft and 
Nikolaev 2017). Also, the G-quadruplex-based fluorometric 
biosensor is used for detection of histone acetyltransferases 
(HATs), and histone deacetylases (HDACs) and aptamer-
based fluorescence biosensor is used for detection of protein 
kinase activity to identify biochemical activities associated 
with various human disease (Wang et al. 2017a, b). However, 
bio-affinity, microbial, enzyme, and immune-sensors are 
widely used for diagnostics of many diseases but typically 
high costs and single time use limit their applications in large 
sections of the society, especially in developing countries 
(Hughes et al. 2017). Also, protein engineering approaches 
have been applied to enhance the therapeutic properties of 
enzymatic proteins along with modernized purification tech-
niques (Gupta and Shukla 2017; Shukla 2018). Despite this, 
most of the currently available biosensing systems (such as 
FRET, surface plasmon resonance (SPR) and electrochemi-
cal impedance spectroscopy (EIS), EC, mass spectroscopy, 
enzyme-linked immunosorbent assay (ELISA), as well as 
Raman Spectroscopy) suffer from surface saturation due to 
less accurate target molecule-binding results, sensitivity and 
limited multiple usage(Wang et al. 2017a, b).

A raised concentration of cholesterol in the blood is one 
of the major causes for increasing frequency of cardiac arrest 
and other CVD among human beings, known as hypercholes-
terolemia (Franco et al. 2011). Also eating and dietary habits 
of the individuals correspond to the cholesterol abnormal-
ity that regulates LDL and HDL (Close et al. 2016). Thus, 
it is essential to design and develop such biosensors, which 
can help in the valuation of cholesterol level in blood along 
with its clinical uses. These biosensors can help for the early 
assessment of the symptoms in the patients. Due to the easy 
detection and vitality for therapeutic decision-making, cardiac 
troponin, which is one of the essential biomarkers for the myo-
cardial inflammations, is being utilized routinely in the set of 
standard biosensors. Additionally, advancement of biosensors 
estimating the level of other markers that are non-myocardial 
tissue specific (such as CRP, copeptin, myeloperoxidase and 
so forth) can be further useful for the therapeutics (Niotis et al. 
2010). These biosensors are said to be ideal in the preven-
tion of CVDs; those can frequently measure the level of CRP, 
which is the only marker of inflammation that individually 

forecasts the risk of a heart attack. Moreover, cholesterol oxi-
dase and cholesterol esterase have been utilized as the detect-
ing component for designing a perfect cholesterol biosensor. 
It is used for the estimation of free and aggregate cholesterol 
causing a blockage (Arya et al. 2008). Also for the estima-
tion of cholesterol, electrochemical transducers are being effi-
ciently utilized (Zhou et al. 2006). Further different optical 
transducers, inspecting luminescence, change in color of dye, 
fluorescence, etc., have likewise been utilized for cholesterol 
detecting due to the unwavering way of optical transduction 
(Arya et al. 2008). CRP-based biosensors for simultaneous 
analyte measurement mainly rely on immuno-sensing tech-
nologies with acoustic, optical and electrochemical transduc-
ers (Qureshi et al. 2010a). To expand the expository reac-
tion of the cardiac troponin, Silva et al. (2010) intertwined 
streptavidin polystyrene microspheres to the cathode surface 
of SPEs. Therefore, ideal biosensor can play a crucial role in 
the timely and accurate diagnosis of CVD, to spare numerous 
lives, particularly for the patients enduring the heart attack. 
Additionally, it can be assumed as a basic part in exact finding, 
visualization and opportune treatment of the patients through 
exact and brisk assessment of cardiovascular muscle-particular 
biomarkers in the blood (Sarangadharan et al. 2018). Acces-
sibility of ideal cholesterol and other biomarker biosensors is 
turned into a need because of expanding frequencies of CVD 
and heart failure in contemporary society. Also, a few already 
have been successfully launched for commercial purposes. To 
develop an ideal biosensor, some of the parameters should be 
successfully optimized such as the design of a device, quality 
issues and enzyme stabilization and effectual decision-making. 
The cardiac biosensors along with technical strategies involved 
in their mechanism of working, applications in healthcare, 
advantages, and limitations are presented in Table 1. To fur-
ther accelerate diagnosis based on such biosensors for CVD, 
a superior perception of the bioreagent immobilization and 
mechanical advances in the microelectronics is required along 
with the principles of machine learning for data interpretation 
(Fathil et al. 2017). Nevertheless, for smartphone imaging, the 
concentration of the analyte was dependent on the color inten-
sity of the electrode. It is carried out using an electrochromic 
sensor, which detects a highly toxic compound (chlorpyrifos) 
with a 100 fM and one mM dynamic range, where an electro-
chromic MIP sensor uses the electrochromic properties of IrOx 
to detect a certain analyte with high selectivity and sensitivity 
(Capoferri et al. 2018).

Machine learning for biosensor‑based 
device

Data mining methods play a significant role in medical 
methods. Increasing amount of data and impending cost of 
computation have allowed machine-learning algorithms to 
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establish its importance in chemical and biosensing appli-
cations for clinical and pathological practices (Ching et al. 
2018). AI assists clinicians in medical decisions by pro-
viding them engraved calculations and offers a promising 
solution for managing abnormalities. To achieve so, there 
exist several databases which are developed to portray heart 
disease classification (Rani 2011). It allows investigation of 
machine-learning algorithms to deduce conclusive remarks. 
Among the commonly used databases includes the Long-
Term ST Database that stores the ECG recordings of the 
patients. Apart from that, UCI Repository of Machine Learn-
ing Database includes non-invasive and clinical reports of 
the patients. Also, IQRAA Hospital, Calicut, Kerala, India, 
includes ECG recordings of the patients between age 40 
and 70, and multiparameter Intelligent Monitoring Inten-
sive Care (MIMIC-II) includes physiological parameters and 
clinical reports of the patient suffering from coronary artery 
diseases. Moreover, the hierarchical protocol to deduce the 
results from these databases to diagnose the disease consists 
of four methods, where the first process is preprocessing, 
second is feature extraction, third is feature selection, and 
fourth is learning method (Azuaje et al. 2009).

Preprocessing of data involves removal of noise and the 
outliers that can be troublesome during analysis for thera-
peutics. For noise reduction, a low-pass filter and a high-
pass filter with a cutoff frequency for removing 20 Hz noise 
and 0.3 Hz noise, respectively, can be employed, whereas 
band-rejection can be used to remove noises using a 50-Hz 
notch filter and power source interference filter (Dolatabadi 
et al. 2017). Also notch filter and Pan–Tompkins methods 
are used to eliminate 50-Hz cutoff frequency and identify 
R-peaks separately (Pan and Tompkins 1985). Another two-
way process that is used to analyze the presence of noise in 
the signal consists of a dynamic time warping technique for 
segmentation, followed by the Hampel filter to remove the 
noise from the signal. Moreover, the feature extraction is the 
process of revealing essential features from the datasets from 
the various variables (Chan et al. 2004).

Data analytics algorithms for learning method can be seg-
regated as supervised, unsupervised and reinforced. In super-
vised learning, the data sets are labeled, and the algorithm 
learns to predict the output from the trained input (Brownlee 
2016). Various techniques used for supervised learning are 
KNN, linear discriminant analysis, support vector machines 
(SVM), random forest, neural networks (NN) and deep learn-
ing (Paiva et al. 2018). The SVM is a statistical learning tech-
nique in which the highly nonlinear network is dealt. It expe-
dites to classify random patterns from the dataset, and it is 
based on structural risk minimization. Hence, it depicts more 
generalization than that of other learning systems. Also for 
different applications in medical research, SVM is the most 
commonly used classifier as it can classify the input samples 
(Shen et al. 2016). However, training error is minimized from 

0.31 to 0.05% while training the dataset using SVM to clas-
sify the parameters of CAD detection. For CAD, KNN is one 
of the most popular classifiers in the machine-learning field. 
As it does not use any assumptions on the data distribution, 
therefore, it is also referred to as non-parametric technique. 
Automatic classification of coronary artery disease (CAD) is 
achieved using KNN. Also, it has shown that the KNN clas-
sifier works superior to SVM classifier for heart irregularity 
recognition using ECG data. Furthermore, in the fields of 
medical research, NN is another influential classifier that is 
widely used because of its easy implementation. NN is based 
on the structure and functions of biological neural networks. 
The algorithm processes a solution in the similar way that the 
human brain works. In the prediction of cardiac abnormalities, 
NN is successfully implemented as a classifier. Based on it, an 
effective heart disease prediction system (EHDPS) is devel-
oped using a multilayer perceptron neural network with back 
propagation for predicting the risk level of heart disease and 
the likelihood of patients getting heart disease. This system 
uses 15 medical parameters such as age, sex, blood pressure, 
cholesterol, and obesity for prediction (Singh et al. 2018).

Another non-parametric classifiers used for supervised 
learning technique is the decision tree (Wah et al. 2018). It 
is used for classification, regression, and prediction based 
on the value of a target variable by learning simple decision 
rules. However, for big data analysis, the random forest is 
another classifier that is frequently used.

For unsupervised learning the data set is unlabeled, and 
the algorithm learns to predict the structure or pattern from 
the input data; clustering and association rule mining are the 
two most used unsupervised algorithms (Das et al. 2018). 
While reinforced learning allows the machine software to 
automatically determine the ideal performance within a 
specific context, to maximize the result. Therefore, these 
techniques featuring various machine-learning methods such 
as deep learning, SVM, Bayesian networks, logistic regres-
sion, ensemble methods, NN and the random forest have 
proved their significance of AI in early cardiac diagnosis. 
Moreover, to assist physicians in measuring significant clini-
cal parameters, there is a growing inclination towards the use 
of graphical representations of the patient-specific clinical 
data and outputs from biosensors (Guidi et al. 2014). Also, 
to extend the limit of a medical practitioner to the point of 
the far away area of care diagnosis is even more effective and 
effectual when it is further coupled with the machine-learn-
ing algorithms for prediction and classification purposes.

Point of care diagnosis using biosensors

For diagnostic purposes, the point of care (POC) can be 
briefed as a fast, cheap and effective process, which is car-
ried out near the patient ambiance. Integration of biosensors 
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with the wireless capabilities through Bluetooth, Wi-Fi, and 
GPS has eased the closeness of professional health expert 
and the home patient (Catherwood et al. 2018). The sensor 
is coupled with the readout circuit and amplification chan-
nels along with the microcontroller to sense and generate 
the information from the far source. Consumption of power 
is the limitation in such devices, and self-powered devices 
are generally designed as so if once a device is implanted, 
it is impractical to charge the implanted device (Bedin et al. 
2017). The objective of POC diagnostics is to rapidly initiate 
the medication or prognostic where laboratory facilities are 
less or not available. In the developing and underdeveloped 
countries, facilities are very less located over the per unit 
individuals. Therefore, POC diagnostics having biosensors 
as the nucleus is proving to be a significant protocol, along 
with the advancements in digitalization (Pandey et al. 2018). 
Furthermore, development of carbon nanotubes, graphene-
metal nanoparticles, has improved the selectivity of POC 
diagnostics tool (Zhou et al. 2018). Programmable bio-nan-
ochip (p-BNC) system is another biosensor platform with 
the capacity of learning. It is a “platform to digitize biology” 
in which sample produces an immunofluorescent signal on 
agarose bead sensors corresponding to small quantities of 
patient’s sample, which is further optically extracted and 
altered to antigen concentrations. The essential compo-
nents for p-BNC are microfluidic cartridges, automated data 
analysis software, a portable analyzer, and inbuilt mobile 
health interfaces (Gaikwad and Banerjee 2018). Addition-
ally to incorporate liquid conveyance, optical recognition, 
image investigation, and user interface, a compact analyzer 
instrument was composed speaking to a general framework 
for gaining, preparing, and overseeing clinical information 
(McRae et al. 2016). Moreover, Quesada-González and 
Merkoçi recently discussed the capabilities of nanomaterial 
for point of care (POC) diagnostics and explained how these 
materials could help to strengthen, miniaturize and improve 
the quality of diagnostic devices (Quesada-González and 
Merkoçi 2018).

POC-based applications can be further classified as a lab 
on a chip, labeled, label-free, nanomaterial-based wearable 
and wireless (Quesada-González and Merkoçi 2018). Detec-
tion mechanisms for the wearables are electrochemical, calo-
rimetric and optical. Conductive ink on the screen-printed 
electrode on textile and intelligent tattoos and patches 
are capable of sensing a small number of micro-fluids as 
biosamples on the epidermis of the skin (Mostafalu et al. 
2017). The ‘Lab on a chip’ is the substitute for the complex 
pathologies and heavy machines in which the biomarker is 
sensed via micro- and nano-transduction mechanism. These 
mechanisms include fluorescence intensity measurement, 
absorbance-based spectrometric, surface plasmon resonance, 
chemiluminescence, interferometry, amperometric, voltam-
metric, impedance based, conductometric, thermal, acoustic 

wave-based detection, paper microfluidic device and lateral 
flow immunoassay (Siontorou et al. 2017). Lab on chip and 
microfluidics are robust contenders for delivering the neces-
sary hardware to these electrochemical agents and biosen-
sors. Microfluidic system built by polydimethylsiloxane via 
soft lithography has various limitations such as cost inef-
fectiveness and limited accessibility with the introduction of 
paper-based 3D wax printing technologies such as multi-jet 
modeling-assisted lab on a chip has gained so much attrac-
tion in a very less span of time. Further techniques for opti-
cal, mechanical and electrical modes of biosensing under 
label-free and labeled detection for micro- and nanosensing 
are shown in Fig. 4. For quantitative detection of CRP, a 
microfluidic-based system is established by the implementa-
tion of a chemiluminescence immunoassay (Hu et al. 2017). 
This microfluidic-based LOC platform with features of port-
ability, quantitation, and automation establishes a significant 
strategy for POC diagnosis.

Multiplexed point of care testing (xPOCT) is the simul-
taneous testing of the various analyte for diseases from a 
single specimen (Zhang et al. 2018; Dincer et al. 2017). 
Multiplexing capabilities for POC testing can be grouped 
as a paper-based system, array-based system, bead-based 
system and microfluidic multiplexed system with detection 
techniques lying between optical and lateral flow. Devel-
opment of user interface devices such as smartphones and 
smartwatches with such technologies has also opened up the 
future space for xPOCT (Shanmugam et al. 2017). Sensible 
cardiovascular observing requires exact heart condition rec-
ognition from a cell phone, and wearable-separated photo-
plethysmogram (PPG) signals through precise recognizable 
proof and evacuation of commotion. Nearness of commotion 
especially because of movement ancient rarities emphati-
cally impacts the result of the investigation; consequently 
denoising of PPG flag yields noteworthy execution viability 
change while performing Coronary Artery Disease (CAD) 
identification. Along with this for POC cardiac diagnosis, 
cardiac scorecard uses a lasso logistic regression approach 
that converts biomarker data and risk factors into a single 
score with diagnosable essential information as logistic 
regression coefficients, which is intended to provide per-
sonalized cardiac health assessment (McRae et al. 2016).

Cardiac big data repositories, IOT, 
and diagnostics

The era of Internet leads to the connection between people 
at an exceptional rate; next uprising in this context involves 
the connectedness of objects: communications, integrating 
electronics, transducers computing, to create a smart envi-
ronment through the IoT (Henze et al. 2016). IoT consti-
tutes wearable biosensors along with telemedicine for the 
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preventive health activities and remote medical help along 
with the continuous monitoring of the patients for chronic 
cardiac ailments. The above interconnectedness has resulted 
in big data, which refer to extremely large datasets that can-
not be analyzed or interpreted using traditional data pro-
cessing techniques; therefore to counteract such problem 
machine-learning algorithms have been evolved to classify 
and interpret the result (Sun and Reddy 2013). Another defi-
nition of big data incorporates union of three terms together, 
i.e., volume, variety, and velocity, where volume is the quan-
tity of data in a dataset. Thus big data are the quick variation 
in the large volume of data (Rumsfeld et al. 2016).

To train the machine-learning algorithms with high effi-
ciency and to generate any early interpretation for diagnosis, 
big data repositories are essential. The source for big data 
solicitations in cardiovascular medicine includes: adminis-
trative databases from pharmaceuticals services, reported 
data from health survey, data derived from the Internet, med-
ical imaging data, data from all the spectrum of ‘omics’ data, 
clinical registries and electronic health record data derived 
from wearable biosensor device. Also, these different data 
centers can be found at NIH’s BD2K Initiative, CALIBER, 
CANHEART, Optum Labs, and PCORNet, which include 
both clinical and patient-driven research networks (Scruggs 
et al. 2015). Development of analytical platforms due to 
advances in computational capacity and computer science 
can accommodate, link, and analyze large, diverse datasets. 
One such example is Apache Hadoop (Belcastro et al. 2018). 

Big data imply the use of data science methods, such as data 
mining or machine learning. Some of the commonly used 
methods include Bayesian networks, decision-tree learning, 
cluster analyses, graph analytics, language processing and 
other data visualization approaches (Johnson et al. 2016). 
These approaches identify similar patient clusters, creating 
multiple phenotypes within each disease entity. Also, the 
hallmark of big data is to combine disparate data sources for 
predictive analytics, phenomapping, precision health moni-
toring, clinical decision support and predictive drug manage-
ment. However, despite the above pros there also exist some 
cons in big data for cardiology that requires proof such as 
for complex patients with worse symptoms there exists only 
a limited amount of findings. Accuracy and reproducibility 
of precision medicine and drug management are below the 
satisfaction level, and modeling approaches use assumptions 
that create skepticism about the validity (Shah and Rumsfeld 
2017).

Another IoT-based application incorporating biosensor 
for cardiac care is a virtual assistant, which is the practice in 
which the human or nursing staff is replaced by the technol-
ogy. Biosensors are used for detecting the pathogenic activ-
ity in the human body or any kind of abnormality such as 
hypertension, diabetes, and irregular bowel syndrome that 
then were processed with the help of data analytics tools to 
process and formulate the result. Sensely is one such device 
that is working as VA. It is software as a service (saas) based 
device being used for regular check up of patients with 

Fig. 4  Schematic for label-free 
and labeled detection in micro- 
and nanosensing



3 Biotech (2018) 8:358 

1 3

Page 9 of 11 358

chronic disorders. It includes biosensors, machine-learning 
traits and telemedicine that connects the patients automati-
cally to its clinicians upon noticing the threshold symptoms 
of disorder (Abbott and Shaw 2016). In this way, biosen-
sors embedded with the machine-learning approach solve 
the purpose of remote care and personalized medicine for 
effective diagnostics (Vashistha et al. 2018).

Conclusion

The most significant machine-learning algorithms for the 
futuristic biosensors and various issues regarding integration 
of biosensors with the wireless capabilities through Blue-
tooth, Wi-Fi, and GPS for POC have been investigated. It 
has been concluded that cardiac big data repositories and 
internet of things (IoT)-based application integrated with 
AI along with biosensors for cardiac care can act as a vir-
tual assistant. Real-time monitoring of a patient specific 
makes the diagnosis of the patient easier and well in time. 
It is understood that composing the result interpretation via 
machine learning and data analysis approaches are quite 
efficient and supports clinical decision-making (Wu et al. 
2017). Such parameters are key components for compos-
ing size effective and composite smartphone-based devices. 
The objective of POC diagnostics is to rapidly initiate the 
medication or prognostic where laboratory facilities are less 
or not available. Internet of things reduces or eliminates the 
active human intervention in remote and less facilitated 
places (Satija et al. 2017). Also, shortly it is plausible that 
hematocrit, oxygen saturation, HbA1C, lipids, infection, 
and inflammation biomarkers, which are signs of volume 
overload or dehydration, can also be integrated into AI tech-
nology. Apart from this, touchless or pseudo-touch-based 
biosensor, which is used to diagnose the disease with the 
reading of physiological activities operating deep mind algo-
rithms, is the new plot in this field. These days, scientists 
are quite interested and engaged in developing of the novel, 
smart and advanced devices such that more specific, sen-
sitive and stable biosensors for theranostics purposes can 
be invented (Bandodkar et al. 2016). Integrated artificial 
intelligence tools combining mechanics, biology, chemis-
try, engineering, etc. is a demand for the present scenario to 
combat the typical diseases and environmental issues. Thus, 
AI along with biosensor and bioengineering principles can 
be considered as a great opportunity to inhibit medical mal-
practice upon overcoming its limitations of proof and high 
efficiency shortly.
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