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Abstract

Fluoxetine (FLX) is a pharmaceutical used to treat affective disorders in humans, but as

environmental contaminant also affects inadvertently exposed fish in urban watersheds. In

humans and fish, acute FLX treatment and exposure are linked to endocrine disruption,

including effects on the reproductive and stress axes. Using the zebrafish model, we build

on the recent finding that developmental FLX exposure reduced cortisol production across

generations, to determine possible parental and/or life-stage-dependent (age and/or breed-

ing experience) contributions to this phenotype. Specifically, we combined control and

developmentally FLX-exposed animals of both sexes (F0) into four distinct breeding groups

mated at 5 and 9 months, and measured offspring (F1) basal cortisol at 12 dpf. Basal cortisol

was lower in F1 descended from developmentally FLX-exposed F0 females bred at 5, but

not 9 months, revealing a maternal, life-stage dependent effect. To investigate potential

molecular contributions to this phenotype, we profiled maternally deposited transcripts

involved in endocrine stress axis development and regulation, epigenetic (de novo DNA

methyltransferases) and post-transcriptional (miRNA pathway components and specific

miRNAs) regulation of gene expression in unfertilized eggs. Maternal FLX exposure

resulted in decreased transcript abundance of glucocorticoid receptor, dnmt3 paralogues

and miRNA pathway components in eggs collected at 5 months, and increased transcript

abundance of miRNA pathway components at 9 months. Specific miRNAs predicted to tar-

get stress axis transcripts decreased (miR-740) or increased (miR-26, miR-30d, miR-92a,

miR-103) in eggs collected from FLX females at 5 months. Increased abundance of miRNA-

30d and miRNA-92a persisted in eggs collected from FLX females at 9 months. Clustering

and principal component analyses of egg transcript profiles separated eggs collected from

FLX-females at 5 months from other groups, suggesting that oocyte molecular signatures,

and miRNAs in particular, may serve as predictive tools for the offspring phenotype of

reduced basal cortisol in response to maternal FLX exposure.
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1. Introduction

Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed pharmaceuticals used to

treat mood disorders [1]. Prescriptions of SSRIs have doubled in the past decades in many

countries, reaching prescription rates as high as 10–15% of the adult population, with up to

2-fold higher prescription rates in women [2–6]. This raises concerns about potential effects of

perinatal SSRI exposure in the offspring [7], as in pregnant or nursing women, prescription

rates of 1–10% have been reported [8,9]. In parallel with spiking prescription rates, SSRIs have

been increasingly found in wastewater-effluent receiving urban streams [10], reaching total

SSRI concentrations in the range of low μg/L (ppb, parts per billion) immediately downstream

of point sources of waste water treatment plant (WTTP) effluents [11,12]. Because SSRIs are

bioconcentrated in fish [12–15], a concern for SSRIs is the environmental exposure of inadver-

tently exposed aquatic wildlife [16], especially since the the serotonergic system is well con-

served between fish and mammals [17,18]. This raises the possibility of SSRI-dependent effects

through modulation of the serotonergic system in both vertebrate classes [10,16,19]. In fish

[20], as in mammals [21], one of several roles of serotonin is the regulation of the endocrine

system, including the stress axis [22,23].

As the first SSRI on the market, fluoxetine (FLX), originally marketed as Prozac [24], con-

tinues to be prescribed as generic pharmacological treatment for major depression, as well as

additional conditions such as obsessive-compulsive disorder [25], anxiety [26], pre-menstrual

dysphoric disorder [27], and eating disorders [28]. FLX remains the most studied SSRI with

regard to both human health [29] and aquatic toxicology [30]. In human patients, FLX kinetics

are well described: orally administered FLX is almost completely absorbed, but less than 90%

are bioavailable because of first-pass metabolism and a high distribution volume [1,31]. FLX

and its active metabolite norfluoxetine (NFLX) have a half-life of 1–4 d and 7–15 d, respec-

tively, and exhibit non-linear kinetics [1,31]. Following a one-month administration of 40 mg

FLX per day, human plasma concentrations reach approximately 100–300 μg/L FLX and 75–

250 μg/L NFLX, respectively [31]. Offspring may be directly exposed during its development

as fetus or infants, owing to the fact that FLX and NFLX can cross the human placenta [32]

and are excreted via breast milk [33,34]. Overall, infant serum concentrations of FLX and

NFLX have been reported at concentrations of 20–250 μg/L [32–34]. Animal studies corrobo-

rate these findings, revealing that FLX and NFLX have been detected in fetal brain tissue at

low μg/ml concentrations in rats after single or repeated administration of 12 mg/kg FLX in

pregnant dams [32].

Human excretion of up to 10% of FLX parent compound and conjugated FLX glucuronide

via the urine [1] and/or improper disposal have been reported to result in untreated urban

WWTP influent concentrations of FLX as high as 3 μg/L [11]. In exposed fish, bioconcentra-

tion occurs and can reach factors >100, especially in slightly alkaline water conditions

[13,15,35]. Tissue concentrations of FLX and its active metabolite NFLX are highest in brain

and liver of wild-caught fish, reaching levels as high as 10 ng/g for FLX and 20 ng/g for NFLX

[11,12,14]. Whether FLX is transferred into eggs during female vitellogenesis and oocyte matu-

ration before spawning is unknown, but in externally fertilizing fish, gametes and zygote can

directly be exposed to FLX in the water.

In both fish [20,36–38] and mammals [39,40] endocrine disrupting effects of FLX have

been reported at and below human therapeutic plasma (equivalent) concentrations, which

include the endocrine stress axis function [41–46]. While developmental [47–53] and adult

[16,20,46,54–56] consequences of FLX exposure have been comparatively well studied in fish

at different levels of biological organization [15], intergenerational effects of developmental

FLX exposure have only recently been described in zebrafish [57]. This study revealed that
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developmental FLX exposure has the capacity to differentially reduce basal cortisol concentra-

tions or blunt mechanical stressor induced cortisol concentrations in subsequent generations.

However, parental and life-stage (age- and/or breeding experience specific contributions to

this phenotype have not been investigated systematically.

In the present study we use zebrafish, a biomedical and ecotoxicological research model

organism [58,59], to further test the hypothesis that developmental FLX exposure results in

effects on offspring endocrine stress axis. Zebrafish hold great promise not only to investigate

long-term physiological effects of pharmaceuticals across developmental trajectories and the

life-cycle, but also intergenerationally [60]. Zebrafish provide the additional advantage that

molecular mechanisms of stress axis ontogeny [61,62] and developmental programming of the

endocrine stress axis [63–66] are increasingly characterized. Finally, recent evidence shows

that the endocrine stress axis in this model is responsive to FLX, as the endocrine stress axis

activation following exposure to a mechanical stressor is dampened by acute and sub-chronic

FLX exposure in adult zebrafish [41]. Within the framework of our hypothesis, we additionally

sought to determine whether any intergenerational effects are related to a specific parental

contribution, and whether life-stage (age and/or reproductive experience) may affect possible

intergenerational effects of FLX on the endocrine stress axis. Finally, by probing known molec-

ular transcripts related to endocrine stress axis linked to developmental programming of the

stress axis in zebrafish [63–66], as well as epigenetic (de novoDNA methylation) and posttran-

scriptional (miRNA) regulation pathways linked to the intergenerational transmission of stress

axis function in mammals [67,68], in gametes of unexposed control and developmentally FLX-

exposed parents, we aimed to identify possible molecular mechanisms linked to the intergen-

erational inheritance of endocrine stress axis parameters in FLX-exposed zebrafish.

2. Materials and methods

2.1. Experimental design and animals

Zebrafish embryos of the founder generation (F0) were obtained by mating 2 male and 4

female adult zebrafish (AB strain) in a 5L standalone plexiglass breeding tank (Aquatic Habi-

tats, Apopka, FL, USA). Breeding groups were set up overnight in the tanks with an inner sepa-

rator, dividing males from females overnight. This set-up allowed for olfactory and visual cues,

but not physical interaction between the sexes. At 9:00 am the next morning, fish from all the

groups were transferred to new tanks, halfway filled with fresh system water and the divider

was subsequently removed to allow breeding for 1h 45min. Eggs were immediately collected

and bleached (0.0075%) for 2 min, rinsed and divided into 2 groups: a control group (CTL),

and a treatment group developmentally exposed to FLX (Sigma-Aldrich, Oakville, ON, Can-

ada). Zebrafish embryos of both groups were reared in glass Petri dishes containing either

embryo medium (E3) alone (CTL group) or E3 medium supplemented with a FLX stock solu-

tion for a final concentration of 54 μg/L of FLX solution (FLX group). The E3 medium was

prepared diluting 20 ml of a 60x E3 medium stock in 980 ml of system water. The 60x E3

medium stock was composed of 34.8 g NaCl, 1.6 g KCl, 5.8 g CaCl2�2H2O and 9.78 g

MgCl2�6H2O (all Sigma-Aldrich) dissolved in a total volume of 2 L of water, with a pH

adjusted to 7.2. The exposure duration was between 3 hours post fertilization (hpf) and 6 days

post fertilization (dpf) during which zebrafish embryos were maintained in an incubator

(Thermo-Fisher Scientific, Ottawa, ON, Canada) at 28.5˚C under constant darkness. Both

CTL and FLX E3 media were changed daily to assure maintenance of the FLX concentration

during the exposure period [13] and to remove debris and dead embryos. Following this devel-

opmental treatment period, all larvae were kept in E3 medium and fed with ZM Fry Food

(Zebrafish Management Ltd., UK) of the appropriate size for their developmental stage. At 30
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dpf, juvenile fish were transferred to tanks at a density of 5 fish/L in a flow-through system

connected to aerated, dechlorinated city of Ottawa tap water maintained at 28.5˚C. Thereafter,

fish were fed three times daily with No. 1 crumble-Zeigler food (Aquatic Habitats). Following

the developmental exposure period, larvae and adult zebrafish were housed under a 14 h light:

10 h dark photoperiod throughout the study. A summary of the developmental exposure

groups is provided in Fig 1.

2.2. Breeding to obtain the F1 generation

At 5 months post fertilization (mpf), adult zebrafish (F0) were separated by sex following visual

inspection of the pectoral fin breeding tubercles. Before breeding, fish were additionally fed

with brine shrimp (Artemia spp.) for 10 min. Breeding took place under the same environmen-

tal conditions and procedures described above (section 2.1). Using adult CTL and FLX-

exposed animals, four experimental groups were designed in a full factorial 2x2 cross-breeding

design (summarized in Fig 1): 1) CTL females bred with CTL males (CTLF x CTLM), 2) CTL

females bred with FLX-exposed males (CTLF x FLXM), 3) FLX-exposed females bred with

CTL males (FLXF x CTLM), and 4), FLX females bred with FLX males (FLXF x FLXM). Seven

replicate tanks were prepared for each treatment. Embryos (F1) were collected using a fine net,

bleached for 2 min in 0.0075% bleach, and transferred to petri dishes filled with 50 ml of 1x

embryo medium at a density of 35 embryos per dish. The embryo medium was changed every

2 days. Three cohorts of breeding trials were conducted. Larvae were kept at 28.5˚C in an incu-

bator, and fed ZM Fry food from 6 to 12 dpf, as previously described for F0. At 12 dpf, 8 repli-

cates of 18–24 larvae pools per condition were snap-frozen and kept at -80˚C for further basal

cortisol analysis. Following the breeding at 5 mpf, fish were returned to the commonly housed

pool of fish that were divided by sex and treatment history (developmental control or FLX

exposure). At 9 mpf, a subset of fish was again randomly chosen from these pools for a second

breeding trial following the same described protocol. All procedures conducted in this study

were approved by the University of Ottawa Animal Care Protocol Review Committee and are

Fig 1. Schematic representation of the experimental design and measured endpoints.

https://doi.org/10.1371/journal.pone.0212577.g001
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in compliance with the guidelines of the Canadian Council on Animal Care for the use of ani-

mals in research.

2.3. Whole larvae lipid extraction and cortisol quantification

Total lipids (including cortisol) were extracted from 12 dpf larvae using a modified Folch pro-

tocol [69]: larvae were suspended in a total of 7.5 ml of Folch solution (CHCl3:MeOH, 2:1 v/

v)) and sonicated. After a 15 min incubation period at room temperature, 2.5 ml of 2 M KCL

with 5 mM EDTA were added to the homogenate, vortexed and incubated at room tempera-

ture for an additional 20 min. The organic layer at the bottom was then placed in a disposable

culture tube and evaporated using nitrogen stream at 50˚C. Lipids were subsequently resus-

pended in 0.1 ml of EGME (ethylene glycol monomethyl ether) and stored at -80˚C for future

whole larvae cortisol quantification. Cortisol concentrations were measured using a commer-

cially available ELISA assay (Cayman chemicals, Ann Arbor, MI, USA), previously validated

for zebrafish. Lipid samples suspended in EGME were diluted (1:4) in ELISA buffer from the

same kit and the cortisol assay was performed following the manufacturer’s protocol. Mea-

sured cortisol levels were normalized to total protein concentrations from the same samples.

Protein concentrations were obtained using a BCA (bicinchoninic acid) assay as per manufac-

turer’s protocol (Thermo-Fisher Scientific).

2.4. Adult tissue collection

After anaesthetizing 5 and 9 months old female fish of both CTL and FLX groups in a 1:50 diluted

working solution of 3x Tricaine (1.4% tricaine solution, pH = 7), eggs were extracted from indi-

vidual adult females by placing the fish in a Petri dish and gentle pushing on the abdomen. Eggs

were then washed and suspended in 1x Hank’s solution, collected in 1.5 ml Eppendorf tube and

immediately frozen at -80˚C. 8 replicates per condition were collected (each of them consisting of

eggs from an individual female). In a separate experiment using adult female CTL fish only

(n = 15), ovaries, fins, and eggs were extracted in order to ascertain that egg extraction procedure

does not result in transfer of RNA from ovary and/or anal fin to the egg. Following egg extraction

as previously described, anal fins were cautiously clipped for collection, and ovaries dissected and

stored. All tissues were rinsed in 1x Hank’s solution prior to storage at -80˚C.

2.5. RNA extraction, reverse transcription and quantification of oocyte

mRNAs

Total RNA was extracted using the Trizol method as described in the manufacturer’s protocol

(Invitrogen, Oakville, ON, Canada). Extracted RNA was quantified and its purity assessed

using a NanoDrop 2000c UV-Vis Spectrophotometer (Thermo-Fisher Scientific, Ottawa, ON,

Canada). The cDNA was generated from 1 μg of extracted total RNA using a QuantiTech

Reverse Transcription Kit (Qiagen, Toronto, ON, Canada) following the manufacturer’s pro-

tocol. A noRT negative control was also prepared from a sample pool by replacing the RT

enzyme with water. Two step quantitative real-time polymerase chain reaction (qRT-PCR)

was performed to assess relative fold changes in mRNA abundances of target genes between

CTL and FLX group samples, using a CFX96 PCR machine (Bio-Rad, Mississauga, ON, Can-

ada). Target genes included maternally deposited mRNAs coding for components of the endo-

crine stress axis (pomca, pomcb, crhbp, gr, fkbp5, hsd11b2), components of the miRNA

biogenesis pathway involved in post-transcriptional control of gene expression (dicer, drosha,

dgcr8, xpo5, ago2) and components of the epigenetic de novoDNA methylation pathway

involved in transcriptional control of gene expression (dnmt 3–8). Specific primer sequences

and annealing temperatures are listed in Table 1. All qPCR reactions were carried out in

Developmental FLX exposure decreases basal cortisol in zebrafish offspring

PLOS ONE | https://doi.org/10.1371/journal.pone.0212577 February 21, 2019 5 / 28

https://doi.org/10.1371/journal.pone.0212577


T
a

b
le

1
.

P
ri

m
er

se
q

u
en

ce
s

a
n

d
re

a
ct

io
n

co
n

d
it

io
n

s
o

f
re

a
l-

ti
m

e
R

T
-P

C
R

to
p

ro
fi

le
re

la
ti

v
e

m
R

N
A

s
a

b
u

n
d

a
n

ce
.

m
R

N
A

E
ff

ic
ie

n
cy

(%
)

R
2

A
n

n
ea

li
n

g

T
(˚

C
)

si
ze

a
m

p
li

co
n

(n
t)

N
C

B
I

ID
E

N
S

E
M

B
L

ID
P

ri
m

er
F

W
P

ri
m

er
R

V

St
re
ss
ax
is-
re
la
te
d
tr
an
sc
rip
ts

gr
9

7
.3

0
.9

9
5

6
2

1
1

6
5

5
3

7
4

0
E

N
S

D
A

R
G

0
0

0
0

0
0

2
5

0
3

2
A
C
A
G
C
T
T
C
T
T
C
C
A
G
C
C
T
C
A
G

C
C
G
G
T
G
T
T
C
T
C
C
T
G
T
T
T
G
A
T

fk
bp
5

1
0

0
.1

0
.9

9
1

6
1

2
9

0
3

6
8

9
2

4
E

N
S

D
A

R
G

0
0

0
0

0
0

2
8

3
9

6
G
C
G
A
A
T
C
T
C
C
C
A
G
C
T
G
T
G
T
T
T
A
T
C

G
A
T
C
A
A
A
C
G
A
A
C
A
A
G
C
G
G
G
T
C
T
G

po
m
ca

9
6

.6
0

.9
8

0
6

3
1

9
2

3
5

3
2

2
1

E
N

S
D

A
R

G
0

0
0

0
0

0
4

3
1

3
5

G
C
C
C
C
T
G
A
A
C
A
G
A
T
A
G
A
G
C
C

C
T
C
G
T
T
A
T
T
T
G
C
C
A
G
C
T
C
G
C

po
m
cb

1
0

8
.0

0
.9

8
0

5
3

1
2

1
1

0
0

0
3

4
4

1
2

E
N

S
D

A
R

G
0

0
0

0
0

0
6

9
3

0
7

T
C
C
A
T
C
G
A
G
C
T
C
C
A
A
A
A
C
C
C

A
C
A
C
T
T
T
T
A
C
C
G
G
T
C
T
G
C
G
T

hs
d1
1b
2

9
2

.4
0

.9
8

2
6

3
1

1
7

3
3

4
0

9
8

E
N

S
D

A
R

G
0

0
0

0
0

0
0

1
9

7
5

G
G
A
G
A
G
G
G
A
G
C
C
A
A
G
C
A
T
T
T

A
A
G
T
T
T
G
G
C
C
T
T
G
G
T
G
T
C
G
A

cr
hb
p

1
0

4
.6

0
.9

8
8

6
3

1
2

4
4

4
5

0
6

5
E

N
S

D
A

R
G

0
0

0
0

0
0

2
4

8
3

1
G
G
A
T
A
A
C
G
A
G
A
T
C
A
G
C
C
C
G
G

A
C
C
C
T
C
T
A
C
G
G
C
C
A
C
C
A
T
A
T

Ep
ig
en
et
ic
s/
D
N
A
m
et
hy
la
tio
n
re
la
te
d
tr
an
sc
rip
ts

dn
m
t3

1
0

3
.0

0
.9

9
5

6
0

1
7

3
3

0
6

5
9

E
N

S
D

A
R

G
0

0
0

0
0

0
5

7
8

3
0

T
A
G
A
G
T
C
A
T
G
T
T
G
A
A
C
T
G
G
G
C
C

T
C
A
G
G
T
C
C
A
G
A
G
A
T
T
C
A
G
G
G
A
T

dn
m
t4

9
2

.6
0

.9
9

0
6

0
1

4
1

3
1

7
7

4
4

E
N

S
D

A
R

G
0

0
0

0
0

0
3

6
7

9
1

A
A
G
A
T
T
T
A
C
C
C
T
G
C
A
G
T
C
C
C
A
G

C
T
C
G
C
A
T
A
C
T
T
C
T
G
A
C
G
C
A
A
T
G

dn
m
t5

9
8

.4
0

.9
9

6
6

0
1

4
3

3
2

3
7

2
3

E
N

S
D

A
R

G
0

0
0

0
0

0
5

7
8

6
3

T
T
A
T
C
C
A
C
C
C
A
C
T
G
T
T
C
G
A
A
G
G

A
T
G
A
C
C
A
C
A
C
A
G
A
A
T
G
A
C
C
T
C
C

dn
m
t6

9
4

.6
0

.9
8

7
6

0
2

0
0

5
5

3
1

8
9

E
N

S
D

A
R

G
0

0
0

0
0

0
1

5
5

6
6

G
T
G
T
G
G
G
G
A
A
A
G
T
T
A
C
G
A
G
G
A
T

T
G
C
T
T
A
T
T
G
T
A
G
G
T
T
G
G
C
T
G
G
T

dn
m
t7

9
0

.9
0

.9
9

1
6

0
1

7
4

3
2

1
0

8
4

E
N

S
D

A
R

G
0

0
0

0
0

0
5

2
4

0
2

A
G
G
C
A
G
C
T
T
T
T
C
G
G
G
A
T
T
T
A
G
A

C
G
A
T
T
T
C
T
T
G
A
C
C
A
T
C
A
C
G
A
G
C

dn
m
t8

1
0

2
.3

0
.9

9
3

6
0

1
4

2
5

5
3

1
8

7
E

N
S

D
A

R
G

0
0

0
0

0
0

0
5

3
9

4
C
T
T
T
G
C
C
T
G
T
T
A
A
T
G
A
A
G
C
C
C
C

T
G
T
G
A
A
G
T
G
T
C
C
T
G
T
G
G
T
T
G
A
A

di
ce
r1

9
2

.7
0

.9
8

7
6

0
2

3
1

3
2

4
7

2
4

E
N

S
D

A
R

G
0

0
0

0
0

0
0

1
1

2
9

G
C
G
A
C
T
C
C
T
T
C
C
T
G
A
A
A
C
A
C

T
G
T
C
T
G
T
G
C
T
G
C
T
T
T
T
G
T
C
C

dr
os
ha

9
0

.9
0

.9
9

1
6

0
2

5
3

5
6

7
5

0
5

E
N

S
D

A
R

G
0

0
0

0
0

0
5

5
5

6
3

G
G
A
G
A
C
C
C
G
C
A
G
T
A
T
C
A
A
A
A

T
G
T
G
A
T
G
G
G
T
G
A
G
A
A
C
A
G
G
A

Po
st
tr
an
sc
rip
tio
na
lr
eg
ul
at
io
n
of
ge
ne
ex
pr
es
sio
n
/m
iR
N
A
bi
og
en
es
is-
re
la
te
d
tr
an
sc
rip
ts

xp
o5

1
0

1
.5

0
.9

8
2

6
0

2
9

3
5

5
8

6
6

2
E

N
S

D
A

R
G

0
0

0
0

0
0

9
8

8
6

8
T
C
A
C
C
A
T
C
G
T
C
T
C
C
A
C
A
C
T
C

C
T
C
C
A
T
G
A
G
G
G
C
A
C
A
T
T
T
C
T

dg
cr
8

1
0

1
.2

0
.9

9
8

6
0

2
1

8
5

6
3

9
6

3
E

N
S

D
A

R
G

0
0

0
0

0
0

3
5

5
6

4
G
T
A
G
A
T
G
C
C
C
T
G
T
T
G
G
A
G
G
A

A
C
T
G
G
A
A
T
G
C
C
G
G
A
G
T
T
A
T
G

ag
o2

1
0

9
.1

0
.9

9
2

6
0

1
1

4
5

7
0

6
3

0
E

N
S

D
A

R
G

0
0

0
0

0
0

6
1

2
6

8
T
T
A
C
G
T
G
C
G
T
G
A
G
T
T
T
G
G
A
G

G
G
G
G
T
T
G
C
T
A
T
T
G
C
T
T
T
G
T

ag
o2
(a
ct
iv
e)

9
7

.1
0

.9
9

1
5

5
1

3
4

5
7

0
6

3
0

E
N

S
D

A
R

G
0

0
0

0
0

0
6

1
2

6
8

G
G
C
A
G
T
C
A
C
A
C
A
T
C
A
G
G
T
C
A

T
T
C
A
G
G
A
T
T
G
T
G
G
G
G
C
T
T
G
G

ac
tb
1
(p
ai
r1
)

9
7

.7
0

.9
9

6
5

2
7

8
5

7
9

3
4

E
N

S
D

A
R

G
0

0
0

0
0

0
3

7
7

4
6

A
C
C
A
T
C
G
G
C
A
A
T
G
A
G
C
G
T
T
T

G
A
T
A
C
C
G
C
A
A
G
A
T
T
C
C
A
T
A
C
C
C
A
G

ac
tb
1
(p
ai
r2
)

9
3

.0
0

.9
9

5
5

3
9

8
5

7
9

3
4

E
N

S
D

A
R

G
0

0
0

0
0

0
3

7
7

4
6

C
C
C
A
T
C
C
A
T
C
G
T
T
C
A
C
A
G
G
A

C
G
A
G
A
G
T
T
T
A
G
G
T
T
G
G
T
C
G
T
T
C

ef
1a

9
4

.3
0

.9
9

8
5

7
1

6
9

3
0

5
1

6
E

N
S

D
A

R
G

0
0

0
0

0
0

2
0

8
5

0
A
G
A
T
G
C
C
G
C
C
A
T
T
G
T
T
G
A
G
A

C
T
T
T
G
T
G
A
C
C
T
T
G
C
C
A
G
C
A
C

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
2
1
2
5
7
7
.t
0
0
1

Developmental FLX exposure decreases basal cortisol in zebrafish offspring

PLOS ONE | https://doi.org/10.1371/journal.pone.0212577 February 21, 2019 6 / 28

https://doi.org/10.1371/journal.pone.0212577.t001
https://doi.org/10.1371/journal.pone.0212577


duplicate, using SsoAdvanced Universal Inhibitor-Tolerant SYBR Green Supermix (Bio-Rad,

Mississauga, ON, Canada), following manufacturer’s protocol with reaction volume of 20 μl.

Reaction parameters included an initial denaturation step at 95˚C (20 s) and a combined

annealing/extension step (30 s) over 40 cycles. The annealing temperatures for all primer pairs

are listed in Table 1. Serial dilutions were used to generate standard curves for each specific

primer pair, and acceptable parameters ranged between 100 ± 10% efficiency and an R2

value > 0.98. The negative control noRT was run with each assay to control for genomic DNA

contamination. Following each assay, melting curves were systematically run and monitored

for individual peaks. For the new unpublished primer set, resulting PCR products were puri-

fied using a Qiaquick PCR purification kit (Toronto, ON, Canada), and sequenced at the

OHRI Stem Core laboratory (Ottawa, ON, Canada). Sequencing results were used in a BLAST

search to confirm amplicon specificity. Gene expression data were normalized using the ΔΔCT

method [70] using the geometric mean of ef1a and β-actin of each control group (5 or 9

months old), respectively.

2.6. In silico prediction of zebrafish miRNAs-stress axis mRNA

relationships

In order to identify miRNAs of interest to be quantified as potential molecular mediators of

maternally deposited stress axis transcripts in transcriptionally silent oocytes, we first exam-

ined several transcriptomic datasets that have confirmed maternally deposited stress axis tran-

scripts in zebrafish eggs [71–75]. Following confirmation of maternal presence, we examined

recent transcriptomic datasets of zebrafish exposed to FLX to also identify whether transcripts

are regulated by FLX exposure in zebrafish [51,53,55,76]. Finally, we used the available zebra-

fish TargetScan algorithm (http://www.targetscan.org/fish_62/) to identify specific miRNAs

predicted to bind the 3’UTR of the identified stress-related transcripts (Table 2). These miR-

NAs were then prioritized for quantification in eggs derived from CTL zebrafish, and eggs

derived from zebrafish developmentally exposed to FLX.

2.7. Relative quantification of miRNAs in adult tissues and oocytes

cDNAs for microRNAs was generated from the extracted total RNA using a miScript II reverse

transcription kit (Qiagen), following the manufacturer’s protocol with 1 μg of total RNA as

starting material for each reaction, and a noRT negative control. Specific miRNAs were then

quantified using the miRScript SYBR Green PCR kit (Qiagen) with miRNA-specific forward

primers and a universal reverse primer (Table 3). Reactions were run in duplicate on a CFX96

instrument (Bio-Rad, Mississauga, ON, Canada), with a total volume of 25 μl containing 2.5 μl

of cDNA, 2.5 μl of 10 nM miRNA specific primer, 2.5 μl miScript Universal Primer, 12.5 μl of

2xQuantiTect SYBR Green PCR Master Mix (Qiagen), and 5 μl of H2O, according to the man-

ufacturer’s instructions. For each assay, cycling parameters were an initial 15 min 95˚C activa-

tion step, followed by 40 cycles of 15s incubation at 94˚C, 30s at 60˚C, and 30s at 70˚C. After

each run, melting curves were produced by a gradual increase in temperature from 65˚C to

95˚C in 0.5˚C increments every 5s. The final melting curves were monitored for single peaks

to confirm the specificity of the reaction and the absence of primer dimers. Standard curves

and noRT controls were used to assess efficiency and specificity of amplifications as previously

described. The ΔΔCT method for normalization [70] was adopted using snoU23 as a reference

gene, as previously described for rainbow trout [77]. The miRNA fold changes were then cal-

culated relative to each CTL group (5 or 9 months old, in each case), as previously described.

Additionally, to ensure the egg extraction procedure did not result in transfer of tissue-
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enriched miRNAs from ovary or fins to extracted eggs, we profiledmiRNA-181a andmiRNA-
143a 5 month old control fish in egg, ovary and fin tissue.

2.8. Data analyses

In all cases, data were analyzed for normality and homoscedasticity using Shapiro-Wilk test

and Levene’s test, respectively, to ascertain that ANOVA and/or t-test criteria were met. In

cases were data did not meet these criteria even after transformation, equivalent non-paramet-

ric tests (Kruskal-Wallis, Mann-Whitney U test) were used. In cases data was normally distrib-

uted, Grubb’s test was performed to identify outliers. All statistical analysis and graphing

procedures were performed using SPSS Version 24.0 (Armonk, NY: IBM Corp., 2016) and

Prism Software, Version 7 (Graphpad, Irvine, CA, USA). Whole larvae body cortisol data were

analyzed by individual 2-way ANOVAs for each breeding timepoint, using maternal and

paternal exposure as main factors, and a subsequent Tukey’s post-hoc analysis was conducted

with cut of p< 0.05.

All gene expression data were analyzed with unpaired t-test or Mann-Whitney U tests, with

a significance level of p<0.05. Principal component analysis (PCA) and hierarchical cluster-

ing/heatmaps were performed across all samples using as variables the relative abundance of

all measured transcripts (and miRNAs) and graphed in R (www.R-project.org) with the pack-

ages stats, factoextra, gplots and pheatmap.

3.Results

3.1. Basal body cortisol levels in F1 larvae

A significant maternal (df = 1, H = 11.251, p<0.001), but not paternal (df = 1, H = 1.455,

p = 0.228) effect on whole body basal cortisol levels were evident in 12 dpf old F1 larvae

obtained from mating all four different combinations of 5 mpf F0 females and males with CTL

or developmental FLX exposure history. Significant decreases in cortisol concentrations were

found in larvae derived from F0 females with developmental FLX exposure history and unex-

posed F0 males compared to controls (df = 3, H = 13.026, p<0.005, Fig 2). Conversely, 12 dpf

old F1 offspring derived from mating 9 month old F0 females and males with unexposed con-

trol or developmental FLX exposure histories revealed neither maternal (df = 1, H = 1.396,

p = 0.696) nor paternal (df = 1, H = 0.172, p = 0.970) contributions to basal cortisol concentra-

tions, and no difference between the four treatment groups could be detected (df = 3,

H = 3.179, p = 0.365; Fig 2).

Table 3. Primer sequences and reaction conditions of real-time RT PCR to profile microRNAs.

miRNA Efficiency (%) R2 Annealing T (˚C) size amplicon

(nt)

miRBase ID NCBI gene ID Primer FW

dre-miR-740 101.5 0.987 51 22 MIMAT0003771 100033753 ATAAAAAGTGGTATGGTACAGT

dre-mir-25-3p 102.1 0.980 52 22 MIMAT0001793 100033594 CATTGCACTTGTCTCGGTCTGA

dre-mir-26a-1-5p 91.3 0.981 52 22 MIMAT0001794 100033595 TTCAAGTAATCCAGGATAGGCT

dre-mir-30d-5p 96.2 0.980 58 22 MIMAT0001806 100033612 TGTAAACATCCCCGACTGGAAG

dre-mir-92a-1-3p 97.8 0.983 59 22 MIMAT0001808 100033614 TATTGCACTTGTCCCGGCCTGT

dre-mir-103-3p 95.3 0.981 60 23 MIMAT0001816 100033625 AGCAGCATTGTACAGGGCTATGA

dre-mir-181a-5p 93.6 0.980 60 23 MIMAT0001623 100033461 AACATTCAACGCTGTCGGTGAGT

dre-miR-143 92.2 0.987 60 21 MIMAT0001840 100033666 TGAGATGAAGCACTGTAGCTC

dre-snoU23 91.0 0.988 53 23 AJ009730 - GCCCATGTCTGCTGTGAAACAAT

https://doi.org/10.1371/journal.pone.0212577.t003
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3.2. Abundance of stress axis transcripts in zebrafish egg

Abundance of several stress axis-related transcripts in unfertilized eggs (the maternally-derived

germline) changed significantly between treatment groups (Fig 3). With regard to the glucocor-

ticoid receptor gr (Fig 3A), we found a reduction in transcript abundance in eggs collected

from 5 months old females which were developmentally exposed to FLX (F = 20.102, p = 0.001),

but not in eggs collected from FLX females at 9 months (df = 1, F = 0.259, p = 0.619). No

changes in the glucocorticoid receptor modulator fkbp5 transcript abundance (Fig 3B) were

detected between CTL and FLX group eggs at 5 months (df = 1, F = 0.056, p = 0.817), but its

abundance was increased in the FLX group eggs at 9 months compared to the CTL group

(df = 1, F = 5.523, p = 0.034). Inversely, pro-opiomelanocortin b, pomcb transcript abundance

(Fig 3D), was increased in eggs of the FLX group compared to CTL eggs collected at 5 months

(df = 1, F = 4.848, p = 0.045), but not 9 months (df = 1, F = 1.234, p = 0.285). No significant

changes were observed between eggs derived from CTL or FLX groups in the oocyte transcript

abundance of the adrenocorticotropic hormone precursor pro-opiomelanocortin a (pomca),

11β-hydroxysteroid dehydrogenase 2 (11bhsd2) and corticotropin releasing hormone binding

protein (crhbp) at 5 months (Fig 3C, df = 1, F = 0.186, p = 0.673; Fig 3E, df = 1, F = 0.766,

p = 0.396; Fig 3F, df = 1, F = 1.942, p = 0.185) or 9 months (Fig 3C, df = 1, F = 1.894, p = 0.190;

Fig 3E, df = 1, F = 0.976, p = 0.340; Fig 3F, df = 1, F = 0.04, p = 0.953).

3.3. Abundance of transcripts involved in DNA methylation

Abundance of some of the de novoDNA methyl-transferase (dnmt) paralogues transcripts

(Fig 4A–4F) were significantly affected by developmental FLX treatment in oocytes collected

Fig 2. Basal body cortisol levels in whole F1 zebrafish larvae at 12 dpf. Larvae were generated by cross-breeding

male and female fish that were either unexposed or exposed to 54 μg/L FLX between 0–6 dpf, generating four possible

crosses. Larvae were generated using naive breeding pairs aged 5 months and the experiment repeated at 9 months.

Cortisol assays were performed on Folch-extracted lipids of n = 8 pools of 18–24 zebrafish, and normalized to total

protein levels determined by BSA assay. Values were normalized to respective unexposed breeding pairs, and

individual data points, mean values and S.E.M. are presented. Data was not normally distributed and analyzed using

non-parametric Kruskal-Wallis tests to identify maternal and paternal contribution, as well as differences between four

crosses at a given breeding time. A p<0.05 was used as cut-off and letters indicate significant differences between

groups.

https://doi.org/10.1371/journal.pone.0212577.g002
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at 5 months, with reductions of dnmt3 (df = 1, F = 9.759, p = 0.007; Fig 4A), dnmt4 (df = 1,

F = 12.776, p = 0.003; Fig 4B), dnmt7 (df = 1, F = 9.346 p = 0.009; Fig 4E), and dnmt8 (df = 1,

F = 30.744, p = 0.001; Fig 4F). Conversely, dnmt5 (df = 1, F = 1.836, p = 0.197; Fig 4C) and

dnmt6 (df = 1, F = 3.301, p = 0.0091; Fig 4D) transcript abundance did not exhibit any statisti-

cally significant differences. No significant differences in the transcript abundance of any of

the dnmt paralogues were observed between groups collected at 9 months (Fig 4A–4F).

3.4. Abundance of transcripts involved in miRNA biogenesis

Oocyte transcripts of components of the miRNA biogenesis pathway (Fig 5A–5F), specifically

the argonaute RISC catalytic component ago2 (df = 1, F = 8.873, p = 0.010, Fig 5A) and its

active form (df = 1, F = 23.248, p = 0.001; Fig 5B) and the type III ribonucleases dicer (df = 1,

H = 16.016, p = 0.001 Fig 5C) and drosha (df = 1, F = 12.205, p = 0.004; Fig 5D) were decreased

in eggs collected from FLX exposed females at 5 months. Conversely, at 9 months, ago2
(df = 1, F = 12.038, p = 0.004; Fig 5A) and its active form (df = 1, F = 9.429, p = 0.008, Fig 5B),

dicer (df = 1, H = 18.513, p = 0.001; Fig 5C), drosha (df = 1, F = 7.448, p = 0.16, Fig 5D), and

the exportin xpo5 (df = 1, F = 5.247, p = 0.035; Fig 5E) transcript abundance were increased in

eggs collected from FLX-exposed females. No significant changes were observed in eggs col-

lected from FLX exposed females on transcript abundance of the microprocessor complex sub-

unit dgcr8 at 5 months (df = 1, F = 2.909, p = 0.110; Fig 5F) or 9 months (df = 1, F = 0.008,

p = 0.931; Fig 5F).

3.5. Expression of miRNA in egg tissue

In our preliminary miRNA profiling experiments to address possible transfer of tissue-

enriched miRNAs from ovary and fin tissue to eggs during the extraction process, the abun-

dance ofmiR-181a (df = 2, F = 37.71, p = 0.001) was significantly higher (p<0.01) in ovary and

fin tissue compared to egg (Fig 6A) while abundance ofmiRNA-143 was significantly higher

(p<0.01) in ovaries compared to eggs and fins (df = 2, F = 32.04, p = 0.001; Fig 6B). These

expression results reveal that the extraction procedure itself did not result in transfer of

miRNA between tissues and eggs.

The expression of several miRNAs predicted to target stress axis transcripts (Table 3) was

assessed in eggs of both CTL and FLX groups. Abundance ofmiRNA-740 (Fig 7A) was signifi-

cantly decreased by FLX in eggs collected at 5 months (df = 1, F = 7.134, p = 0.018), but not 9

months (df = 1, F = 0.042, p = 0.841). Abundance ofmiRNA-25 (Fig 7B), was unchanged in

eggs collected at 5 months (df = 1, F = 0.001, p = 0.973), but significantly increased in eggs col-

lected from developmentally FLX-exposed females compared to CTL group eggs (df = 1,

F = 5.913, p = 0.029). Maternal developmental FLX exposure resulted in increased oocyte

abundance ofmiRNA-26a (df = 1, F = 13.843, p = 0.002; Fig 7C),miRNA-30d (F = 24.752,

p = 0.001; Fig 7D),miRNA-92a (df = 1, F = 10.404, p = 0.006; Fig 7E),miRNA-103 (df = 1,

F = 14.829, p = 0.002) at 5 months (Fig 7F). In the case ofmiRNA-30d (df = 1, F = 7.524,

p = 0.016; Fig 7D), andmiRNA-92 (df = 1, F = 5.336, p = 0.037; Fig 7E), increased abundance

in FLX-female derived eggs was also observed in eggs collected at 9 months.

Fig 3. Steady-state abundance of maternal transcripts related to endocrine stress axis in eggs derived from 5 and 9 months old zebrafish.

An n = 8 samples of pooled eggs extracted from a single female fish (CTL and FLX groups) were used to quantify the glucocorticoid receptor gr
(A), the glucocorticoid modulator fkbp5 (B) pro-opiomelanocortin a pomca (C), pro-opiomelanocortin b pomcb (D), 11β-hydroxysteroid

dehydrogenase 2 11bhsd2 (E) and the corticotropin releasing hormone binding protein crhbp (F). Data are normalized to respective control

groups at 5 and months, and expressed as fold-change. Data were analyzed using t-test or Mann-Whitney U test, and significant differences

(p<0.05) are indicated by different letters within each sampling timepoint.

https://doi.org/10.1371/journal.pone.0212577.g003
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4. Discussion

4.1. Developmental exposure to FLX results in maternal transmission of

reduced basal cortisol that is dependent on breeding experience and/or age

It has recently been shown in adult zebrafish that whole body cortisol levels in response to a

stressor are suppressed in fish exposed to FLX [41,78], reflecting previously described pheno-

types in rodents [79]. Indeed, a reduction of cortisol in response to FLX has been implicated as

potential mechanism in the efficacy of FLX as antidepressant, owing to the fact that a dysregu-

lation of the endocrine stress axis may underlie the etiology of depression [79]. It is generally

believed that FLX alters the stress axis via its principal target, the serotonin transporter,

through which serotonin concentration in the synaptic cleft is enhanced, altering serotonin

signaling via postsynaptic receptor in a time-dependent manner [40,80]. FLX, at the concen-

tration of 54 μg/L used in the present study is in the range human therapeutic dose range in

fish [81], and similar concentrations of FLX have been shown to elicit serotonin turnover

changes in fish brains [22,46]. Serotonin regulates the stress axis in fish [82–84], as in mam-

mals [23]. Given that FLX interacts with specific CYP enzymes in fish [85], and in mammals

[1], it is possible that altered hepatic cortisol clearance may also contribute to the stress axis

regulation in response to FLX, although this has not been formally tested. Irrespective of the

mechanism, it is clear that in both zebrafish and other fish species, as well as rodent models,

FLX similarly affects the central serotonin and endocrine stress axis with evidence for time-

dependent effects, likely reflecting desensitization events at the receptor level [39,40,42,46].

Our study extends the effect of developmental FLX exposure on the endocrine stress axis to

offspring. In our current experiment, zebrafish were developmentally exposed to FLX between

0 to 6 dpf, a period which comprises germ-cell migration [86], organogenesis [87] and func-

tional endocrine stress axis development [61,62]. Serotonin, in this period, is considered an

important regulator of motor neuron differentiation and locomotion in developing zebrafish

[88,89], but whether developmental serotonin acts as a programmer of the endocrine stress

axis in zebrafish has not been directly investigated. Irrespective of an involvement of develop-

mental serotonin, a recent study [57] was first to show that developmental exposure to FLX

(both exposed F0 males and females) reduces F0 baseline and mechanical stressor-induced

whole-body cortisol levels, and that this phenotype can be transmitted in subsequent genera-

tions, especially in males. We here additionally determine that this developmental exposure to

FLX in the F0 generation results in maternal, but not paternal transmission of reduced basal

cortisol to F1 offspring generated from crosses of 5 months old, but not 9 months old F0 zebra-

fish. Together, these results indicate a specific maternal contribution and life stage-dependency

of the intergenerational suppression of an index of the endocrine stress axis in response to

ancestral FLX exposure.

Our data agree with several studies describing effects of maternal FLX exposure on the

endocrine stress axis in offspring described in mammals [90–92], although these studies inves-

tigated acute offspring exposure to FLX in the perinatal period which includes windows for

placental transfer and/or lactation in mammals, and therefore may be indicative of more direct

FLX effects on F1. Indeed, because the half-life of FLX in fish is in the range of days [13], our

data show that F1 offspring is not directly exposed to FLX other than via primordial migrating

Fig 4. Steady-state abundance of maternal transcripts related to de novo DNA methylation in eggs derived from 5 and 9 months old

zebrafish. An n = 8 samples of pooled eggs extracted from a single female fish (CTL and FLX groups) were used to quantify DNA

methyltransferases dnmt3 (A), dnmt4 (B), dnmt5 (C), dnmt6 (D), dnmt7 (E), and dnmt8 (F). Data are normalized to respective control groups at

5 and months, and expressed as fold-change. Data were analyzed using t-test or Mann-Whitney U test, and significant differences are indicated

by different letters within each sampling timepoint.

https://doi.org/10.1371/journal.pone.0212577.g004
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germ cells [86] in gonadally undifferentiated [93] F0 zebrafish exposed to FLX at 0–6 dpf. This

suggests that the maternal transmission is dependent on indirect mechanisms of FLX in eggs,

which can be mediated, for example, by altered F0 stress axis function and cortisol deposition

in eggs linked to endocrine stress axis programming in zebrafish [65,66] or (epigenetically reg-

ulated) transcript alterations in female germ cells. Zebrafish, contrary to rodent models, do not

display maternal care behaviour, which is well-described to affect the mammalian stress axis

[94], and has recently been shown to be affected by direct FLX administration in dams [95].

Therefore, the observed maternal transmission of FLX effects on the endocrine stress axis in

zebrafish eliminates maternal behavior as confounding factor [60], and also allows us to inves-

tigate potential molecular mechanisms in eggs independently of maternal behavior effects. In

contrast to the described maternal effects, we did not identify paternal contributions on off-

spring endocrine stress axis. While SSRIs, including FLX, are known to affect sperm quality

and DNA integrity in humans [96], paternal effects of FLX exposure on the stress axis have, to

our knowledge, never been investigated, in spite of the observation that sperm is an important

mediator of inheritance in response to parental stress experience at least in mammals [67], an

effect that has been causally linked to molecular epigenetics, especially miRNAs [68]. Our

study shows that, at least in zebrafish, paternal developmental exposure to FLX does not play a

role in altering the basal cortisol level index of the offspring endocrine stress axis, suggesting

that paternal developmental SSRI exposure has limited effects on offspring stress axis function-

ing in this model. However, future studies should also investigate the possibility that acute

parental FLX exposures may differentially affect offspring stress axis compared to our develop-

mental parental exposure protocol employed here.

A second aspect of our experimental design tested the hypothesis that specific parental

inheritance of basal cortisol is dependent on life-stage, which can be related to reproductive

experience and/or age. Since most of the studies that investigate the inter and/or trans-genera-

tional effects of exposure to environmental contaminants in zebrafish and rodents are con-

ducted in sexually naïve males or females, it is uncertain if breeding experiences and/or age

may be a potential factor of this transgenerational transmission [60,97]. However, while largely

unstudied [60], the question of whether intergenerational transmission of is dependent on age

and/or breeding experience is an important one, as fitness in a majority of species, including

asynchronously breeding zebrafish, is not mediated by a single reproductive event. Here we

show that crossing developmentally exposed zebrafish at 9 months does not result in transmis-

sion of altered basal cortisol levels observed at 5 months, suggesting that maternal inheritance

of this larval F1 phenotype is dependent on F0 breeding experience/and or age. To our knowl-

edge, the only study investigating the effects of FLX on stress endpoints in relation to breeding

experience has exclusively focused on Sprague-Dawley rat dams, but not offspring [95]. Inter-

estingly, FLX blunted stress-induced corticosterone concentrations in nulliparae only, but not

post-partum rats, suggesting differential action of FLX based on reproductive experience in

this rat model. Age-dependent effects of FLX have been reported on stress axis related behav-

iors [98], and the role of FLX on several endpoints including the endocrine stress axis may be

linked to sensitizing the organism to the living environment which differs between timepoints

[99]. However, there are currently no studies investigating whether parental breeding history

and/or age modulate effects of FLX on the offspring endocrine stress axis. Because our study

Fig 5. Steady-state abundance of maternal transcripts related to miRNA biogenesis and function in eggs derived from 5 and 9 months old

zebrafish. An n = 8 samples of pooled eggs extracted from a single female fish (CTL and FLX groups) were used to quantify argonaute 2 protein

ago2 (A), the active ago2 form containing the catalytic site (B), dicer (C), drosha (D), exportin 5 xpo5 (E), and pasha dgcr8 (F). Data are

normalized to respective control groups at 5 and 9 months, and expressed as fold-change. Data were analyzed using t-test or Mann-Whitney U

test, and significant differences are indicated by different letters within each sampling timepoint.

https://doi.org/10.1371/journal.pone.0212577.g005
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Fig 6. Steady-state abundance of tissue-enriched miRNAs [111] to ascertain that oocyte extraction procedure does

not cause contamination by ovary or fin tissues (see text for explanations). An n = 13–15 samples of pooled eggs,

ovaries tissue not containing extractable eggs, anal fin were collected from a single female fish (CTL and FLX groups),

and were used to quantifymiRNA-181a (A) andmiRNA-143 (B). Data are normalized to sno-U23 RNA abundance

and subsequently expressed as fold changed compared to egg miRNA abundance. Data were analyzed using one- way

ANOVA, and significant differences resolved by Tukey’s post-hoc test are indicated by different letters.

https://doi.org/10.1371/journal.pone.0212577.g006
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randomly sampled F0 males and females for breeding at 5 and 9 mpf from maintained pools of

CTL and FLX fish, we are unable to trace individual mating history and can consequently not

distinguish between breeding experience and age-dependent effects. Future studies should

therefore further dissociate these factors by separate breeding designs accounting for each fac-

tor individually.

Interestingly, in several fish species [100], and zebrafish in particular [65,101,102], maternal

cortisol deposition in embryos has been postulated to be a nongenomic mechanism to program

the endocrine stress axis. Our study cannot dissociate whether the maternal and life-stage spe-

cific inheritance of decreased baseline cortisol is dependent on indirect programming of the

stress axis via differential F0 cortisol deposition in the eggs and/or via epigenetic programming

of (primordial) germ cells, and future studies should investigate egg cortisol deposition.

4.2. Developmental FLX exposure alters the molecular signature in oocytes

extracted from 5, but not 9 months old females

In order to investigate possible (epigenetic) molecular components involved in the maternally

transmitted, life-stage dependent reduction of basal cortisol concentrations in the F1 larvae, we

probed abundance of maternally deposited transcripts in unfertilized eggs collected from CTL

and FLX F0 females at 5 and 9 mpf. We specifically measured the abundance of transcripts

involved in the stress axis, in epigenetic regulation of gene expression (de novomethyltrans-

ferases and miRNA biogenesis components), as well as specific miRNA transcripts predicted

to target stress axis transcripts. With regard to stress axis transcripts, we identified a significant

reduction of gr and an induction of pomcb in FLX-group eggs collected at 5 mpf compared to

controls, and a reduction of fkpb5 in eggs collected in the FLX group compared to the control

group at 9 mpf. Interestingly, Gr signaling has been shown to be important in zebrafish stress

axis programming: Embryonic modulation of Gr function via grmorpholino from 2–8 cell

stage to 120 hpf stage, which spans both maternal transcripts and gr transcripts synthesized fol-

lowing zygotic genome activation (ZGA) at mid-blastula stage (512–1024 cell stage at ~2–3 hpf

[71], resulted in reduced whole larvae basal cortisol concentrations at 120 hpf, an effect also

observed in response to the Gr agonist dexamethasone [63]. Modulation of maternal Gr signal-

ing by cortisol injection or injection of a cortisol sequestering antibody in single cell embryos

resulted in contrasting effects in baseline cortisol in 72 hpf larvae, with increases in response to

cortisol treatment and decreases in response to cortisol AB treatment [65]. Conversely, follow-

ing exposure to a mechanical stressor, cortisol increase is blunted in larvae developed from

cortisol injected eggs and heightened in larvae developed from eggs injected with a cortisol

sequestering antibody [65]. Together, these studies show a role for maternal Gr signaling in

zebrafish offspring stress axis development. Therefore, the decrease observed in gr transcripts

in FLX eggs collected at 5 months in the present study may suggest a causal role for the

observed reduction in basal cortisol levels in offspring reared from developmentally exposed

F0 females. Future rescue experiments using grmRNA injection in single cell embryos from

developmentally FLX-exposed F0 females are warranted to probe causality.

With regard to other maternally-deposited stress axis transcripts, we conversely identified

significant increases in pomcb and directional increases in other stress axis transcripts in FLX

Fig 7. Steady-state abundance of maternal miRNAs predicted to target specific stress transcripts in eggs derived from 5 and 9 months old

zebrafish. An n = 8 samples of pooled eggs extracted from a single female fish (CTL and FLX groups) were used to quantifymiRNA-740 (A),

miR-25 (B),miR-26a (C),miR-30d (D),miRNA-92a (E) andmiRNA-103 (F). Data are normalized to respective control groups at 5 and 9 months,

and expressed as fold-change. Data were analyzed using t-test or Mann-Whitney U test, and significant differences are indicated by different

letters within each sampling timepoint.

https://doi.org/10.1371/journal.pone.0212577.g007
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eggs compared to CTL eggs collected from F0 at 5 mpf. Because of comparatively large variabil-

ity, these directional increases in FLX eggs do to not reach statistical significance compared to

CTL eggs. Interestingly, decreased pomca and pomcb transcript abundances are observed in 5

dpf gr -/- zebrafish larvae, suggesting that these transcripts are repressed via Gr [103]. In eggs

collected from F0 at 9 mpf, a significant reduction in fkpb5, a chaperone of Gr that is cortisol

responsive and diminishes cortisol binding to Gr in an ultrashort feedback loop [104], is

reduced in FLX group eggs, suggesting possibly increased Gr signaling. Interestingly, fkbp5 has

consistently emerged as being regulated in transcriptomic screens of zebrafish embryos acutely

exposed to FLX (Table 2). Together, our findings reveal for the first time, that developmental

exposure of FLX results in differential maternal deposition of transcripts with described roles

in programming the offspring’s endocrine stress axis. While both nongenomic factors, such as

cortisol deposition, or epigenetic changes in germ cells may be responsible for this regulation,

these data point to a possible mechanism in the maternal inheritance of reduced basal cortisol

in response to parental developmental FLX exposure.

In order to address possible involvement of epigenetic mechanisms linked to non-muta-

tional germ-line transmission [60], we profiled de novomethyltransferases and components of

the miRNA biogenesis pathway. Because eggs are transcriptionally silent, differential dnmt

Fig 8. (A) Average expression pattern across treatment groups for stress axis transcripts, de novoDNA methyltransferases, miRNA biogenesis pathway

compounds, and miRNAs. Data are normalized to respective control groups at 5 and 9 months, and expressed as fold-change. Data were analyzed using t-test

or Mann-Whitney U test, and significant differences are indicated by different letters within each sampling timepoint. (B) Heatmap of the expression of all the

transcripts and miRNAs measured, showing the hierarchical clustering of all the egg samples coming from FLX-exposed 5 months old females, together (except

for two CTL samples). (C) Principal component analysis (PCA) of the samples, using the fold-change expression of each transcript/miRNA as a variable to

construct the principal components. The x-axis represents the PC1 while y-axis represents the PC2 (the two main principal components). Together both PC,

explain more than fifty percent (54.5%) of the data variability (D) Representation of the loadings of all the variables in the PCA performed (C).

https://doi.org/10.1371/journal.pone.0212577.g008
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profiles do not have immediate effects on maternal transcripts, but may act in active periods of

DNA methylation observed following ZGA [60]. Conversely, the miRNA pathway is function-

ally involved in miRNA-dependent post-transcriptional regulation of maternal transcripts in

zebrafish prior to and around ZGA [105–108]. We identified a relatively uniform pattern of

dnmt paralogue regulation (Fig 4A–4F; Fig 8A), consisting of a reduction of dnmt3, dnmt4,

dnmt7 and dnmt8 in FLX group eggs compared to CTL at 5 months, suggesting that reduced

de novoDNA methylation capacity in early larvae may contribute to the maternally inherited

reduction of basal cortisol levels in the 12 dpf offspring.

With regard to miRNA pathway genes, we identified a biphasic pattern in several tran-

scripts, with reductions in FLX eggs collected at 5 mpf, and inductions in FLX group eggs at 9

mpf compared to CTL eggs. This pattern suggests a breeding experience and/or age-dependent

deposition of miRNA pathway components in eggs (Fig 8A). Given the recent identification of

functionally different ago2 splice variants in mouse and frogs [107], we designed two pairs of

primers to identify possible splice form-dependent regulation: ago2 and ago2 ‘active form’.

The ago2 ‘active form’ is amplified by a primer pair targeting the functional domain spliced-

out in mouse and frog oocytes to reduce miRNA regulation of maternal transcripts [107].

While this experimental approach cannot directly determine the presence of splice forms, the

identical regulation patterns of ago2 and ago2 ‘active form’ suggests that the mechanism above

mentioned does either not exist in zebrafish eggs, or is functionally not important in FLX

exposed eggs. Nevertheless, the overall signature of miRNA biogenesis components suggests

that globally, miRNA impact on maternal transcripts in FLX treated eggs may be reduced in

eggs collected at 5 mpf and increased in eggs collected at 9 mpf compared to CTL eggs.

We also profiled specific oocyte miRNA abundance predicted to target stress axis transcripts

in order to investigate possible roles for oocyte miRNAs in the observed regulation of maternal

stress axis transcripts. In eggs collected at 5mpf, FLX decreased zebrafish-specificmiR-740,
which is predicted to target several stress axis transcripts (Table 3). Conversely,miRNA-26a,

miRNA-30d,miRNA-92a andmiRNA-103 are all increased in FLX group eggs compared to con-

trol eggs collected from F0 at 5 mpf. In the case ofmiRNA-30d andmiRNA-92a transcript abun-

dance remains elevated in FLX group eggs collected at from F0 at 9 mpf. Transcript abundance

ofmiRNA-25 was only increased in FLX group eggs compared to CTL eggs collected from F0 at

9 mpf, but not at 5 mpf. To our knowledge, our study is the first to describe contaminant-

induced differences in miRNA levels in fish eggs, suggesting that maternal transmission of the

reduced cortisol phenotype may be linked to gamete miRNA abundance as has been previously

described in rodent models [68]. Based on in silicomiRNA target prediction, some candidate

stress axis genes may be directly targeted. However, clear-cut inverse relationships between

miRNA and target transcript abundance suggestive of a principal miRNA-based mode of action

in maternal transcript regulation across both timepoints of collected eggs were limited tomir-
740 and pomcb andmiR-25 and fkbp5. Other predicted relationships were either not or positively

correlated, which may be indicative of false positive predictions [109], combinatorial action of

unprofiled miRNAs [68], or alternative 3’UTR usage in maternal transcripts [110]. Future stud-

ies should therefore utilize transcriptome-level miRNA profiling and morpholino-based injec-

tion studies in order to determine mode of action and functional roles of differential miRNA

abundance in oocytes in the emergence of the low basal stress phenotype in zebrafish larvae [60].

4.3. The egg transcript profile distinguishes eggs derived from FLX exposed

females at 5 months from other groups

Regardless of specific functional relationships between measured transcripts, the global tran-

scription profiles of all individual egg batches allowed the distinct clustering of eggs associated
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with a low basal cortisol phenotype (collected from FLX-F0 at 5 mpf), with the exception of

two individual eggs collected from CTL-F0 at 5 and 9 mpf, respectively (Fig 8B). Using PCA

analysis, FLX eggs from FLX-F0 collected at 5 mpf separate from other groups along the PC1,

which explains slightly more than 1/3 of the overall variability (Fig 8C). This axis is loaded

mostly with miRNA profiles, while epigenetic profiles and stress axis transcripts also contrib-

ute to component PC2 separation and indeed explain some variability observed within FLX

eggs collected from F0 at 5 mpf itself (Fig 8D). This suggests that miRNAs in particular may

constitute good candidate molecular markers to link egg quality with reduced stress response

to early-life maternal FLX exposure. Of note, miRNAs were also the only measured transcripts

exhibiting consistent increases in transcript abundance in FLX-eggs, suggesting possible utility

as long-term molecular markers of exposure.

5. Conclusions

Our study provides evidence that embryonic exposure to FLX in zebrafish results in maternal

transmission of reduced whole body basal cortisol levels in F1 offspring larvae. The fact that

this effect is dependent on the F0 parity and/or life-stage, suggests a sensitive window for

maternal transmission. Moreover, we identify a dysregulation in well-characterized stress axis

transcripts known to program offspring stress axis in zebrafish as a possible molecular mode

of action. Additionally, we describe, for the first time, that developmental exposure to the

pharmaceutical FLX can alter not only egg stress axis transcript abundance, but also transcript

abundance of epigenetic pathway transcripts. Finally, we show that miRNA abundance in eggs

is specifically affected by developmental exposure to FLX, and are indeed an important con-

tributor to separating eggs from developmentally exposed FLX females collected at 5 mpf in

clustering and PCA analyses. Finally, we provide evidence that the molecular egg signature

allows to cluster eggs that give rise to the reduced basal cortisol phenotype, providing evidence

that the time-dependent, maternally transmitted offspring stress axis phenotype may be pre-

dicted by the egg molecular profile [60]. Future studies are warranted to functionally investi-

gate the contribution of miRNAs and/or stress axis transcripts to this phenotype, and also to

investigate possible longer-term consequences of exposure in F1 offspring.
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