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Fucoidans are sulfated polysaccharides from brown algae, known to have immunomodulatory activity. Their ef-
fects on the response of airway epithelial cells to Toll-like receptor 3 (TLR3) stimulation have not been character-
ized. Our objective was to evaluate the effects of a marine-sourced fucoidan solution (MFS) on the TLR3-induced
expression and/or production of cytokines and prostaglandin by human primary bronchial epithelial cells as a
model of the airway epithelium. The cells were incubated with MFS in the presence or absence of Poly(I:C) (a
TLR3 agonist that mimics viral RNA). Cytokine expression and production were assessed using RT-qPCR and
ELISA. The expression of cyclooxygenase-2 and the production of prostaglandin E2 were also measured. Relative
to control, exposure to MFS was associated with lower Poly(I:C)-induced mRNA expression of various cytokines
and chemokines, and lower COX-2 production. TheMFS inhibited the production of some cytokines (IL-1α, IL-1β,
TNFα, and IL-6), chemokines (CCL5, CCL22, CXCL1, CXCL5 and CXCL8) and prostaglandin E2 but did not alter the
production of IL-12/25, CCL2 and CCL20. At clinically relevant concentrations, the MFS inhibited the TLR3-
mediated production of inflammatory mediators by human primary bronchial epithelial cells - suggesting that
locally applied MFS might help to reduce airway inflammation in viral infections.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Acute viral respiratory tract infection (also known as the common
cold) is the most prevalent disease in humans, and is frequently associ-
atedwith acute exacerbation of asthma.Most common colds are caused
by respiratory viruses such as rhinovirus, influenza virus, parainfluenza
virus, coronavirus, and respiratory syncytial virus [1].

Epithelial cells constitute the upper and lower airways' front-line de-
fenses against inhaled microbial pathogens. The efficient physical bar-
rier formed by these cells is complemented by the mucociliary
escalator, which also contributes significantly to defense of the airways
against potentially harmful inhaled physical, chemical and biological
agents [2]. After infecting the airway epithelium, human rhinovirus
and influenza A virus trigger both innate and adaptive immune re-
sponses that are crucial for efficient antiviral control [3–5]. Airway epi-
thelial cells also have an important role in the local regulation of the
inflammatory response to viruses by releasing a variety of pleiotropic
is, 4 Avenuede l'Observatoire, F-
cytokines and chemokines. The cytokines (such as IL-1 and IL-6) exert
a number of actions in the airways, whereas the chemokines (such as
CCL5, CCL20, CXCL1, CXCL8, and CXCL10) contribute to the recruitment
and activation of selected inflammatory cell populations (including
neutrophils, eosinophils, dendritic cells, lymphocytes and natural killer
cells) [6,7].

Airway epithelial cells sense potentially dangerous inhaledmaterials
through the latter's interactions with pattern recognition receptors,
such as Toll-like receptors (TLRs) [8]. Toll-like receptor 3 (TLR3) recog-
nizes double-stranded RNA (dsRNA), and thus is especially relevant to
the airway epithelial cells' response to rhinovirus and influenza A
virus [9–12]. This receptor is expressed in the endosomal compartments
of dendritic cells andmacrophages [13], and is also detected on the sur-
face and in the cytoplasm of airway epithelial cells; as such TLR3 prob-
ably contributes to regulation of the cells' innate response [14].

Seaweed products have been used in traditional Chinese herbal
medicine for at least the last 500 years. Fucoidans constitute the main
class of polysaccharide found in brown algae. They contain high levels
of L-fucose and sulfate ester groups, and exert a variety of antiviral
[15,16], anti-inflammatory [17] and immunomodulatory effects
[18,19]. In particular, fucoidans are known to be ligands for class A

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijbiomac.2019.02.113&domain=pdf
https://doi.org/10.1016/j.ijbiomac.2019.02.113
melody.dutot@yslab.fr
Journal logo
https://doi.org/10.1016/j.ijbiomac.2019.02.113
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/ijbiomac


Table 1
Cytotoxicity after incubation with marine-sourced fucoidan solution
(MFS) for 1 h, followed by 24 h in culture medium. Cytotoxicity wasmea-
sured using an LDH release assay. The data correspond to themean±SEM
of 7 to 10 independent experiments.

Treatment % of LDH release

Sodium chloride 0.9% 0.36 ± 0.09
MFS 0.41 ± 0.12
Poly(I:C) 0.93 ± 0.23
Poly(I:C) + MFS 0.53 ± 0.20
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scavenger receptors (SR-A), which also belong to the pattern recogni-
tion receptor family. It is known that SR-A is a cell surface receptor for
dsRNA, and so may also be involved in antiviral immune responses
[20]. To the best of our knowledge, the fucoidans' effects on the release
of inflammatory mediators induced by TLR3 activation have not previ-
ously been characterized. The objective of the present study was to as-
sess the effects of a marine-sourced fucoidan solution (MFS) from
Ascophyllum nodosum on the mRNA expression and protein production
of cytokines, chemokines and prostaglandin E2 (PGE2) by human pri-
mary bronchial epithelial cells following TLR3 activation by Poly(I:C)
(a synthetic analog of dsRNA) [21,22].

2. Materials and methods

2.1. Materials

Antibiotics (penicillin, streptomycin, gentamycin, vancomycin,
amphotericin, and ceftazidim), DMSO, L-glutamine, heat-inactivated
fetal calf serum, bovine pancreas protease, and HEPES were purchased
from Sigma-Aldrich (St-Quentin Fallavier, France). Roswell ParkMemo-
rial Institute (RPMI) 1640 medium, Dulbecco's Modified Eagle's me-
dium (DMEM) high-glucose DMEM, and bovine serum albumin were
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Fig. 1.Effects of themarine-sourced fucoidan solution (MFS) on the Poly(I:C)-induced expressio
with theMFS or NaCl 0.9% (control) for 1 h, followed by 24 h in culturemedium in the absence o
independent paired experiments.
bought from Eurobio Biotechnology (Les Ulis, France). High-
molecular-weight Poly(I:C) was obtained from InvivoGen (Toulouse,
France). Bronchial epithelial cell growth medium (BEGM, supple-
mented with growth factors and antibiotics), andMycoZap™were pur-
chased from Lonza (Walkersville, MD, USA). Trypsin 0.25% EDTA was
obtained from Gibco® (Thermo Fisher Scientific, Villebon sur Yvette,
France). Culture flasks for epithelial cell culture were from TPP®
(Trasadingen, Swiss) and Biocoat collagen-coated culture flasks were
purchased from Corning® (Sigma-Aldrich, St-Quentin Fallavier,
France). All the other cell culture plastics were from CML (Nemours,
France).

Untreated sea water drawn from the Atlantic Ocean (off the coast of
Brittany, France, by Yslab, Quimper, France) was prepared as follows:
sand and carbon filtering, UV treatment, and sterilizing filtration (pore
size: 1-0.45-0.2 μm). To lower the solution's tonicity, the seawater's sa-
linity was reduced to 15 g·kg−1 by dilution with purified water.

Ascophyscient® fucoidan-rich Ascophyllum nodosum extract was
purchased from Algues&Mer (Ouessant, France). The Ascophyllum
nodosum seaweed had grown in a zone covered by the UNESCO World
Network of Biosphere Reserves and that had achieved a “good ecological
status” according to the European Union's Water Framework Directive
2000/60/EC. The seaweed's thallus was used for fucoidan extraction.
The main extraction steps were polyphenol trapping, aqueous extrac-
tion, solid/liquid separation, microparticle removal (by filtration), algi-
nate precipitation and removal, further filtration, demineralization,
depolymerization, and atomization. The extract's total sugar content
was 40% by weight (according to Dubois' method [23], using fucose as
the sugar standard), and the total sulfate level was 17% (as determined
by liquid chromatography, as described in the International Standard
ISO 10304). The remaining components were uronic acid and ash. The
L-fucopyranose structure of the backbone of the fucoidan extracted
from Ascophyllum nodosum has been previously described, and features
22
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Table 2
Effects of a marine-sourced fucoidan solution (MFS) on the production of cytokines by human bronchial epithelial cells.
Human bronchial epithelial cells were incubated for 1 h in the presence of a Marine-sourced fucoidan solution (MFS) or sodium chloride 0.9% (control) before being stimulatedwith Poly
(I:C) (10 μg·mL−1) for 24 h. The concentrations of the cytokines are expressed in pg/106 cells. The data correspond to the mean ± SEM for the number (n) of independent experiments
indicated. nd: not determined.

Cytokine n Control MFS POLY (I:C) MFS + POLY
(I:C)

IL-1α 6 137 ± 53 116 ± 47 740 ± 290⁎ 374 ± 121⁎

IL-1β 10 54 ± 28 nd 138 ± 30⁎ 69 ± 19⁎⁎

TNF-α 12 17 ± 5 nd 542 ± 146⁎⁎ 301 ± 74⁎⁎⁎

IL-6 6 824 ± 410 1138 ± 454⁎ 37,436 ± 11274⁎ 22,876 ± 8503⁎

IL-12/IL-23 3 604 ± 247 602 ± 277 501 ± 208 654 ± 355
CCL2 6 182 ± 90 394 ± 209 2112 ± 541⁎⁎ 1950 ± 579
CCL5 6 18 ± 8 11 ± 5 4556 ± 1552⁎ 3781 ± 1219⁎

CCL20 6 546 ± 249 1036 ± 223⁎ 4722 ± 891⁎⁎ 4840 ± 756
CCL22 12 7 ± 2 nd 41 ± 11⁎ 14 ± 2⁎⁎

CXCL1 6/10 49,377 ± 11,668 55,568 ± 10,827 142,614 ± 35149⁎ 109,981 ± 23871⁎⁎

CXCL5 12 267 ± 103 nd 2927 ± 643⁎⁎ 1871 ± 522⁎⁎⁎

CXCL8 6 4985 ± 1554 6819 ± 1860⁎ 81,956 ± 19093⁎⁎ 67,256 ± 20169⁎

⁎ p b 0.05 (significant treshold for MFS vs. Control).
⁎⁎ p b 0.01 (significant treshold for Poly(I:C) vs Control)
⁎⁎⁎ p b 0.001 (significant treshold for MFS + Poly(I:C) vs Poly(I:C)).
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alternatingα(1→ 3) and α(1→ 4) linkages [24,25]. The meanmolecu-
lar weight was 18,940 g/mol as determined with high performance size
exclusion chromatography coupled to a refractive index detector.
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Fig. 2. Effect of themarine-sourced fucoidan solution (MFS) on Poly(I:C)-induced cytokine rele
cells were incubated with the MFS or NaCl 0.9% (control) for 1 h, followed by 24 h in culture m
mean ± SEM of 6 to 12 independent, paired experiments. The significance thresholds were *p
To prepare theMFS, Ascophyllum nodosum extract was dissolved to a
final concentration of 0.1% (m/v) in diluted sea water. This concentra-
tion was chosen on the basis of previous work [26–29].
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b 0.05, **p b 0.01, and ***p b 0.001.
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2.2. Isolation and culture of human primary bronchial epithelial cells

The use of resected lung tissue for in vitro experiments was ap-
proved by the local institutional review board (Comité de Protection
des Personnes Ile-de-France VIII, Boulogne-Billancourt, France; reference:
DC-2010-1221), and the patients gave their informed consent before
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Fig. 3. Effect of themarine-sourced fucoidan solution (MFS) on chemokine release (CCL5, CCL2
were incubatedwith theMFS orNaCl 0.9% (control) for 1 h, followedby 24 h in culturemedium
6 to 12 independent paired experiments. The significance thresholds were *p b 0.05, **p b 0.01
the surgical procedure. Lung tissue samples were obtained from 17 pa-
tients (10 males and 7 females; 6 smokers, 10 former smokers, 1 non-
smoker; mean ± standard error (SD) age: 65.5 ± 7.2 years; FEV1:
74.4±23.7%; pack-years: 36±13; 7 had COPD) undergoing surgical re-
section for lung carcinoma and who had not received prior chemother-
apy. Noneof the subjects had been treatedwith immunosuppressants or
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corticosteroids before surgery. Proximal segmental bronchi collected
from sites distant from the tumor were placed in high-glucose DMEM
supplementedwith L-glutamine, 10% fetal calf serum,HEPES, antibiotics,
and antifungal drugs (penicillin, streptomycin, gentamycin, vancomy-
cin, amphotericin, ceftazidim and MycoZap™), and were stored at +4
°C (for bacterial decontamination) for at least 3 days. The bronchial
mucus was removed, and the bronchus was cut lengthwise before the
addition of protease (10 mg·mL−1) overnight at +4 °C. On the follow-
ing day, the luminal surface of each bronchus sample was gently
scratched in order to detach epithelial cells into the culture medium.
After centrifugation of the cell suspension, the cell pellet was resus-
pended in 30 mL of supplemented high-glucose DMEM and placed in
a culture flask for 2 h at 37 °C in a 5% CO2 atmosphere. The supernatant
was recovered and placed in a BioCoat collagen-coated flask. On the fol-
lowing day and then every other day, the culture mediumwas replaced
with 15 mL of antibiotic-free high-glucose DMEM and 15 mL of BEGM
(referred to hereafter as BEGM-DMEM).When the cells reached conflu-
ence (usually after 7 days of culture), theywere detached from the plate
with trypsin, centrifuged, and resuspended in BEGM-DMEM in a 24-
well plate (1mL per well) for 24 h prior to exposure to pharmacological
agents.
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Fig. 4. Effect of the marine-sourced fucoidan solution (MFS) on the mRNA expression of
COX-2 and the production of PGE2 by human bronchial epithelial cells. Bronchial
epithelial cells were incubated with the MFS or NaCl 0.9% (control) for 1 h, followed by
24 h in culture medium in the absence or presence of Poly(I:C) 10 μg·mL−1. Data
correspond as the median (range) of three independent paired experiments (A) or the
mean ± SEM of 17 (B) independent paired experiments. The significance threshold was
***p b 0.001.
2.3. Treatment of bronchial epithelial cells

The 24-well plates were washed, and 1 mL of fresh BEGM-DMEM
was added per well. Cells were incubated with either sodium chloride
0.9% (control) or MFS for 1 h (200 μL/well). The solutions were then re-
moved, and the cells were incubated in 2 mL of culture medium in the
absence or presence of 10 μg·mL−1 high-molecular-weight Poly(I:C)
cells for 24 h. The cell culture supernatants were then collected and
stored at−80 °C for later analysis.

2.4. Cytokine and chemokine assays

The production of selected chemokines and cytokines was assessed
by measuring their concentrations in the bronchial epithelial cells' su-
pernatants using commercially available ELISAs (Duoset Development
System, R&D Systems Europe, Lille, France). The limit of detection was
1 pg.mL−1 for IL-1β, 4 pg·mL−1 for IL-1α and CCL22, 8 pg·mL−1 for
TNF-α, CCL2 and CXCL5, 9 pg·mL−1 for IL-6, 16 pg·mL−1 for CCL5,
CCL20, CXCL1, and CXCL8, and 32 pg·mL−1 for IL-12/IL-23. Levels of
PGE2 were determined using a commercially available ELISA (Cayman
Chemical Europe, Tallinn, Estonia).

2.5. Cytotoxicity assays

Cell viability was assessed by measuring LDH release (CytoTox96®
Non-Radioactive Cytotoxicity Assay from Promega, Madison, USA).

2.6. Reverse transcriptase - quantitative polymerase chain reaction

Total RNA was prepared using TRIzol® reagent (Life Technologies,
Saint Aubin, France), and RNAwas extracted according to themanufac-
turer's instructions. TheRNA's intactnesswas determined by running an
aliquot of each sample on an Experion automated electrophoresis sta-
tion (Bio-Rad, Marnes-la-Coquette, France). The RNA concentration
was determined using a Biowave DNA spectrophotometer (Biochrom,
Cambridge, UK). Next, 1 μg of total RNA was reverse-transcribed using
a SuperScript® III First-strand SuperMix kit (Life Technologies).

Specific TaqMan® arrays based on predesigned reagents (Life Tech-
nologies) were used to assay cytokine and chemokine transcripts (cus-
tomized TaqMan® array 96-well FAST Plate, Applied Biosystems, Foster
City, USA). Reverse transcriptase-quantitative PCRwas performed using
Gene ExpressionMasterMix (Life Technologies)with 20 ngof cDNA in a
StepOnePlus thermocycler (Life Technologies). The thermal cycling con-
ditions were as follows: initial denaturation at 95 °C for 10 min,
followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. The house-
keeping gene hypoxanthine phosphoribosyltransferase (HPRT1) was
used for signal normalization.

2.7. Statistical analysis

Statistical analysis was performed using Prism software (version 6,
GraphPad Software, La Jolla, CA, USA). A one-way analysis of variance
for repeatedmeasures (or a Friedman test, when appropriate) followed
by post-tests or a paired Student's t-test (or a Wilcoxon test, when ap-
propriate) were used to compare treatments (MFS and Poly(I:C)) with
controls.

3. Results

3.1. Cytotoxicity

A one-hour incubation with MFS and then 24 h in culture medium
alone was not associated with elevated LDH release by the epithelial
cells (relative to controls), thus demonstrating the absence of cytotoxic-
ity (Table 1).
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3.2. Effects of the MFS on cytokine expression by bronchial epithelial cells

Exposure to Poly(I:C) was associated with the elevated expression
(relative to control experiments) of genes coding for the cytokines
CCL5, CCL20, CCL22, CXCL1, CXCL5, CXCL8, IL-1β, IL-6, and TNF-α
(Fig. 1). However, pre-incubation of epithelial cells with MFS inhibited
the Poly(I:C)-induced elevation in the expression of these genes. The el-
evated gene expression of CCL22 was completely blocked by MFS.

3.3. Effects of MFS on cytokine and chemokine production by bronchial ep-
ithelial cells

Incubation with MFS did not generally alter the baseline production
of cytokines and chemokines by non-stimulated cells (Table 2). How-
ever, incubationwithMFS was associated with a slight relative increase
in the baseline production of IL-6, CXCL8 and CCL20 (Table 2). Poly(I:C)
induced a marked elevation of the production of all the measured cyto-
kines/chemokines (except for IL-12/IL-23) to a varying extent (from
2.5-fold for IL-1β and CXCL1 to 250-fold for CCL5) (Table 2). Pre-
incubation with MFS significantly inhibited the production of IL-1α,
IL-1β, TNF-α and IL-6 but not that of IL-12/IL-23 (Table 2, Fig. 2). Simi-
larly, pre-incubation with MFS inhibited the Poly(I:C)-induced produc-
tion of some chemokines (CCL5, CCL22, CXCL1, CXCL5 and CXCL8) but
not others (CCL2 and CCL20) (Table 2, Fig. 3).

3.4. Effects of MFS on the production of PGE2 by bronchial epithelial cells

Exposure toMFS did not alter the low baseline level of PGE2 produc-
tion by non-stimulated bronchial epithelial cells (data not shown) but
did markedly inhibit the Poly(I:C)-induced production of PGE2 (Fig. 4).
This observation was in line withMFS's inhibition of the Poly(I:C)-asso-
ciated elevation in COX-2 expression (Fig. 4).

4. Discussion

The objective of the present studywas to explore the effects of a sea-
water solution of depolymerized fucoidans from Ascophyllum nodosum
on human bronchial epithelial cells. An hour of exposure to MFS was
enough to inhibit the Poly(I:C)-induced elevation in cytokine/chemo-
kine mRNA expression and protein production, mRNA expression of
COX-2, and the production of PGE2 by human bronchial epithelial cells
for 24 h.

Fucoidans are abundant, sulfated polysaccharides found only in
brown algae. Over the last few decades, fucoidans purified from differ-
ent species of brown alga have been extensively studied because of
their broad spectrum of desirable biological activities, including antico-
agulant, antithrombotic, antitumor, anti-inflammatory, and immuno-
modulatory effects [30]. In a recent in vitro study of RAW 264.7
macrophages, fucoidans purified from the marine brown alga
Chnoospora minima were found to inhibit (i) the lipopolysaccharide
(LPS)-induced production of nitrous oxide and PGE2 via the downregu-
lation of inducible nitric oxide synthase (iNOS) and COX-2 expression,
and (ii) the production of TNF-α, IL1-β, and IL-6 [31]. Furthermore,
sulfated polysaccharides extracted from other brown seaweeds
(Sargassum hemiphyllum and Sargassum horneri) were shown to reduce
pro-inflammatory cytokine production (IL-1β, IL-6 and TNF-α), NOpro-
duction, and the expression of IL-1β, iNOS, and COX-2 and NF-κB (p65)
in LPS-stimulated RAW 246.7 macrophages [32,33]. In macrophages,
the mechanisms underlying the fucoidans' anti-inflammatory actions
have yet to be elucidated. However, it has been reported that fucoidans
regulated signaling pathways involving MAP kinases and NF-κB [34].
Since the MFS did not influence epithelial cell viability, its inhibitory ef-
fect was not due to non-specific toxicity.

The present study is the first to have demonstrated that fucoidans
(extracted from Ascophyllum nodosum and dissolved in diluted seawa-
ter) also have anti-inflammatory effects on human primary bronchial
epithelial cells. In particular, theMFS's inhibition of the effects on bron-
chial epithelial cells of a synthetic viral-like dsRNA (Poly(I:C)) suggests
that fucoidans might dampen the epithelium's inflammatory response
to viral infections. In addition to the inhibition of the production of var-
ious pro-inflammatory cytokines (IL-1α, IL-1β, TNFα, and IL-6) and
chemokines (CCL5, CCL22, CXCL1, CXCL5 and CXCL8), the inhibition of
PGE2 may have beneficial effect by reducing mucus secretion [35,36].
Further studies are needed to determine whether or not exposure to
MFS lowers mucus secretion in the nasal epithelium.

In addition to fucoidans, other algal polysaccharides reportedly exert
antiviral activities through variousmechanisms of action, such the inhi-
bition of virus binding or internalization and the suppression of DNA
replication and/or protein synthesis [37,38]. Scavenger receptors have
been described as functional co-receptors of both TLR3 and TLR4
[39–41], and the process of endocytosis might lie at the interface be-
tween several underlying mechanisms. Indeed, activation of the SR-A-
fucoidan complex is dependent on endocytosis [42], and endosomal in-
ternalization of cell-surface TLR3 is critical for the epithelial cells' re-
sponse to Poly(I:C) [14]. In the present study, the SR-A-fucoidan
complex may have been endocytosed (along with TLR3) during the
one-hour exposure toMFS, and thuswould no longer have been present
on the cell surface when Poly(I:C) was added - thus blocking the re-
sponse to this TLR agonist. However, further studies are required to de-
termine the exact mechanism of action.

The airway epithelium is continuously exposed to a multitude of
noxious challenges in inhaled air, and has an important role in regulat-
ing the local inflammatory response to viral infections of the upper and
lower airways. Earlier researchhas shown that humanbronchial epithe-
lial cell cultures accurately recapitulate the functional characteristics of
human nasal epithelial cells, and so could therefore serve as a surrogate
for the latter. Indeed, the two cell types have morphologic, histologic
and functional similarities. Their respective ciliary activities react to var-
ious agonists and antagonists in a similar manner [43]. In experiments
on nasal and bronchial epithelial cells harvested from childrenwith cys-
tic fibrosis (with a wide variety of CFTRmutations), the cell types' stim-
ulated and inhibited levels of CFTR were similar [44]. In other studies of
human bronchial and nasal epithelial cells, levels of cytokine and che-
mokine release in vitro were similar for both non-stimulated cells and
cells stimulated with TNF-α, IL-1β, IL-13 or even rhinovirus infection
[45–47]. Indeed, nasal epithelial cells showed much the same cytokine
responses as bronchial epithelial cells when exposed to rhinovirus
under air-liquid interface culture or submerged culture conditions;
this observation is of particularly relevance to the present study [47].
Taken as a whole, these findings strongly suggest that (i) nasal and
bronchial airway epithelial cells can be used interchangeably, and thus
(ii) our observation of MFS's anti-inflammatory effects on bronchial ep-
ithelial cells can be legitimately transposed to nasal epithelial cells.

Most common colds are caused by respiratory viruses whose num-
ber, diversity and antigenic variability limit the development of an effec-
tive vaccine. Although the infection is usually self-limiting, it affects
people of all age groups and still causes significant morbidity. At pres-
ent, the standard therapy for the common cold is general care and the
treatment of symptoms. Over-the-counter antihistamines are com-
monly used to relieve symptoms but have a short-term beneficial effect
and do not appear to be effective in children [48]. Over-the-counter
nasal decongestants are also used, although their effectiveness and
safety in children and the clinical relevance of their small symptomatic
effect in adults have yet to be demonstrated [49]. Furthermore, the
available evidence does not support the use of intranasal corticosteroids
for symptomatic relief from the common cold [50]. It was recently
shown that iota-carrageenan (a sulfated polysaccharide found in some
species of red seaweed) exerts potent activity against respiratory vi-
ruses by directly binding to the infectious particles; however, carra-
geenan does not enter the host cell and is not expected to exert
pharmacologic or immune activities [51]. Although iota-carrageenan
was found to be effective as nasal spray in three clinical trials
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[1,51,52], it failed to achieve statistically significant outcomes for the
primary and secondary endpoints in the most recent study [53]. Nasal
irrigation with saline is often employed as an adjunct treatment for
acute upper respiratory tract infections - particularly in children - and
might relieve the symptoms to some extent [54]. The MFS assessed
here is a ready-to-use, topically applied solution that combines nasal sa-
line irrigation and the topical delivery of fucoidans.

In conclusion, our study results suggest that fucoidans could be used
to prevent or treat viral-induced airway inflammation. The MFS may
therefore combine the symptomatic benefits of local irrigation with
anti-inflammatory activity in the treatment of the common cold.
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