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Abstract

Accurate segmentation of the breast region of interest (BROI) and breast density 

(BD) is a significant challenge during the analysis of breast MR images. Most of 

the existing methods for breast segmentation are semi-automatic and limited in 

their ability to achieve accurate results. This is because of difficulties in removing 

landmarks from noisy magnetic resonance images (MRI) due to similar intensity 

levels and the close connection to BROI. This study proposes an innovative, fully 

automatic and fast segmentation approach to identify and remove landmarks such 

as the heart and pectoral muscles. The BROI segmentation is carried out with a 

framework consisting of three major steps. Firstly, we use adaptive wiener filtering 

and 𝑘-means clustering to minimize the influence of noises, preserve edges and 

remove unwanted artefacts. The second step systematically excludes the heart 

area by utilizing active contour based level sets where initial contour points are 

determined by the maximum entropy thresholding and convolution method. Finally, 

a pectoral muscle is removed by using morphological operations and local adaptive 

thresholding on MR images. Prior to the elimination of the pectoral muscle, the 
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MR image is sub divided into three sections: left, right, and central based on 

the geometrical information. Subsequently, a BD segmentation is achieved with 

4 level fuzzy c-means (FCM) thresholding on the denoised BROI segmentation. 

The proposed method is validated using the 1350 breast images from 15 female 

subjects. The pixel-based quantitative analysis showed excellent segmentation 

results when compared with manually drawn BROI and BD. Furthermore, the 

presented results in terms of evaluation matrices: Acc, Sp, AUC, MR, P, Se and 

DSC demonstrate the high quality of segmentations using the proposed method. 

The average computational time for the segmentation of BROI and BD is 1 minute 

and 50 seconds.

Keywords: Computer science, Medical imaging

1. Introduction

Breast cancer is a major cause of death in women [1]. It is reported that, in a 

lifetime of women worldwide, one in eight will develop breast cancer [2, 3]. Also, the 

reported statistics reveal that over 2 million women are suffering from breast cancer 

in the US alone [4]. To reduce the mortality rate from breast cancer, early diagnosis 

and treatments are essential [5]. MRI is a well-established imaging technique to 

identify and mitigate breast diseases by generating a series of 3D images that a 

radiologist uses to manually detect the diseased part and identify problems [6, 7]. 

The manual process is time consuming because of the high number of images [8, 9]. 

Hence, automatic computer-algorithm based image analysis has become essential for 

performing computer-aided detection and diagnosis, which aim to provide prompt 

output and help radiologist to accurately locate the diseased area.

The main objective of this study is to segment the breast region of interest (BROI) 

and breast density (BD) from breast MRIs. First, BROI segmentation can serve as 

the fundamental step for avoiding irrelevant structures such as unwanted background 

and organs like the heart, liver, and chest, improving efficiency and accuracy during 

further analysis like tumor segmentation [10]. Tumor segmentation in breast MRIs 

is considered to be a laborious and error-prone procedure. Also, tumors normally 

reside inside the BROI. Therefore, prior to tumor segmentation, it is essential to 

identify the BROI [11]. BROI segmentation is also useful for applications such 

as BD measurement [12] and performance improvement of DCE-MRI in terms of 

pharmacokinetics-model calibration (PMC) [12, 13]. During PMC, the properties 

of the interior chest wall should be determined, which requires pectoral muscle 

segmentation [14]. Second, the ratio of BD can be considered as a strong indicator for 

the estimation of breast cancer risk. Also, breast tissue pattern asymmetry in left and 

right breast is considered to be an abnormal biological process that leads to cancer 

[15]. BD does not have a distinct shape and pattern and may be found anywhere 
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within the image. Moreover, intensity inhomogeneity is a common problem within 

breast MRIs since the bias field adds more challenges by producing similar intensity 

around the BROI.

For BROI segmentation, different techniques have been reported in the literature. 

Ertas et al. [16], performed morphological operation and intensity thresholding for 

the segmentation. However, the results are better when the chest wall has high 

contrast. Several other methods such as intensity histogram [17, 18], wavelet analysis 

[19, 32] and active contour [20, 21], fuzzy c-means [22, 23], region growing [24, 

25] are proposed. The performance of these methods rely on the contrast between 

the border regions and can fail in the cases that have similar intensity distribution. 

A fully automated method reported by Wang et al. [29] extracts breast area on non-

fat-suppressed MRI images. The author explained that the properties of pectoral 

muscle and the breast-air boundaries are similar in 3D and exhibit smooth sheet 

like surfaces and use a Hessian-based filter to suppress the lower contrast and non-

specific shapes. However, this method does not include breast density segmentation 

and may not produce an accurate mask. Khalvati et al. [26] reported a multi-

atlas segmentation algorithm that creates a breast atlas with the help of phase 

congruency. This segmentation process is reliant upon the shape and intensity 

based registration prior to the segmentation. Gubern-Merida et al. [33] proposed a 

probabilistic atlas based approach for breast segmentation. However, the accuracy 

depends upon the size and variability of the database and requires an atlas that 

is representative of the population, which is computationally expensive. An edge 

based approach was proposed by [28] that is independent from the visible contrast 

between the breast ROI and chest wall. This method calculates cost function using 

edge information obtained from tunable Gabor filter. The precision of this method 

depends upon the information from the adjacent slices and accurate initial-border 

determination. Despite the advancement in BROI segmentation, fully automatic, 

accurate and fast segmentation of BROI still require much attention. This is because: 

1. MR breast imaging contains breast structures in different shapes and no clear 

boundary of breast landmarks, which requires manual correction [34]. 2. There 

is a bilateral asymmetry between left and right breast regions requiring separate 

analysis [35]. 3. The pectoral muscle is closely attached and possesses similar 

intensity to the BROI which gives false positives and requires manual corrections 

[36]. 4. It is observed from the literature that several existing methods are supervised 

and require prior information before the segmentation process which results in 

computational complexity [37]. For BD segmentation, we note that there is a 

significant range of studies carried out in a semi-automated segmentation using 

an interactive thresholding method [43, 44] and user-assisted clustering methods 

[45]. These non-automated methods are subjective and create inter- and intra-reader 

variability [46]. It can be time-consuming, and therefore unsuitable for processing 

larger databases. To cope with above-mentioned difficulties, some attempts on 
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automated methods have been studied such as adaptive thresholding [47], atlas-based 

method [48], Gaussian distribution curve fitting [49], hierarchical support vector 

machine [50], and Otsu thresholding algorithm [51]. It is observed that supervised 

methods provide more accurate results, but require a complex and costly labelling 

and analysis by expert radiologists prior to segmentation. Hence, for automatic 

segmentation of BD, unsupervised methods produce efficient results. Also, the most 

effective way to minimize computation time is to reduce the number of pixels 

processed. To overcome these problems, we propose a novel framework which is 

fully automatic, unsupervised, fast and efficient. The proposed model is divided into 

two steps: 1. BROI segmentation 2. BD segmentation.

During BROI segmentation, first, we aim to de-noise the MR image and precisely 

remove air-background using pixelwise adaptive wiener filtering (PAWF) technique 

[38, 39] and 𝑘-means clustering [40]. PAWF technique can preserve the edges and 

high frequency parts of an image unlike a normal filtering technique and 𝑘-means 

clustering will automatically cluster the whole image on different group, based on 

the correlation of pixels intensity. Second, the heart area, a brighter part of image is 

segmented using active contour level-set method [41]. The novelty in this method 

involves the calculation of initial contour by using maximum entropy thresholding 

and convolution technique [63, 65], which provides accurate segmentation and 

reduction of computation speed. Third, the segmentation of the pectoral muscle 

is performed. The orientation of the pectoral muscle and breast density of the left, 

right, and central area of the breast are different. Hence, we apply a morphological 

operation on a different orientation to enhance the gap between the pectoral muscle 

and breast density. The resultant image is binarized using an adaptive thresholding 

technique to exclude the pectoral muscle. Finally, we use polynomial curve fitting 

[42] to smoothen the acquired BROI segmentation. During BD segmentation, 

initially, we de-noise the result image from BROI segmentation. It is observed from 

the experiment that, the volume and intensity of BD in left and right breasts are 

different, hence, the single threshold value could not provide accurate segmentation. 

We divide the BROI segmentation image according to its geometrical information 

and calculate a different threshold value for left and right breast using four level FCM 

[52]. This study calculates FCM within the BROI rather than on an entire image.

Rest of the paper is organized as follows. A detailed methodology of the segment-

ations (BROI and BD) is reported in Section 2 which includes the explanation of 

eliminating unwanted landmarks. In section 3, the experimental results are analyzed

and discussed. Finally, a concluding remark drawn in this study is given in Section 4.
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Figure 1. General workflow of segmentation procedure to extract BROI and BD.

Figure 2. Illustration of filtering technique in regards to the accurate edge preservation (a) Gaussian filter 
(b) pixelwise adaptive wiener filter.

2. Methods

The general workflow for BROI and BD segmentations is illustrated in Figure 1. 

Each step is successively explained in the following sections.

2.1. Segmentation Methodology of BROI

2.1.1. Pre-processing Step

The process begins with rescaling the image to the fixed size so that each image 

in the different databases posses similar properties. The rescaled image dimension 

equals 328 on the row whereas the columns are calculated accordingly, to preserve 

the aspect ratio. The original breast MRIs are fundamentally corrupted by random 

noise from the image acquisition process that leads to uncertainties during the 

measurement of any quantitative biomarker [53]. Hence, pre-processing the rescaled 
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image is an important step for removing undesirable noise such as additive white 

Gaussian noise (AWGN) and irrelevant details that affect the BROI segmentation. 

Gaussian filtering has been thoroughly studied for noise suppression and smoothing 

[54]. This process blurs an image with Gaussian function and involves a convolution 

mask where pixel values are modified according to the neighboring pixels. However, 

the Gaussian filter is not always suitable for denoising since it also removes 

high-frequency signal components leaving a blurred edge or boarder as shown 

in Figure 2(a) [55]. The edge preserving denoising technique should be adopted 

as the edges are the important features during segmentation. Hence, we apply a 

pixelwise adaptive wiener filtering technique that effectively removes the noise while 

preserving the edges [56, 57]. The denoised result image obtained from Gaussian 

filter has blurred edges. However, the result from pixelwise adaptive wiener filtering 

technique show that sharp edges are preserved as shown by the red arrowhead in 

Figure 2(a) and (b).

Let us consider the pixel position (𝑖, 𝑗) and the window mask of 𝑊𝑀 around its 

neighborhood. We conducted experiments to see the effect of different window 

size in the MR images. We found out that the use of larger window size clears 

the noise but destroys the useful edge information. On the other hand, the use of 

smaller window size are not capable of clearing the noise from the image. Based on 

our experiment, we fixed the window size (𝑊𝑀 ) as 10x10. The value presented is 

suitable for the database we have used. However, it can be slightly optimized to suit 

the other database of MR image.

The pixelwise adaptive wiener filter is given by Eq. (1) [58]:

𝐼denoised(𝑖, 𝑗) = 𝑚f +
𝜎2

f
− 𝑣2

𝜎2
f

(𝐼noisy(𝑖, 𝑗) − 𝑚f) (1)

where, 𝑚f and 𝜎2
f

is the local mean and variance. 𝑣2 is the average value of 𝜎2
f

across 

noisy image i.e. 𝐼noisy. The computation of local mean and 𝑚f and variance 𝜎2
f

is 

provided Eq. (2):

𝑚f = (𝑋𝑌 )−1
∑
𝑖,𝑗∈𝑀

𝐼noisy(𝑖, 𝑗)

𝜎2
f
= (𝑋𝑌 )−1

∑
𝑖,𝑗∈𝑀

(𝐼2
noisy

(𝑖, 𝑗) − 𝑚2
f
)

(2)

where 𝑋 and 𝑌 are the horizontal and vertical arrays of pixels in the window mask.

The color distribution of the denoised MRI image is studied using K-means 

clustering method as presented in Figure 3. This method follows two steps that divide 

a set of data into 𝑘 number of clusters. Initially, 𝑘 centroid is calculated and the 

data point is allocated to the cluster as the nearest centroid from the particular data 

point. The distance between the centroid and the data point is calculated with the 
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Figure 3. Illustration of (a) Color distribution of MRI image using 10 clusters of the K-means clustering 
algorithm. (b) Resultant binarised image after removing noise and first two layers.

Euclidean distance. Once the data point is clustered, a new centroid is recalculated 

and the procedure is repeated until convergence has been reached [59]. We clustered 

an image into 10 different colors (𝑘 = 10) which is sufficient to observe the level of 

detail of landmarks and their color distribution. In Figure 3(a), blue color in the color 

bar (𝑘 = 1) signifies the darkest and the red color (𝑘 = 10) represents the brightest 

intensity area. Let us consider a set of 𝑛 data points as 𝑑1, 𝑑2, ....𝑑𝑛 and 𝑘 cluster 

has centroid as 𝑐1, 𝑐2, ....𝑐𝑘. The number of clusters in our case is 10. Initially, we 

select random centroid points and assign elements 𝑑𝑖 to the cluster 𝑂𝑗 as presented 

in the equation (3). Now, update the center of cluster 𝑂𝑗 and repeat until the centroid 

converges using Eq. (3).

𝑂j = {𝑑i ∶ ||𝑑i − 𝑐j||2 ≤ ||𝑑i − 𝑐t||2, 1 ≤ 𝑡 ≤ 𝑘} (3)

During the experiment conducted on 15 MR breast scans, we discovered that 1st and 

2nd cluster always represent air background and partial lung area. These clusters 

do not possess useful information and can be eliminated. Moreover, clusters 3 to 

10 characterize BROI, pectoral muscle, heart, some region of lung and BD. This 

means that most of the useful information can be represented above cluster 3 and is 

preserved as shown in Figure 3(b). Note that we have conducted experiments with 

different cluster numbers and is empirically set as 10.

2.1.2. Heart area segmentation

In the MR images, heart area, the central part of the image appears to have the 

brightest intensity in the image and differs in shape and size. It is observed that 

some images have low contrast and close boundaries which creates complication 

in the segmentation process. The elimination of this area is vital for the accurate 

segmentation of the BROI. We obtained 10 clusters in the previous section. From our 

experiment, we noticed that the last four clusters are the brightest clusters in terms of 
on.2018.e01042
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color intensity and cover heart area and gradually spread towards the pectoral muscle 

and BROI as shown in Figure 4(a), (b). Hence, we combine these clusters and use the 

active contour level set method [41] to segment heart area. The active contour model 

uses level set method to evolve its initial contour. The detection of boundaries rely on 

the mumford–Shah segmentation technique [60] for the evolution process of contour. 

Hence, the objects with discontinuous and undefined boundaries can be detected with 

this model. The process begins by detecting an initial contour point for the evolution 

process. The initial contour point is detected using maximum entropy thresholding 

and convolution method [63, 65]. Initially, a preprocessed image is binarized with 

maximum entropy thresholding. A convolution process is carried out between the 

binarized image and a square window of 50 pixel × 50 pixel. Note that, we fixed our 

window size from several experiments. The convolution between image 𝐼(𝑖, 𝑗) and 

the mask image ℎ(𝑢, 𝑣) is given by Eq. (4):

𝐶(𝑖, 𝑗) =
∞∑

𝑢=−∞
(

∞∑
𝑣=−∞

𝐼(𝑖 − 𝑢, 𝑗 − 𝑣)ℎ(𝑢, 𝑣)) (4)

where (𝑖, 𝑗) is the dimension of the image to be convolved and (𝑢, 𝑣) is the dimension 

of mask image. ℎ(𝑢, 𝑣) is the coefficient of mask image at position (𝑢, 𝑣). The centre of 

the window point provides a weighted sum of each pixel in the binarized image. The 

pixel that gives the highest weighted sum as an initial contour point is considered. 

We draw a circle (initial contour, 𝐶) from the initial contour points. Let us consider 

two forces of the initial contour 𝐶 , be 𝐹1(𝐶) and 𝐹2(𝐶). 𝐹1(𝐶) is the force to 

shrink the contour and 𝐹2(𝐶) is the force to expand the contour. These two forces 

are balanced when they reach the desirable boundary of the interested object. The 

minimal partition problem used to minimize an energy is represented in Eq. (5):

𝐹 (𝑐1, 𝑐2, 𝐶) = 𝐹1(𝐶) + 𝐹2(𝐶) = ∫
𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

|𝐼o − 𝑐1|2𝑑𝑥 + ∫
𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

|𝐼o − 𝑐2|2𝑑𝑥 (5)

In this work, the initial contour is located around the mid section of the heart area 

as shown in Figure 4(b). Moreover, 𝐹1(𝐶) is always zero and 𝐹2(𝐶) is greater than 

0, hence, we always expand initial contour (C). When the initial contour 𝐶 reaches 

the equilibrium, 𝐹1(𝐶) and 𝐹2(𝐶) becomes zero, and segmentation is achieved. The 

iteration process is controlled by level set formulation as shown in Eq. (6).

𝐶 = {(𝑥, 𝑦)|𝜙(𝑥, 𝑦) = 0

𝐹 (𝑐1, 𝑐2, 𝐶) = ∫
Ω

(𝐼o(𝑥, 𝑦) − 𝑐1)2𝐻(𝜙)𝑑𝑥𝑑𝑦 + ∫
Ω

(𝐼o(𝑥, 𝑦) − 𝑐2)2(1 −𝐻(𝜙))𝑑𝑥𝑑𝑦

+𝑣∫
Ω

|∇𝐻(𝜙)|
(6)
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Figure 4. Elimination process of heart area. a) 10 clustered MRI image b) Four brightest cluster c) Final 
segmented heart area.

Where 𝐻(.) is the heaviside function and 𝐼o(𝑥, 𝑦) is the input image. To obtain the 

minimum of 𝐹 , 𝐹 ′s derivatives is found and set to zeros and 𝑐1 and 𝑐2 and 𝜙 is 

updated in Euler–Lagrange equation as shown in Eq. (7):

𝑐1(𝜙) =
∫Ω 𝐼o(𝑥, 𝑦)𝐻(𝜙(𝑡, 𝑥, 𝑦))𝑑𝑥𝑑𝑦

∫Ω𝐻(𝜙(𝑡, 𝑥, 𝑦))𝑑𝑥𝑑𝑦

𝑐2(𝜙) =
∫Ω 𝐼o(𝑥, 𝑦)(1 −𝐻(𝜙(𝑡, 𝑥, 𝑦)))𝑑𝑥𝑑𝑦

∫Ω(1 −𝐻(𝜙(𝑡, 𝑥, 𝑦)))𝑑𝑥𝑑𝑦
𝜕𝜙

𝜕𝑡
= 𝛿(𝜙)[𝑣𝑑𝑖𝑣( ∇𝜙

|∇𝜙| ) − (𝐼o − 𝑐1)2 − (𝐼o − 𝑐2)2]

(7)

where 𝛿(.) is the Dirac function. The experiment shows that, the heart area normally 

resides within this circular radius of 80 pixels from the initial contour points. Hence, 

we permit the evolution process only on the circular area of 80 pixel radius from the 

initial contour point and will stop automatically. This process improves accuracy and 

saves computational time. The final segmented heart area is represented by blue as 

shown in Figure 4(c).

2.1.3. Pectoral muscle segmentation

The other important step is identifying the pectoral muscle. This step is vital because 

pectoral muscle and BROI shares a similar pixel intensity especially in the presence 

of dense BD [61, 62], making segmentation difficult and inaccurate. Hence, we 

include shape and geometrical information of the pectoral muscle and BD in MRIs 

obtained using the several experiments. The pectoral muscle is attached just below 

the BROI and above the lung and heart region ans spreads towards the bottom left 

and right corner as shown in Figure 5(a). Also, the BD is found to be thick in 

the BROI region and gradually becomes narrower and ends at the left and right 

corner. In the narrow section, the pectoral muscle and BD are closely connected. 

However, there is a small space between these two regions in MR images. We use a 

morphological opening operation to make this gap smooth and clear. Moreover, we 
on.2018.e01042
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Figure 5. Identification of pectoral muscle area using a morphological operation. (a) MRI image. (b) A 2D 
image slice is divided into three different areas: 1) left 2) right and 3) central breast area. Each area is 
processed with a morphological operation in different orientation that develops a response image. These 
response images are merged to produce a single image.

use local adaptive thresholding for the binarization of the resultant image obtained 

from morphological opening operation. Finally, the greatest area from the connected-

component labeling is selected as a pectoral muscle.

Figure 5(b) depicts the model for producing a response image in each orientation. It 

is observed that the angle of inclination of left breast tissue near the pectoral muscle 

varies between 180 to 270 degrees and right breast tissue near the pectoral muscle 

varies between 270 to 360 degrees as demonstrated by the green lines in Figure 5(b) 

respectively. Similarly, the breast tissue inclination in the central area is 0 degree. 

To generate a response image using morphological opening operation in different 

orientation, we divide a denoised image obtained after eliminating the heart area 

into 1. Left breast area 2. Right breast area and 3. Central breast area using shape and 

geometrical information. Hence, a five response image on the left and right breast 

areas with 15 degree increment in angle of inclination and 1 response image on 

central breast area with 0 degree orientation is generated. The separate response 

images are generated using morphological opening operation with the structuring 

elements in terms of lines in different orientations and the response images are 

merged together. The morphological opening operation is found to be very effective 

in smoothing the space between the breast tissue and pectoral muscle. This operation 

eliminates the objects that are smaller than the line structuring element with the scale 

of 5 pixel in different orientations to reconstruct the remaining shape of the objects. 

Let 𝐼ℎ be the denoised image after eliminating the heart area. Morphological opening 

operation performs both erosion and dilation using the same structuring elements on 

the image and satisfies Eq. (8):

𝐼rs = ∪
{
(𝑆e) ∣ (𝑆e) ⊆ 𝐼s

}
, (8)
on.2018.e01042

vier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e01042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article No~e01042

11 https://doi.org/10.1016/j.heliy

2405-8440/© 2018 Published by Else
Figure 6. Illustration of morphological opening operation to obtain a separation between pectoral muscle 
and breast tissues. (I) The original image of left and right breast area (II) The resultant image after using 
morphological opening operation on left and right breast area.

where 𝑆e indicates a line shaped structuring element with the scale of 5 pixel in 

different orientations, 𝐼s is the set of 𝐼h and ∪ denotes union of set. The response 

image 𝐼rs is given by geometric interpretation where unions of all translations of 

structuring elements 𝑆e fit the entire image 𝐼h. The important thing to noticed here 

is that the brightest feature smaller than the scale of line structuring elements in their 

respective orientation is greatly reduced in terms of intensity. Also, it eliminates 

small specularities and textural fluctuations.

Figure 6 show the images, before and after the morphological opening operation in 

the left and right breast areas. Figure 6 I ((a) and (b)) are the original image of left and 

right breast areas respectively. After the morphological opening operation, the gap 

between the pectoral muscle and BD is clear and smooth as shown in Figure 6 II ((a) 

and (b)) on the left and right breast areas. After the morphological opening operation, 

an adaptive local thresholding is used separately in three different areas to segment 

the pectoral muscle. In the global thresholding approach, a single thresholding value 

is produced for a whole image based on the global characteristics of the image. 

In contrast, adaptive local thresholding calculates a local thresholding value based 

on the characteristics of the window around the pixel, i.e. it changes the threshold 

value dynamically in the image. Since the calculation of a local threshold based 

on the histogram is computationally expensive, we have chosen a local threshold 

value calculated using the statistical parameter, mean and local intensity distribution. 

Adaptive local thresholding typically takes a grayscale input image and produces a 
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binary image 𝐼𝑏(𝑥, 𝑦) as an output as shown in Eq. (9) which is dependent upon the 

window size.

𝐼𝑏(𝑥, 𝑦) =
⎧⎪⎨⎪⎩
0 𝐼(𝑥, 𝑦) ≤ 𝑇 (𝑥, 𝑦)
1 otherwise

(9)

𝐼𝑏(𝑥, 𝑦) is the binarized image, 𝐼(𝑥, 𝑦) ∈ [0, 1]. The threshold value 𝑇 (𝑥, 𝑦) is 

achieved using sauvola’s technique. This technique uses mean, 𝑚(𝑥, 𝑦) and standard 

deviation 𝛿(𝑥, 𝑦) to calculate the threshold value of each pixel within a defined 

window size as shown in the Eq. (10):

𝑇 (𝑥, 𝑦) = 𝑚(𝑥, 𝑦)[1 + 𝑘(𝛿(𝑥, 𝑦)
𝑅

)] (10)

where 𝑅 is the maximum value of standard deviation and fixed as 128 for the 

grayscale image. 𝑘 is the bias and takes the positive value between [0.2, 0.5]. Since 

the algorithm is not very sensitive of 𝑘, we calculate the threshold value without 

involving 𝑘 as shown in Eq. (11):

𝑇 (𝑥, 𝑦) = 𝑚(𝑥, 𝑦)[1 + (𝛿(𝑥, 𝑦)
𝑅

)] (11)

The smaller window size is found to be more sensitive to noise and generates 

unusable white pixels around the image. Increasing the window size will produce 

a denoised and clear image and tends to merge the edges. Hence it is necessary 

to select the right window size of our requirement for the segmentation of the 

pectoral muscle. We have conducted an experiment to find the right window size as 

shown in Figure 7. The first and second row in Figure 7 shows a resulting image 

from adaptive thresholding using different window size on left and right breast 

respectively. A window size of 5, 10, 20, 30, and 50 pixels are considered, which 

is depicted in Figure 7 I ((a), (b), (c), (d), and (e)) on left breast and Figure 7 II ((a), 

(b), (c), (d), and (e)) on right breast respectively. It is observed that a window size of 

20 pixels is found to be suitable to produce an accurate results.

A resultant image from left, right and central part of the image are merged together 

to produce a single image. To segment the pectoral muscle, we remove the area 

above the central point which is highlighted in blue as shown in Figure 8(a). Note 

that the central point is already detected in the previous steps. Figure 8(b) shows 

the remaining part after the upper region is removed. Finally, a pectoral muscle is 

segmented by extracting the greatest area using the connected-component labeling 

as shown in Figure 8(c).
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Figure 7. Response of different window size during adaptive thresholding. Resulting image obtained from 
adaptive thresholding using different window size (5, 10, 20, 30, and 50) respectively I) on left breast area 
II) on right breast area.

Figure 8. Illustration of extraction of pectoral muscle after local adaptive thresholding. (a) Resultant 
image of local adaptive thresholding. The blue in upper part represents the area above the central point of 
breast image and lower part represents the heart area (b) Resultant image after removing a area above the 
central point and heart area. (c) Extraction of pectoral muscle by selecting the greatest area of connected-

component labeling.

2.2. Segmentation Methodology of BD

We segmented a BD with thresholding method using fuzzy c-means clustering 

technique. The MRI images are noisy and the literature reveals that the conventional 

FCM is not efficient to produce a threshold for noisy image and sometimes produces 

false positives in the segmented images [30]. Hence, we denoised the obtained 

BROI segmentation. Also, high-level FCM is required to produce efficient results 

which are computationally expensive. To cope with the computing problem, we used 

conventional FCM clustering method within the BROI area.

FCM clustering is based on the minimization of the following objective function 

[31] as shown in the Eq. (11). First of all, we define a number of clusters, 𝐶 = 4 and 

the random initialization of membership matrix in Eq. (13) is done. The centre of 
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the cluster is calculated as shown in Eq. (14) using the membership matrix, 𝑈xy. The 

membership matrix is updated according to the position of the cluster centre. The 

change in the membership matrix is calculated and compared with old membership 

matrix. If the objective function is minimized, the process is stopped otherwise a 

new center of clusters is determined and membership matrix is updated according to 

the new centers. The process continues until the objective function is minimized as 

shown in Eq. (12).

𝑂𝑚 =
𝑁∑
𝑥=1

𝐶∑
𝑦=1

𝑈𝑚
xy
||𝑧x − 𝐶y||2, 1 ≤ 𝑚 ≤ ∞ (12)

where 𝑁 and 𝐶 are the number of data points and number of cluster centers. 

𝑈xy represents the membership function of 𝑥(𝑡ℎ) data and 𝑦(𝑡ℎ) cluster center. 𝑚 and 

𝐶y are the fuzziness index ≥1 and 𝑦(𝑡ℎ) cluster center. The membership function 𝑈xy

and cluster centers 𝐶y are calculated as shown in Eq. (13) and Eq. (14):

𝑈xy = 1∑𝐶

𝑧=1(
||𝑧x−𝐶y||
||𝑧x−𝐶z|| )

2
𝑚−1

(13)

𝐶y =
∑𝑁

𝑥=1 𝑈
𝑚
xy
.𝑧x∑𝑁

𝑥=1 𝑈
𝑚
xy

(14)

The membership function 𝑈xy and cluster centers 𝐶y is calculated and repeated 

unless 𝑚𝑎𝑥𝑖𝑗{|𝑈𝑧+1
xy

− 𝑈𝑧
xy
|} < 𝜖, where 𝜖 is the termination iteration between 

0 and 1. Each pixel of the image is assigned to the respective cluster with the 

highest membership value. We conducted the experiment on FCM with several 

clusters. According to the experiment, FCM with 4 clusters is found to be effective 

for producing an accurate thresholding value. A threshold value is produced by 

averaging the mean of maximum and minimum value of the third cluster. Moreover, 

it is observed that the mean histogram intensity of left and right BROI is different. 

Hence, we calculated separate thresholds by using 4 level FCM of left and right 

BROI. The obtained segmentation result is accurate with faster computation.

Figure 9 shows the mean histogram of intensity information in the left and right 

BROI. For demonstration, we choose six MR images and observed that the right 

BROI has a higher intensity level as compared with the left BROI. Thus, we came 

to the conclusion that a single thresholding value produced by thresholding would 

not be sufficient to achieve high accuracy in the segmentation of BD. To solve this 

problem, we divided a BROI image into three different areas following similar steps 

during BROI segmentation. Since, the central area has no BD, we focus on the left 

and right BROI. Figure 10 demonstrates the left (blue solid arrowhead) and right 

(blue dotted arrowhead) BROI respectively. We conducted our experiment separately 

on the left and right BROI to extract BD and later resultant images are merged to 

produce the final result.
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Figure 9. Mean value of histogram in terms of intensity of the left and right BROI.

Figure 10. A process to obtain BD from BROI from breast slices.

Ethics statement

Human studies were approved by Victoria University Committee and by the 

Institutional Review Board. MR imaging was conducted in accordance with guide-

lines defined by Affiliated Zhongshan Hospital of Dalian University to achieve 

safe and reliable scanning. The experiment was approved specifically by the ethics 

committee. Written consent was obtained from each case subject after the imaging 

procedures had been conveyed.

3. Results and Discussion

3.1. Image source and evaluation criteria

The experiment was performed on 15 female subjects (T1-weighted MR scans) with 

an age range between 22 and 54 years without any symptom of breast diseases. 

It was performed on a Philips Achieva 3.0T scanner using the turbo spin echo 

pulse sequence without fat suppression. Each patients MR scan covers entire breast 

with the total number of 90 image slices with 2 mm thickness. The other imaging 
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parameters considered are: TR/TE = 645/9.0 ms, echo train = 5, slice gap = 0, phase 

encoding R-L, bandwidth per pixel = 174 Hz, field of view = 330 mm, imaging 

matrix = 328 × 384, and parallel imaging with SENSE factor = 2. The presented 

database consist of the variety of breast sizes, shapes, and breast tissues patterns. 

The proposed algorithm is applied to the individual slices to complete a 3D breast 

volume using Matlab R2013b running under Intel(R) core(TM) i5-4570s CPU@ 

2.90 GHz with 8GB of RAM.

The performance of the proposed algorithm is tested with the quantitative analysis 

using a pixel-based classification technique where pixels are classified as BROI, BD 

or background. As a result, each pixel in the images are classified as classification 

(true positive (TP) and true negative (TN)) and misclassification (false positive 

(FP) and false negative (FN)). Based on these predictions, the performance of our 

algorithm is compared in terms of Accuracy (Acc), Precision (P), Sensitivity (Se) 

or Recall, Specificity (Sp), Area under ROC curve (AUC), Misclassification rate 

(MR), Dice similarity coefficient (DSC) and Jaccard Coefficient [27, 66, 67, 70]. 

These performance metrics are defined as shown in Eq. (15) to Eq. (21):

Acc = TP+TN

TP+FP+TN+FN
(15) P = TP

TP+FP
(16)

Se = TP

TP+FN
(17) Sp = TN

TN+FP
(18)

MR = FP+FN

TP+FP+TN+FN
(19) DSC = 2(A ∩ GT)

A + GT
∗ 100% (20)

JC = A ∩ GT

A ∪ GT
∗ 100% (21)

TP and TN denote the pixel that is correctly identified as BROI/BD or background 

pixels. Similarly FP and FN represent the incorrectly identified BROI or BD, 

and background pixels. A and GT denotes automatically and manually obtained 

segmentations. Acc is the measure of the total number of correctly classified pixels 

(sum of true positives and true negatives) to the number of total pixels in an image 

[63, 64]. Precision is the proportion of correctly predicted positive observations to 

the total predicted positive observations [67]. Although both accuracy and precision 

depict the closeness of measurement to an actual value, precision reflects the 

reproducible measurements even if they are far from accepted value. The metrics 

Se and Sp are derived respectively from the proportion of positive and negative 

pixels in the ground truth image that are truly identified [68, 69]. A result with 

high sensitivity and specificity are considered as an accurate segmentation. A metric 

misclassification rate or error rate MR is the measure of how often the predictions 

are wrong. The best misclassification rate is 0.0 and the worst is 1.0. Also, receiving 

operating characteristics (ROC) curve [71] is used to estimate the trade-off between 
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Se and Sp that is considered as non-parametric performance measurement. The ROC 

curve can be considered as a binary classifier and is plotted with the different values 

of independent threshold values within a certain interval. A curve representing a 

false positive rate (1-Sp) on the 𝑥-axis vs true positive rate (Se) on the 𝑦-axis is 

plotted. The ROC curve is the measure of predictive measure and is considered as 

an ideal curve when it is closer to the top left corner. The value of AUC greater 

than 90% is considered to be an excellent result. To further validate the performance 

of the developed algorithm, we have calculated an overlap based metrics known 

as Dice similarity coefficient (DSC) and Jaccard coefficient (JC) (DSC) [72]. It is 

the measure of overlap between two binary images to demonstrate the segmentation 

performance. The value of these overlap based metrics ranged from 0 (no overlap) 

to 1 (perfect overlap).

3.2. BROI segmentation results

Figure 11 shows the comparison of results produced by the proposed BROI 

segmentation method with the ground truth image which is manually segmented 

by an expert radiologist. The images with different size and shape are considered 

for the demonstration and yield the accurate segmentation results. First column 

((a) (d) and (g)) shows the ground truth image whereas second column ((b), (e), 

and (h)) and third column ((c), (f), and (i)) shows the automatically segmented 

results respectively. In order to further validate the robustness of the proposed 

BROI segmentation, we performed the quantitative analysis using 8 metrics. Table 1

shows the performance of the proposed model in terms of accuracy, specificity, area 

under ROC curve, misclassification rate, precision, sensitivity and Dice similarity 

coefficient. Note that the values presented is the table are the average value of each 

slice in the MR image. Experiment shows that the obtained results are accurate while 

compared with the manual segmentation. In terms of accuracy, specificity and AUC, 

all the results are above 95%, proving the effectiveness of the proposed algorithm. It 

is observed that, the algorithm demonstrates a very good result with a minimum of 

88% and maximum of 96% precision rate. The sensitivity of the proposed algorithm 

is high with an average value of 95.73%. The overlap ratio demonstrated by the Dice 

similarity and Jaccard coefficient is high with an average of 96.35% and 92.86% 

respectively.

3.3. BD segmentation results

Figure 12 shows the comparison of results produced by the proposed BD segment-

ation method and ground truth image which is manually segmented by an expert 

radiologist. The images with different level of breast tissue are considered for the 
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Figure 11. Results of BROI segmentation on the MRI images with different levels of BD and different 
breast shapes. The images in the first column are the manually segmented ground truth images. Similarly, 
second and third columns are the automatically segmented results with the proposed method and its mask 
on the original image to visually inspect the accuracy.

demonstration and yield the accurate segmentation results. First column ((a) (d) and 

(g)) shows the ground truth image whereas second column ((b), (e), and (h)) and third 

column ((c), (f), and (i)) shows the automatically segmented results respectively. 

In order to further validate the robustness of the proposed BD segmentation, we 

performed the quantitative analysis using 8 metrics. Table 2 shows the performance 

of the proposed model in terms of accuracy, specificity, area under ROC curve, 

misclassification rate, precision, sensitivity and Dice similarity coefficient. Note that 

the values presented is the table are the average value of each slice in the MR image. 

Experiment shows that the obtained results are accurate and highly comparable with 

results obtained from the manual segmentation. In terms of 3 metrics (accuracy, 

specificity and AUC), the results are above 95%, proving the effectiveness of the 

proposed algorithm. It is observed that, the algorithm demonstrates an outstanding 
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Table 1. This table shows the resultant performance of BROI segmentation using the proposed 
method in 15 different cases in terms of accuracy (Acc), specificity (Sp), area under the curve 
(AUC), misclassification rate (MR), precision (P), sensitivity (Se) or recall, and Dice similarity 
coefficient (DSC).

DB Acc Sp AUC MR P Se DSC JC

1 0.9776 0.9830 0.97 0.0224 0.9425 0.9473 0.9555 0.9147

2 0.9648 0.9740 0.96 0.0398 0.8921 0.9413 0.9475 0.9002

3 0.9803 0.9783 0.99 0.0197 0.8800 0.9937 0.9564 0.9164

4 0.9871 0.9898 0.98 0.0129 0.9588 0.9591 0.9888 0.9778

5 0.9578 0.9554 0.95 0.0389 0.8960 0.9602 0.9599 0.9024

6 0.9819 0.9848 0.97 0.0181 0.9402 0.9414 0.9424 0.8910

7 0.9814 0.9845 0.97 0.0174 0.8873 0.9501 0.9647 0.9318

8 0.9897 0.9912 0.96 0.0122 0.9347 0.9123 0.9674 0.9368

9 0.9699 0.9671 0.97 0.0301 0.8945 0.9733 0.9542 0.9124

10 0.9829 0.9824 0.99 0.0171 0.9489 0.9868 0.9874 0.9751

11 0.9682 0.9644 0.99 0.0318 0.9421 0.9928 0.9867 0.9737

12 0.9834 0.9866 0.98 0.0166 0.9246 0.9420 0.9632 0.9290

13 0.9709 0.9728 0.98 0.0291 0.9272 0.9468 0.9568 0.9171

14 0.9795 0.9800 0.98 0.0205 0.9021 0.9679 0.9548 0.9135

15 0.9853 0.9888 0.98 0.0147 0.9301 0.9447 0.9673 0.9366

Avg 0.9773 0.9789 0.97 0.0228 0.9201 0.9573 0.9635 0.9286

result with an average of 95.05% precision rate. The overlap ratio demonstrated by 

the Dice similarity and Jaccard coefficient is high with an average of 91.60% and 

84.53% respectively. In terms of sensitivity, resultant values are slightly low but 

satisfactory values compared with other parameters. This is because some part of 

the BD has very low intensity and could be missed during the segmentations.

3.4. Discussion

Obtaining automatic, fast and accurate segmentation of the BROI and BD from MR 

images is a significant and challenging problem. The breast images can be found 

in different shapes, sizes and density patterns. Moreover, the pectoral muscles are 

closely connected and shares similar intensity distribution with BROI. Hence, the 

initial identification of landmarks such as lung, heart and pectoral muscle is a vital 

step to facilitate the efficient BROI and BD segmentation process.

This study performs a stepwise analysis on landmarks such as lung, heart, and 

pectoral muscle and gradually eliminates them to achieve the final segmentation 

results. Prior to the landmark identification, we utilized the pre-processing step 

which improves the segmentation process. During the heart segmentation, an active 

contour level set method is used on the last 4 clusters from 𝑘-means clustering 

obtained during the pre-processing step. These 4 clusters are the brightest and the 

experiment shows that the heart region lies within these clusters. Active contour uses 

the level set method to create a force to either shrink or expand the contour from 

the initial contour point. The initial contour point is always selected approximately 
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Figure 12. Results of BD segmentation on the MRI images with different levels of BD and different 
breast shapes. The images in the first column are the manually segmented ground truth images. Similarly, 
second and third columns are the automatically segmented results with the proposed method and its mask 
on the original image to visually inspect the accuracy.

around the centre of the heart region using the maximum entropy thresholding and 

convolution method. We fix the initial contour (circle) at the radius (5 pixel) from 

the initial contour point. This is because we wanted to expand the contour from 

the central area of heart and limit it beyond the circular radius of 80 pixels. We 

observed that circular radius of 80 pixel is sufficient to identify the heart area from 

the rescaled image. Furthermore, the segmentation is obtained within a few iterations 

which results in faster computation time.

During pectoral muscle segmentation, the image is divided into three sections. The 

angular orientation of the pectoral muscle and breast density boundary is different 

in three different sections. So, each segment needs to be analysed separately. Also, 

the analysis of smaller segments reduces the processing time. Finally, the resultant 

image from the three segments are merged to generate the final segmented image. 
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Table 2. This table shows the resultant performance of BD segmentation using the proposed 
method in 15 different cases in terms of accuracy (Acc), specificity (Sp), area under the curve 
(AUC) and misclassification (MR), precision (P), sensitivity (Se) or recall, and Dice similarity 
coefficient (DSC).

DB Acc Sp AUC MR P Se DSC JC

1 0.9879 0.9898 0.96 0.0133 0.9514 0.8140 0.9046 0.8260

2 0.9799 0.9854 0.96 0.0321 0.9701 0.8190 0.9321 0.8728

3 0.9874 0.9872 0.97 0.0126 0.9549 0.8199 0.8946 0.8092

4 0.9912 0.9897 0.96 0.0088 0.9301 0.8145 0.8984 0.8155

5 0.9478 0.9701 0.93 0.0522 0.9647 0.8075 0.9141 0.8417

6 0.9885 0.9819 0.97 0.0115 0.9611 0.8110 0.9231 0.8571

7 0.9749 0.9814 0.97 0.0354 0.9302 0.8297 0.9145 0.8424

8 0.9845 0.9989 0.94 0.0155 0.9482 0.8176 0.9108 0.8362

9 0.9855 0.9676 0.96 0.0212 0.9444 0.8412 0.9402 0.8871

10 0.9788 0.9701 0.97 0.0277 0.9589 0.8250 0.9001 0.8183

11 0.9612 0.9627 0.98 0.0388 0.9628 0.8555 0.9374 0.8821

12 0.9888 0.9797 0.97 0.0112 0.9494 0.8002 0.9045 0.8256

13 0.9659 0.9645 0.97 0.0341 0.9579 0.8109 0.9141 0.8417

14 0.9873 0.9823 0.96 0.0127 0.9312 0.8125 0.9214 0.8542

15 0.9898 0.9781 0.95 0.0102 0.9415 0.8212 0.9306 0.8702

Avg 0.9800 0.9793 0.96 0.0225 0.9505 0.8199 0.9160 0.8453

Table 3. Comparison of accuracy using three and four clustered FCM on BROI after 
segmentation.

Database ACC with 4 level FCM 
(single threshold)

ACC with 4 level FCM 
(double threshold)

1 0.9601 0.9776

2 0.9421 0.9648

3 0.9656 0.9803

4 0.9611 0.9871

5 0.9594 0.9578

6 0.9658 0.9819

7 0.9470 0.9814

8 0.9523 0.9897

9 0.9349 0.9699

10 0.9231 0.9829

11 0.9451 0.9682

12 0.9532 0.9834

13 0.9475 0.9709

14 0.9546 0.9795

15 0.9529 0.9853

Avg 0.9509 0.9773

In the next step, we preserved the breast area above the central point to have fewer 

components for the extraction of the pectoral muscle as shown in Figure 8 (a), (b).

The image obtained from BROI segmentation is further processed for BD segment-

ation. In the conventional method, the 4 level FCM thresholding technique is used 

to develop a single threshold valve for the entire image which includes both breasts. 

However, the analysis of the mean histogram based on the intensity of left and right 

breasts showed that the left and right breast have dissimilar mean intensity. Hence, 

the BROI is divided into three sections based on their geometrical information and 
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Table 4. Quantitative comparison of performance of BROI and BD segmentation using the 
proposed method with the recently developed other approaches.

Acc Sp Se DSC JC

BROI
Gallego et al. 2012 [73] – – 0.8900 0.8800 0.7900

Wu et al. 2013 [27] – – – 0.9500 –

Ivanovska et al. 2014 [75] – 0.9900 0.9800 0.9600 -

Gubern et al. 2015 [33] – – – 0.9400 –

Jose et al. 2015 [51] – – – 0.9220 –

Khalvati et al. 2015 [26] – – – 0.9400 –

Milenkovic et al. 2015 [28] – – – 0.961 –

Doran et al. 2017 [76] – – – 0.924 0.8590

Aida et al. 2017 [74] 0.9733 0.9810 0.9491 0.9630 0.9290

PROPOSED METHOD 0.9773 0.9789 0.9573 0.9635 0.9286

BD
Ivanovska et al. 2014 [75] – 0.9900 0.8100 0.8300 –

Gubern et al. 2015 [33] – – – 0.80 –

Thakran et al. 2018 [77] – – 0.8900 0.9000 0.8400

PROPOSED METHOD 0.9800 0.9793 0.8199 0.9160 0.8453

the 4 level FCM thresholding is applied separately to develop two threshold values 

for left and right breasts. It is observed that accuracy of separate thresholding in left 

and right BROI is better than the single thresholding technique as shown in Table 3. 

Furthermore, since varied thresholding uses smaller area, the process became faster.

The proposed method was tested with 15 different MR images developed form 

the same imaging technique with different scenarios i.e. variety of breast sizes, 

shapes and BD patterns. The result demonstrates that, our method accurately 

segments BROI and BD in the different scenarios which can also be observed 

with the segmentation result as shown in Figure 11 and Figure 12. To evaluate the 

performance of the proposed method, eight evaluation metrics are calculated. The 

obtained results shows that the proposed method is efficient for the segmentation of 

BROI and BD from MR images.

We choose nine recent methods in the literature such as [26, 27, 28, 33, 51, 73, 

75, 76], and [74] to analyze the BROI segmentation and three methods such as 

[33, 75] and [77] for the BD segmentation, the results of which are compared with 

the proposed method. The quantitative comparison is done with the available five 

metrics (Acc, Sp, Se, DSC and JC) as shown in Table 4. In terms of Acc and DSC, 

our method outperforms all the recent results for both BROI and BD segmentation. 

JC obtained from the proposed method is marginally better or comparable with the 

existing literature. The results associated with Sp and Se are highly comparable with 

most of the results.

For automatic BROI and BD segmentation, we have compared our DSC value with 

different methods in the literature. In the model based method followed by Gallego 

et al. [73], a mean Se, DSC and JC obtained was 89%, 88% and 79%. The processing 
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time taken to run was less than a minute to segment BROI per volume with the size 

of 256 ×128 ×45. The edge based approach followed by Wu et al. [27] demonstrates 

an average DSC rate of 95%. The processing time taken for BD segmentation was 

4.5 minutes with MR image of 256 × 256 × 56 per volume. Gubern et al. [33] and 

Kalvati et al. [26] use the atlas based method and showed that the mean DSC obtained 

was 94%. Gubern-Merida et al. [33] reported a computational time of 8 min for 

BROI and BD segmentation for the image of 256 × 128 × 96 per volume. Similarly, 

Kalvati et al. [26] showed that the processing time for his method was 2 min for 

BROI segmentation for the MR image of 94 × 94 × 44 per volume. A automatic 

BROI segmentation in the axial breast MR images proposed by Milenkovic et al. [28]

obtained a overall DSC value of 96.1% and the computational time was 4.1 minutes 

on the MR image of 448 × 448 × 144 per volume for BROI segmentation.

The computation time in the proposed algorithm mainly depends upon the resolution 

of the MR images and the clusters for the Kmeans and Fuzzy cmean clustering 

technique used for the experiments. The number of clusters should be determined 

so that the BROI and BD regions can be preserved with faster execution of the 

algorithm. We execute our algorithm for the several times to optimize the solution 

and the experiments takes an average of 1 minute and 50 seconds for BROI and BD 

segmentation with the resolution of 384 × 384 × 90 per volume. The execution time 

of our algorithm is significantly less than the other recent approaches tested on the 

similar hardware. The performance can be further improved with the implementation 

of GPU.

Breast MR databases are not available online. Results presented in the state of art 

are calculated from their own private databases. Hence, it is not always suitable to 

compare the results developed from different databases. Furthermore, during the 

segmentation process, the various methods might have several assumptions and 

considerations that make direct comparison problematic. For instance, Wang et al.

[29] results are dependent upon the presence of fat in the anterior side of chest wall 

and Wu et al. [27] does not consider challenging cases. Also, the processing speed 

depends upon the resolution of MR image of different databases.

4. Conclusion

In this paper, we proposed an automatic method for the accurate segmentation of 

the BROI and BD. BROI segmentation is achieved by combining pixelwise adaptive 

filtering, 𝑘-means clustering and morphological operations with the application of 

local adaptive thresholding. BD segmentation is obtained by a combined method 

using fuzzy c means thresholding and mean value histogram. These frameworks 

have been tested on 15 different cases that comprised of different shapes and density 

patterns. Furthermore, quantitative analysis was carried with different evaluation 
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metrics (Acc, Sp, AUC, MR, P, Se, DSC and JC) to demonstrate the segmentation 

quality when compared with manually segmented results by an expert. Most 

particularly, it is observed that the proposed algorithm is highly effective on breast 

MRIs with dense BD that has an similar intensity level to the area near the pectoral 

muscle. The presented model can act as a preliminary step that further assists in the 

diagnosis of breast cancer.
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