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Mouse cytomegalovirus (MCMV) is a β-herpes-
virus that is contained by the host through 
the action of NK cells before the onset of 
the adaptive immune response. Mice of the 
C57BL/6 or C57BL/10 background show ro-
bust resistance to MCMV due to the expres-
sion of the NK cell–activating receptor Ly49H, 
whereas BALB/c mice, lacking Ly49H, are 
highly susceptible (1–4).

We have previously described a genetic 
screen for susceptibility to MCMV, performed 
in C57BL/6 mice homozygous for random 
N-ethyl-N-nitrosourea (ENU)-induced germline 

mutations (5). Based on the frequency of trans-
missible susceptibility mutations, we have esti-
mated that �300 genes comprise the MCMV 
resistome: that set of genes with nonredundant 
function in early resistance to this pathogen (6).

Among the known components of the 
resistome are genes required to sense virally 
encoded nucleic acids and proteins (e.g., Tlr9, 
Tlr3, Myd88, Trif, Unc93b1, Ly49h, and Dap12 
genes; references 1 and 7–12). Also within the 
resistome are genes coding for several cytokine 
mediators (13–16), their receptors (13, 15), and 
their transducers (5, 17–20). In addition, sev-
eral genes code for components of the cellular 
machinery required for NK cell granule exo-
cytosis, or components of the granules them-
selves. These include Lyst (21), Prf1 (22), and 
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Mouse cytomegalovirus (MCMV) susceptibility often results from defects of natural killer 

(NK) cell function. Here we describe Jinx, an N-ethyl-N-nitrosourea–induced MCMV suscep-

tibility mutation that permits unchecked proliferation of the virus, causing death. In Jinx 

homozygotes, activated NK cells and cytotoxic T lymphocytes (CTLs) fail to degranulate, 

although they retain the ability to produce cytokines, and cytokine levels are markedly 

elevated in the blood of infected mutant mice. Jinx was mapped to mouse chromosome 11 

on a total of 246 meioses and confi ned to a 4.60–million basepair critical region encom-

passing 122 annotated genes. The phenotype was ascribed to the creation of a novel donor 

splice site in Unc13d, the mouse orthologue of human MUNC13-4, in which mutations cause 

type 3 familial hemophagocytic lymphohistiocytosis (FHL3), a fatal disease marked by mas-

sive hepatosplenomegaly, anemia, and thrombocytopenia. Jinx mice do not spontaneously 

develop clinical features of hemophagocytic lymphohistiocytosis (HLH), but do so when 

infected with lymphocytic choriomeningitis virus, exhibiting hyperactivation of CTLs and 

antigen-presenting cells, and inadequate restriction of viral proliferation. In contrast, neither 

Listeria monocytogenes nor MCMV induces the syndrome. In mice, the HLH phenotype is 

conditional, which suggests the existence of a specifi c infectious trigger of FHL3 in humans.
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genes defective in Griscelli syndrome type II (23) or the 
 Hermansky-Pudlak syndrome type II (unpublished data). 
Notable in this context is the fact that among proteins in-
volved in granule exocytosis, many contribute to melano-
some and/or neuronal exocytosis; hence, complex phenotypes 
are observed in which mutations that aff ect pigmentation may 
also have immunological or neurological consequences (24).

As described previously (5), the Jinx mutation [MGI: 
3626342], one of eight defects identifi ed by screening 3,500 
G3 mutant mice for MCMV susceptibility, is associated with 
exaggerated cytokine production after MCMV inoculation, 
consistent with the preservation of innate immune sensing 
function and inadequate eff ector function. Jinx does not cause 
aberrant pigmentation or obvious neurological dysfunction. 
Here we report the detailed phenotypic characterization and 
positional cloning of Jinx, which represents the fi rst animal 
model of type 3 familial hemophagocytic lymphohistiocytosis 
(FHL3) in humans. We show that in the mouse, the hemo-
phagocytic lymphohistiocytosis (HLH) phenotype is condi-
tional, in that it depends upon a specifi c infectious trigger.

RESULTS

The Jinx phenotype

When inoculated with 105 PFU of Smith strain MCMV, 
WT C57BL/6 mice normally survive infection, showing no 
sign of illness, and when killed after 5 d, show very few 
PFU in the spleen. The Jinx mutation was detected in a G3 
mouse that showed severe illness after inoculation with 105 
PFU of MCMV. It was retrieved by recrossing the corre-
sponding G1 sire and G2 dam, and then brought to homo-
zygosity by repeated sibling inbreeding. All Jinx mice were 
normally pigmented and showed normal cage activities, and 

their primary and secondary lymphoid organs were grossly 
normal in appearance. No abnormalities of lymphoid sub-
sets were evident on CD4, CD8, B220, and NK1.1 typing, 
nor was there evidence of anemia or a bleeding diathesis 
(not depicted).

5 d after MCMV infection, viral titers in BALB/c mice 
and Jinx homozygotes are four to fi ve orders of magnitude 
higher than in WT C57BL/6 mice (Fig. 1 A). Although Jinx 
homozygotes do not usually die after challenge with 105 PFU 
of MCMV, an inoculum of 2.5 × 105 PFU is uniformly 
lethal to both Jinx and BALB/c mice within the same time 
frame (Fig. 1 B). Jinx homozygotes show exaggerated pro-
duction of IL-12, IFN-γ, and IFN-α/β (type I IFN) 36 h 
 after inoculation with the virus (Fig. 1 C). This fi nding is 
consistent with normal sensing by APCs in the context of an 
inadequate NK cell eff ector response, permitting unfettered 
accumulation of the virus and therefore a stronger stimulus 
for cytokine production.

Because NK cells are pivotal in resistance to acute infec-
tion with MCMV, we sought to analyze NK cytolytic activity 
and IFN-γ production because defects in either of these pro-
cesses would suggest an explanation for the observed failure to 
restrict viral proliferation within infected tissues. In Jinx mu-
tants, NK cell–mediated cytotoxicity against β2-microglobu-
lin (β2m)-defi cient target cells in vivo (Fig. 2 A) and against 
YAC-1 cells in vitro (Fig. 2 B) is abolished. However, NK 
cells from MCMV-infected Jinx mice are able to be activated 
as indicated by their ability to secrete normal levels of IFN-γ 
(Fig. 2 C). Accordingly, we suspected a problem with NK cell 
degranulation and used the CD107a surface translocation 
method (25, 26) to assess degranulation in Jinx and WT NK 
cells. A gross abnormality of NK cell granule exocytosis was 

Figure 1. Jinx mutants show high susceptibility and an increase in 

cytokine production after MCMV infection. (A) PFU were measured 

in spleens from C57BL/6, BALB/c, and Jinx/Jinx mice on day 5 after the 

inoculation with 105 PFU of MCMV. BALB/c mice were used as controls for 

susceptibility. Each point represents an individual animal, and lines refer 

to means. (B) Time-dependent death of C57BL/6 mice, BALB/c mice, and 

Jinx/Jinx mutants when challenged with 2.5 × 105 PFU of MCMV. For 

each genotype, n = 6. The experiment was concluded after 7 d, but 

no additional deaths were observed for at least 10 additional days. 

(C) IL-12p40, IFN-γ, and IFN-α/β levels in serum measured 36 h after 

MCMV infection. n.d., not detected.
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observed, as refl ected by the failure to transfer CD107a to the 
cell surface in response to stimulation by NK cell–activating 
receptors Ly49D, NKp46, or NK1.1 (Fig. 2 D).

When we examined CTL function in Jinx homozygotes, 
a similar phenotype was evident. Polyclonal stimulation of 
CTLs from Jinx homozygotes revealed a profound defect in 
their ability to degranulate (Fig. 3 A), but normal production 
of IFN-γ was apparent (Fig. 3 B). We therefore inferred that 
the Jinx defect likely involved a component of machinery for 
exocytosis and, further, concluded that the protein in ques-
tion had nonredundant function in lymphoid cells but was 

not required for an analogous function in melanocytes or 
neurons because melanosome exocytosis to the hair shaft and 
neurological function was at least grossly intact. Moreover, 
Jinx homozygotes showed no obvious enhancement of sus-
ceptibility to Listeria monocytogenes (not depicted), consistent 
with the conclusion that the protein aff ected has no essential 
role in neutrophil function.

Positional cloning of Jinx

The Jinx mutation was mapped by outcrossing the mutant 
stock to mice of the C57BL/10 and C3H/HeN strains and 

Figure 2. Jinx NK cells produce IFN-𝛄 after MCMV infection but 

fail to kill target cells due to a defect in degranulation. (A) In vivo 

assay of NK cell killing. WT, cells were injected into C57BL/6 mouse; Jinx, 

cells injected into a Jinx/Jinx homozygote. Numbers refer to the percent-

age of cells in each gate. (B) Killing of YAC-1 cells in vitro by NK cells 

 purifi ed from MCMV-infected Jinx homozygotes (dashed line) or C57BL/6 

cells (solid line). (C) IFN-γ production by NK cells obtained from MCMV-

Table I. Markers used for Jinx fi ne mapping

Markers Position (Mb) Susceptible Susceptible Resistant Resistant

c11.110.56 110.56 D S-B S-B S-B

d11mit291 112.59 D S-B S-B S-B

c11.113.1 113.03 S-B S-B S-B D

c11.115.2 115.46 S-B S-B D D

d11mit203 116.18 S-B S-B D D

c11.117.1 117.63 S-B D D D

The marker positions are derived from Ensembl build 41 database. S-B, single-B6 (homozygous B6 allele); D, double (heterozygous B6-C3H allele).

infected C57BL/6 (WT) and Jinx/Jinx homozygotes 2 d after inoculation. 

Data show the percentage of IFN-γ+ cells among the gated NK1.1+ 

CD3ε− population. (D) Stimulus-induced degranulation of NK cells mea-

sured by CD107a surface expression. Plate-bound antibodies specifi c for 

some NK cell receptors (solid line) or their respective isotype controls 

(faded line) were used for induction. Numbers indicate the percentage of 

NK1.1+ CD3ε− cells expressing CD107a at their surface.
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backcrossing F1 animals to mice of the mutant stock. Using a 
panel of 68 informative single nucleotide polymorphisms and 
microsatellite markers to examine 30 meioses derived from 
the C57BL/10 cross and phenotyping based on MCMV sus-
ceptibility, the mutation was mapped to the distal end of 
chromosome 11 with a log odds distance score of 5.5 (Fig. 
4 A). On 216 additional meioses derived from the C3H/HeN 
cross and phenotyping based on MCMV susceptibility, the 
mutation was confi ned to a region circumscribed by markers 
at 113.03 million basepairs (Mb) and 117.63 Mb removed 
from the centromere (Ensembl Build 41; Table I). This 4.60-Mb 
region encompassed 122 annotated genes, 22 of which were 
excluded from consideration by DNA sequencing, most of 
them at the cDNA level (Table II).

The Unc13d gene was considered as a candidate because 
mutations in the human orthologue MUNC13-4 cause FHL3, a 
disease in which CTL and NK cells from aff ected patients show 
a defect of degranulation (27, 28). When the Unc13d cDNA 
was amplifi ed from splenocyte mRNA derived from Jinx mice 
and sequence, a 53-bp insertion (degeneration to double se-
quence) was observed (GenBank accession no. EF127645) in a 
portion of the cDNA corresponding to exon 26 of the gene.

Further sequencing at the genomic level disclosed a G®T 
transversion at position 4,538 downstream from the distal 
end of exon 26 (Fig. 4 B), which created a new donor splice 
site, preferred to the complete exclusion of the normal donor 
site (Fig. 4 C). As confi rmed by genomic sequencing (Gen-
Bank accession no. EF127646), this splicing defect causes the 
aberrant incorporation of the 53 intronic nucleotides that 
normally follow exon 26 into the Unc13dJinx-derived mRNA, 
which in turn leads to the incorporation of 20 aberrant amino 
acids into the UNC-13D protein, followed by premature 
termination of the polypeptide chain due to an in-frame 
TGA codon after amino acid 859 (Fig. 4 D). Normally, 1,085 
amino acids in length, the UNC-13D protein features two 
Ca2+-binding (C2) domains separated by two “MUNC ho-
mology” domains (MHDs) and a domain of unknown func-
tion (DUF1041; Fig. 4 D). The Jinx mutation is predicted to 
eliminate the second of the C2 domains and part of the sec-
ond MHD. C2 domains are also found in phospholipases, 
protein kinases C, and in other members of the MHD-
 defi ned family, and extend across many eukaryotic species, in-
cluding Caenorhabditis elegans and Drosophila melanogaster. C2 
domains appear to bind phospholipids, inositol polyphosphates, 

Figure 3. Jinx CD8+ T cells produce a normal amount of IFN-𝛄 

upon polyclonal stimulation with PMA/ionomycin but fail to de-

granulate. (A) Surface expression of CD107a. Inset numbers indicate 

percentage of cells with induced expression. (B) Up-regulation of intra-

cellular IFN-γ. Graphs beneath each FACS illustration show data for 

three mice.



JEM VOL. 204, April 16, 2007 857

ARTICLE

and intracellular proteins, consistent with a possible role in 
signal transduction.

Conditional induction of an FHL3-like phenotype 

by lymphocytic choriomeningitis virus (LCMV) infection

FHL3 is a severe disease that occurs in children with mutations 
of MUNC13-4, the human orthologue of Unc13d (27). Al-
though the pathogenesis of the disease is not well understood, 
the clinical features of the disorder include massive hepato-
splenomegaly, thrombocytopenia, neutropenia, and anemia. 
The two principal hallmarks of the disease are an overwhelm-
ing proliferation of CD8+ T cells and macrophages, associated 
with sustained production of cytokines. Histologically, macro-

phages are seen to ingest erythroid precursors as well as eryth-
rocytes and platelets. Other forms of FHL occur as a result 
of mutations in the perforin-encoding gene (29) and the 
syntaxin-11 gene (30). Some (but not all) features of FHL 
can be observed in patients with Griscelli syndrome type II 
(caused by mutations of RAB27A; reference 31) and in 
patients with Chediak-Higashi syndrome (caused by muta-
tions in LYST; reference 32).

It has been proposed that an infectious trigger—either 
viruses such as EBV or intracellular bacteria (33)—is required 
for expression of the FHL phenotype, a possibility supported 
by the observation that in Prf1 mutant mice, L. monocytogenes 
causes increased CD8+ T cell activation (34) and LCMV 

Figure 4. Mapping and positional cloning of Jinx (A) Genome-wide 

confi nement of the phenotype on 30 meioses using a panel of 68 

informative markers (bottom). Strongest linkage observed with a marker 

on chromosome 11, 110.56 Mb. (B) Genomic sequence from a part of intron 

26 of Unc13d reveals a G®T transversion (*), which causes splicing to 

occur distally (underscore), causing incorporation of 53 bp of intronic 

 sequence into exon 26. (C) Effect of the Jinx mutation at the mRNA level. 

KpnI cuts the WT cDNA twice with a 3,467-bp amplifi cation fragment lead-

ing to 1,922-, 1,221-, and 324-bp bands. In Jinx, the 53-bp insertion con-

tains an additional KpnI site, giving 1,922-, 596-, 678-, and 324-bp bands. 

In the mutant cDNA pool, no WT transcript is detectable. (D) Location of 

Jinx mutation in the genomic sequence of Unc13d and the structure of 

the truncated protein predicted from the Jinx mutation. C2, Ca2+-binding 

domain; MHD, MUNC homology domain; DUF, DUF1041 domain.
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infection causes both uncontrolled CD8+ T cell expansion 
and hepatosplenomegaly (35–37). In Unc13dJinx/Jinx mice, 
hepatosplenomegaly is neither observed in uninfected animals 
maintained under standard conditions of housing nor in ani-
mals deliberately infected with L. monocytogenes, sustaining 
7 d of documented infection and followed through 2 wk, 
whereon all mice recovered (not depicted). Moreover, when 
2 × 104 PFU of MCMV are administered to Unc13dJinx/Jinx 
mice, sickness develops by day 5, but through 12 d of obser-
vation, when sickness has fully resolved, there is no evidence 
of HLH. At day 7, there is neutrophilia (fourfold higher than 
in WT mice) and monocytosis (threefold higher than in WT 
mice). The neutrophilia resolves by day 14, whereas the 
monocytosis does not (Fig. S1, available at http://www.jem
.org/cgi/content/full/jem.20062447/DC1). The liver, spleen, 
and salivary glands all remain normal in size and appearance.

However, HLH can be induced by at least one infectious 
agent. When infected with LCMV (Armstrong strain) and 
 examined after 12 d, mice have severe anemia and very signi-
fi cant thrombocytopenia, but neutrophilia rather than neu-
tropenia (Fig. 5 A). Splenomegaly (Fig. 5 B) and sustained 
elevation of IFN-γ in serum (Fig. 5 C) were also present, 
both hallmarks of the human disease process. Exaggerated 

production of IFN-γ is evident in splenic CD8+ T cells from 
infected Unc13dJinx/Jinx mice (Fig. 6 A) as is the activation 
marker CD69 (Fig. 6 B). The percentage of CD8+ T cells is 
approximately doubled in the spleen (Fig. 6 C). Similarly 
doubled with respect to the response observed in WT control 

Figure 5. Unc13dJinx/Jinx mice develop an FHL-like phenotype when 

infected with LCMV. (A) Hematocrit, platelet count, and neutrophil 

count in the blood of LCMV-infected WT and Unc13dJinx/Jinx mice 12 d 

after infection. (B) IFN-γ production in the serum of LCMV-infected WT 

and Unc13dJinx/Jinx mice 8 and 12 d after infection. n.d., not detected. 

(C) Spleen weight in WT and Unc13dJinx/Jinx mice 12 d after infection. n = 3 

mice per group.

Figure 6. Phenotype of CD8+ T cells and APCs in Unc13dJinx/Jinx 

mutants after LCMV infection. (A–D) Splenocytes from Unc13dJinx/Jinx 

or WT mice infected with LCMV 12 d previously or uninfected controls 

were stained for CD8α, CD3ε, CD69, and IFN-γ. (A) The percentage of 

IFN-γ+ CD8+ T cells. (B) Percentage of CD69+ CD8α+ T cells. (C) The per-

centage of CD8α+ CD3ε+ T cells among all splenocytes. (D) Splenocytes 

were stimulated for 4 h in the presence of LCMV-specifi c peptide GP33 or 

the irrelevant peptide GP160. Inset numbers represent the percentage of 

CD8α+ CD3ε+ IFN-γ+ cells. (E) The percentage of macrophages (F4/80+ 

CD11b+ cells) among all splenocytes. (F) The expression of CD80 (mean 

fl uorescence intensity) by splenic macrophages (gated on the F4/80+ and 

CD11b+ population). (G) CD80 up-regulation in macrophages (left) and 

dendritic cells (right) in uninfected mice and in infected WT and 

Unc13dJinx/Jinx mice. A single uninfected (naive) mouse was used in all 

experiments, and a representative set of individual mice were used in 

D and G. For all other panels, n = 3.
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mice are the number of Unc13dJinx/Jinx splenic CD8+ T cells 
that respond to GP33 peptide, derived from LCMV (Fig. 6 
D). In Unc13dJinx/Jinx mice, an approximately 2.5-fold increase 
in the number of F4/80+/CD11b+ cells were present in the 
spleen (Fig. 6 E). Among the cells of this population, the APC 
activation marker CD80 is abnormally up-regulated in 
Unc13dJinx/Jinx mice (Fig. 6 F). This up-regulation applied 
equally in both macrophage and DC populations (Figs. 6 H).

Despite evidence of exaggerated innate and adaptive 
immune responses to infection, Unc13dJinx/Jinx mice were not 
able to eradicate the LCMV infection, which grew out of 
control so that plaque assays of spleen homogenates showed 
viral titers >1,000-fold higher in Unc13dJinx/Jinx mice than in 
WT mice at 12 d after inoculation. Interestingly, some con-
tainment was achieved in the liver, where titers declined 
between days 8 and 12 after inoculation (Fig. 7, A and B).

Histologically at day 12, Unc13dJinx/Jinx mice showed 
abundant hepatic granulomata compared with WT mice (Fig. 
8 A), and depletion of germinal centers with replacement by 
macrophages in peripheral lymph nodes (Fig. 8 B). In the 
bone marrow as well, macrophage infi ltration was evident 
in Unc13dJinx/Jinx mice (Fig. 8 C), and at high magnifi cation, 
hemophagocytosis could clearly be observed (Fig. 8 D).

DISCUSSION

In this paper we have reported the fi rst phenovariant allele of 
Unc13d in mice, detected because it caused severe immuno-
compromise in the setting of MCMV infection. Although 

mutations of the human orthologue MUNC13-4 have been 
identifi ed as the cause of FHL3, no animal model of this dis-
order has previously been identifi ed, and hence, there has 
been little chance for insight into the environmental “trig-
ger” of this disease, if such exists.

EBV, a γ-herpesvirus, has been suggested to trigger FHL 
(33), but assignment of cause and eff ect has been elusive be-
cause EBV infection is relatively common and because data 
on the penetrance of this relatively rare human disorder have 
not been available. We attempted to induce FHL-like disease 
in Unc13dJinx/Jinx mice using the β-herpesvirus MCMV. The 
acute lethal eff ect of MCMV infection in Unc13dJinx/Jinx mice 
made the experiment impossible to perform with the highest 
doses normally tolerated by C57BL/6J controls. However, 
we note that low doses of the virus, suffi  cient to produce vis-
ible sickness in Unc13dJinx/Jinx mice, were ultimately cleared 
without producing an HLH-like disease.

LCMV was investigated as an alternative pathogen because 
NK cells do not play a prominent role in early host defense 
against this agent. The LCMV-driven HLH phenotype of 
Unc13dJinx/Jinx mice is consistent with a model in which the in-
fection is not eff ectively cleared in the absence of eff ective 
CTL degranulation. Viral infection then drives the expansion 
of APCs (which are themselves actively infected) and CD8+ T 
cells, which may be infected as well, and which respond to the 
ongoing antigenic stimulus that the APCs present. We con-
sider that like the arenavirus LCMV, herpesviruses and possi-
bly many other agents might ultimately initiate a comparable 

Table II. List and positions of the sequenced genes localized in the Jinx critical region

Start position (Mb) Ensembl gene ID Description Level sequenced

113.55 ENSMUSG00000041598 CDC42 effector protein 4 cDNA

114.71 ENSMUSG00000034652 CD300A antigen cDNA and Genomic

114.75 ENSMUSG00000063193 CD300 antigen like family member B cDNA and Genomic

114.78 ENSMUSG00000058728 CD300C antigen cDNA and Genomic

114.80 ENSMUSG00000034641 RIKEN cDNA 4732429D16 Genomic

114.82 ENSMUSG00000044811 CD300A antigen cDNA and Genomic

114.83 ENSMUSG00000069610 cDNA and Genomic

114.84 ENSMUSG00000069609 cDNA and Genomic

114.85 ENSMUSG00000069608 cDNA and Genomic

114.86 ENSMUSG00000069607 CMRF-35-like molecule 3 cDNA and Genomic

114.87 ENSMUSG00000048498 CD300 antigen like family member E cDNA and Genomic

114.91 ENSMUSG00000020732 RAB37, member of RAS oncogene cDNA

114.94 ENSMUSG00000047798 CD300 antigen like family member F cDNA and Genomic

115.41 ENSMUSG00000020740 ARF binding protein 3 cDNA

115.46 ENSMUSG00000059923 growth factor receptor bound protein 2 cDNA

115.75 ENSMUSG00000020755 transcriptional regulator protein cDNA

115.90 ENSMUSG00000057948 unc-13 homolog D (C. elegans) cDNA and Genomic

115.96 ENSMUSG00000020776 Fas (TNFRSF6) binding factor 1 cDNA

116.11 ENSMUSG00000020792 exocyst complex component 7 cDNA

116.15 ENSMUSG00000034227 forkhead box J1 cDNA

116.93 ENSMUSG00000061878 Sphingosine kinase 1 cDNA

116.93 ENSMUSG00000020823 Sec14-like 1 cDNA

Out of 22 sequenced genes, Unc13d was the only gene to be mutated (bold type). All positions and descriptions are derived from the Ensembl Build 41 database 

(www.ensembl.org).
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cycle of APC and CTL proliferation that is clinically inter-
preted as FHL. However, not all microbes will readily cause 
FHL, and in our initial studies of Unc13dJinx/Jinx mice, L. mono-
cytogenes infection was found to be incapable of doing so.

It is interesting to note that the Unc13dJinx/Jinx mice in-
fected with LCMV present one important discrepancy from 
humans with FHL3: the former show fourfold elevation in 
peripheral neutrophil counts, whereas FHL3 patients are 
neutropenic (27, 33, 38, 39). This discrepancy may refl ect a 
diff erent role of the UNC-13D protein in neutrophils in 
mice as compared with humans, or may alternatively be a 
property of the microbial inducer that is most commonly cul-
pable in humans. Of interest in this regard, Prf−/− mice do 
develop neutropenia when infected with LCMV (37).

Host resistance mechanisms often incorporate proteins 
that are multifunctional, not only in the sense that they con-
fer resistance to multiple infectious agents, but also in the 
sense that they are required for diverse biological processes. 
Many of the proteins required for NK cell or neutrophil 
granule exocytosis are also required for pigmentation or have 
neurological functions. UNC-13D, the protein aff ected by 
the Jinx mutation, appears to be dedicated to resistance and 
does not noticeably aff ect pigmentation or neurological func-
tion. Essential in NK cells and CTLs, it is probably dispens-
able for neutrophil function because defects of neutrophil 
function usually cause severe immunocompromise during 
L. monocytogenes infection.

UNC-13D is required for priming (fusion competence) 
of cytoplasmic vesicles. Although we cannot formally exclude 
the possibility that some functions of UNC-13D might be 
intact in Unc13dJinx/Jinx homozygotes, it appears most likely 
that Unc13dJinx/Jinx encodes a completely nonfunctional pro-
tein based on deletion/complementation studies of the 
UNC-13 homologue in C. elegans, which have shown that 
deletion or point mutation within the second MHD abol-
ishes fusion competence and complementation of the motil-
ity phenotype (40).

The molecular ancestry of UNC-13D has been traced by 
homology searches focused on individual domains, such as 
the C2 domain (41), which is widely distributed in cellular 
proteins involved in signal transduction or membrane traf-
fi cking, and serves as a Ca2+-dependent membrane-targeting 
module, enabling proteins to bind phospholipids within various 

Figure 7. LCMV titre in the liver and spleen after infection in WT 

and Unc13dJinx/Jinx mice. Standard plaque assays were performed on 

spleens and livers 8 (A) and 12 d (B) after LCMV infection. n.d., not 

 detected. n = 3 mice for each group.

Figure 8. Histologic appearance of the liver and spleen in LCMV-

infected Unc13dJinx/Jinx and WT mice displays features of FHL in 

different organs. Hematoxylin and eosin staining of sections of livers 

from LCMV-infected Unc13dJinx/Jinx mice (A) showed an increased number 

of granulomas of larger size (arrow) compared with livers from infected 

controls (bar, 200 μm). (B) Infi ltration of macrophages is observed in 

lymph nodes in Unc13dJinx/Jinx mice (arrow), along with a paucity of germi-

nal centers (bar, 0.4 mm). (C) Bone marrow from LCMV-infected 

Unc13dJinx/Jinx mice is heavily infi ltrated by macrophages compared with 

LCMV-infected WT marrow (bar, 200 μm), and at high magnifi cation (D) 

RBCs are seen to reside within vesicles in bone marrow macrophages 

(arrows, hemophagocytosis). Bar, 20 μm.



JEM VOL. 204, April 16, 2007 861

ARTICLE

 biological membranes. Diff erent C2 domains exhibit lipid 
 selectivity, favoring phosphatidylserine or phosphatidylcho-
line binding, and the C2 domain of UNC13 from C. elegans 
can engage phorbol esters (42). The DUF1041 motif is often 
found in conjunction with C2 domains and is represented in 
several proteins in addition to members of the UNC-13 
 family, including the brain-specifi c angiogenesis inhibitor-1–
associated protein 3 and the calcium-dependent secretion 
 activator-1 and -2 proteins. The MHD is the signature domain 
of the MUNC family of proteins and is regarded as an inter-
action motif based on studies in C. elegans, in which it was 
shown that a double amino acid substitution within the 
MHD could abolish interaction between UNC-13 and 
 syntaxin (40).

MUNC13-1, MUNC13-2, and MUNC13-3, the closest 
relatives of MUNC13-4 (UNC13D), are expressed in the 
brain, and single knockout mutations each produce a CNS 
phenotype (43–45). Although MUNC13-1 knockouts are 
often born dead and show relatively severe neurological 
 impairment (43), individual MUNC13-2 and MUNC13-3 
mice, and MUNC13-2 and MUNC13-3 double knockouts, 
are viable (46), consistent with the conclusion that these par-
alogues serve at least partially redundant functions. Deletion 
of the more distantly related MUNC18-1–encoding gene 
Stxbp1 (syntaxin binding protein-1) causes perinatal lethality 
related to neurological dysfunction as well (47).

MUNC13-4 (and by implication, UNC-13D) is believed 
to associate with RAB27A on the basis of immunoprecipita-
tion studies performed with human platelets (48), and is 
believed to be required for the priming of platelet-dense 
granules. However, we are unable to fi nd evidence of platelet 
dysfunction in Unc13dJinx/Jinx homozygotes, suggesting that 
alternative mechanisms for dense granule priming, indepen-
dent of UNC-13D, must exist in mice. The strong NK cell 
phenotype suggests nonredundancy of function, and although 
it may not apply to all classes of NK cell granules, it is clear 
that the LAMP1 (CD107a) compartment is forbidden exo-
cytosis in Unc13dJinx/Jinx homozygotes. Fas ligand, granzymes, and 
perforin colocalize within the same class of vesicles in NK 
cells (49, 50), and it is therefore likely that in Unc13dJinx/Jinx 
mice, a defect of Fas ligand release also exists. This may con-
tribute to the proliferative syndrome that is observed, to the 
extent that Fas ligand initiates apoptosis in the target cell pop-
ulation. However, the absence of spontaneous lymphoprolif-
erative disease in Unc13dJinx/Jinx mice (as compared with Gld 
mice, for example) indicates that the NK cells and CTLs do 
not act as the essential source of Fas ligand required for 
homeostatic control of T cells in vivo.

MATERIALS AND METHODS
Mice, ENU mutagenesis, MCMV susceptibility screen, and Jinx 

mapping. C57BL/6 (also referred to as WT), C57BL/10, C3H/HeN, 

BALB/c, β2m−/−, and Jinx/Jinx mice (MMRRC:016137) were maintained 

under specifi c pathogen-free conditions in the TSRI vivarium, and all studies 

involving mice were performed in accordance with institutional regulations gov-

erning animal care and use. ENU mutagenesis was performed as described 

previously (51) in a C57BL/6 background, naturally resistant to MCMV 

infection. Because most inbred strains show either a strong or moderate sus-

ceptibility to MCMV infection, the chromosome location of Jinx mutation 

was obtained by outcrossing Jinx homozygotes to C57BL/10 mice, and then 

backcrossing to Jinx stock and infecting F2 mice with MCMV at 6 wk of age. 

For mapping against the C57BL/10 background, 31 informative single nucleo-

tide polymorphisms and 37 microsatellite polymorphisms were used (Table S1, 

available at http://www.jem.org/cgi/content/full/jem.20062447/DC1), dis-

tributed across the genome at �50-Mb intervals. For fi ne mapping, 

C57BL/10 and C3H/HeN strains were used using the microsatellite mark-

ers shown in Table I. Four informative markers were identifi ed in our labora-

tory and are defi ned in Table S2).

Viruses, in vivo susceptibility screen, PFU assay, and serum cyto-

kine detection. The generation of the MCMV Smith strain stock from the 

salivary glands of 3-wk-old MCMV-infected BALB/c mice, as well as the 

conditions of the in vivo MCMV susceptibility screen of ENU germline 

mutants, was described previously (5). MCMV was administrated i.p. The 

Armstrong strain of LCMV (provided by E. Zuniga and M.B.A. Oldstone, 

TSRI, La Jolla, CA) was injected i.p. at 105 PFU per mouse. Viral loads were 

determined after organ homogenization in DMEM, 3% FCS, by standard 

plaque assays on 3T3-NIH cells for MCMV (52) and on VERO cells for 

LCMV (53).

Serum cytokine detection and complete blood counts. 36 h after 

MCMV infection or at the times indicated after LCMV infection, mice were 

bled from the retroorbital sinus, and the concentration of IL-12p40, TNF-α, 

IL-6, and IFN-γ in the serum was assayed by ELISA (eBioscience). The 

bioactivity of serum type I IFN was measured by luciferase assay using L929-

ISRE cells as described previously (5). Complete blood cells counts were 

performed by Antech Diagnostics.

In vivo assay for NK cell cytotoxic activity. Splenic suspensions from 

β2m-defi cient mice and C57BL/6 controls were resuspended at 107 cells/ml 

in PBS. Control and target splenocytes were, respectively, labeled with a low 

and high concentration of CFSE at room temperature for 10 min. The label-

ing was stopped by dumping cold FCS on cell suspensions. Cells were 

washed twice, counted, and resuspended at 5 × 107 cells/ml. The two 

populations were mixed at a 1:1 ratio and injected i.v. into recipient mice. 

Recipients were bled the next day, and PBMCs were analyzed for CFSE 

staining by fl ow cytometry.

Leukocyte preparations and purifi cation of NK cells and CD8+ T 

cells. Noninfected or infected mice were killed, and spleens were removed 

in RPMI, FCS 10%, minced, and fi ltered through 70-μm nylon mesh. RBCs 

were lysed with RBC lysis buff er (Sigma-Aldrich), and splenocytes were 

 resuspended in complete medium. The enrichment of NK cells or CD8+ 

T cells from splenocytes was performed using the NK cell isolation kit or 

the CD8+ T cell isolation kit, respectively (Miltenyi Biotec). Cells of 

each type were counted, resuspended in RPMI, FCS 5%, and used in 

subse quent experiments.

In vitro assay for NK cell function and CD8+ T cell function. To 

determine their cytolytic function, enriched NK cells were isolated from 

splenocytes 48 h after MCMV infection and incubated with YAC-1 cells at 

37°C for 6 h. The percent-specifi c lysis was measured according to the re-

lease of lactate dehydrogenase into the supernatant, using the CytoTox 96 

Non-Radioactive Cytotoxicity Assay (Promega). The degranulation capac-

ity of NK cells was assayed by incubating NK cells with plate-bound anti-

bodies directed against NK cell receptors (NK1.1, NKp46, and Ly49D, as 

indicated) for 4 h in the presence of FITC-conjugated anti–mouse CD107a 

(BD Biosciences) and monensin (Golgi-Stop; BD Biosciences). Enriched 

CD8+ T cells were stimulated with PMA and ionomycin in the presence of 

brefeldin A (Golgi-Plug; BD Biosciences) for 4 h to measure IFN-γ synthe-

sis, or with PMA and ionomycin in the presence of FITC-antiCD107a for 

4 h to measure their degranulation. Splenocytes from LCMV-infected 



862 IMMUNOLOGIC DYSFUNCTION DUE TO THE JINX  MUTATION IN UNC13D | Crozat et al.

mice were stimulated with the LCMV peptide GP33 or with the irrelevant 

HIV-derived peptide GP160 for 4 h in the presence of brefeldin A (Golgi-

Plug; BD Biosciences), after which IFN-γ production was measured by 

intracellular staining.

Antibodies, intracellular staining, and statistical analysis. Antibodies 

used in this study included the following: NK1.1 (PK136), IFN-γ 
(XMG1.2), CD8α (53-6.7), CD80 (B7-1), CD11b (M1/70), CD69 

(H1.2F3; eBioscience), CD3ε (145-2C11), Ly49D (4E5), CD107a (1D4B; 

BD Biosciences), NKp46 (R&D Systems), F4/80 (BM8; Caltag laborato-

ries). Intracellular staining was performed after classical staining for surface 

markers. Cells were then fi xed and permeabilized using Cytofi x/Cytoperm 

solution (BD Biosciences) for 20 min at 4°C, and then stained with IFN-γ 

antibody diluted in permeabilization buff er provided by BD Biosciences. All 

statistics were calculated using the Student’s t test (two tail). *, P < 0.05; **, 

P < 0.01; ***, P < 0.001 in all fi gures. Error bars show SEM.

Online supplemental material. Table S1 shows a list and positions of the 

markers used for Jinx mapping using the C57BL/6 and C57BL/10 strains. 

Table SII shows a list and positions of markers identifi ed in our laboratory 

and used for Jinx fi ne mapping on C57BL/6, C57BL/10, and C3H/HeN 

strains. In Fig. S1, mice (Jinx homozygotes and WT C57BL/6J controls) 

were infected with 2 × 104 PFU of MCMV and observed over a period of 

14 d. Although the control animals did not appear ill at any time during 

the infection, the Jinx mice did show signs of sickness at day 5, with reso-

lution by day 12. Mice were bled at days 7 and 14 for complete blood counts. 

Mice were killed at day 14 for visual inspection and weighing for the liver, 

spleen, and salivary glands. The online supplemental material is available at 

http://www.jem.org/cgi/content/full/jem.20062447/DC1.
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