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In a variety of neuronal systems it has been hypothesized that inhibitory interneurons
corral principal neurons into synchronously firing groups that encode sensory information
and sub-serve behavior (Buzsáki and Chrobak, 1995; Buzsáki, 2008). This mechanism is
particularly relevant to the olfactory system where spatiotemporal patterns of projection
neuron (PN) activity act as robust markers of odor attributes (Laurent et al., 1996; Wehr and
Laurent, 1996). In the insect antennal lobe (AL), a network of local inhibitory interneurons
arborizes extensively throughout the AL (Leitch and Laurent, 1996) providing inhibitory
input to the cholinergic PNs. Our theoretical work has attempted to elaborate the exact
role of inhibition in the generation of odor specific PN responses (Bazhenov et al., 2001a,b;
Assisi et al., 2011). In large-scale AL network models we characterized the inhibitory
sub-network by its coloring (Assisi et al., 2011) and showed that it can entrain excitatory
PNs to the odor specific patterns of transient synchronization. In this focused review, we
further examine the dynamics of entrainment in more detail by simulating simple model
networks in various parameter regimes. Our simulations in conjunction with earlier studies
point to the key role played by lateral (between inhibitory interneurons) and feedback (from
inhibitory interneurons to principal cells) inhibition in the generation of experimentally
observed patterns of transient synchrony.
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INTRODUCTION
The dynamics of neuronal networks have often been associated
with the detection of changes in the environment or as markers of
expected and ongoing behavior. In olfactory networks this asso-
ciation is particularly well charted. Odor detection begins when
odorant molecules bind to olfactory receptors, initiating a sec-
ond messenger cascade that leads to the opening of ion channels,
the depolarization (usually) of the receptor neuron cell mem-
brane (Matthews and Reisert, 2003), and the generation of action
potentials. Olfactory receptor neurons (ORNs) are preferentially
sensitive to some odors and less so to others (Anderson et al.,
1995; Hallem et al., 2004; Hallem and Carlson, 2006). This pref-
erence appears to be static, in that, odor rank orders are retained
throughout the duration of the stimulus (Friedrich and Laurent,
2001; Bhandawat et al., 2007; Olsen et al., 2007). Chemically sim-
ilar odors elicit responses from overlapping groups of ORNs that
project onto a significantly smaller number of excitatory projec-
tion neurons (PNs) and inhibitory local interneurons (LNs) in
the antennal lobe (AL). It has been suggested that the representa-
tion of a high dimensional, complex and as a first approximation,
static input by convergence onto a few, albeit dynamic, PNs
and LNs must enhance the fidelity of the input while unfolding
the odor representation along the temporal dimension (Laurent,
2002) [In the locust ∼50,000 ORNs converge onto ∼900 PNs and
300 LNs (Ernst et al., 1977)]. In the AL, LNs extend extensive
connections to PNs and to each other (Leitch and Laurent, 1993,
1996). The interaction between AL neurons produces spatiotem-
poral activity that evolves over multiple time scales (Laurent et al.,

1996; Wehr and Laurent, 1996; Wilson et al., 2004). This evolu-
tion produces a progressive decrease in the overlap between the
representations of chemically related odors (for example, several
aromatic amino acids) (Friedrich and Laurent, 2001; Wilson et al.,
2004) thereby increasing the ability of the system to discriminate
between odors.

Local field potentials (LFP) recordings from different insects
including locust (Laurent and Davidowitz, 1994; Laurent et al.,
1996; Wehr and Laurent, 1996), moth (Ito et al., 2009), hon-
eybee (Stopfer et al., 1997) and fly (Tanaka et al., 2009) have
revealed fast 20–40 Hz oscillations that persist in spite of large
changes in both the identity and the concentration of an odor
(Stopfer et al., 2003). Successive oscillatory cycles are constructed
from a dynamically evolving constellation of PN spikes. Odor
attributes determine the identity of PNs that spike during a given
oscillatory cycle. A given PN may be phase locked to specific
cycles following the onset of an odor and spike randomly or
remain silent during other cycles. Such transient synchroniza-
tion between PNs was suggested to play a key role in encoding
the odor representation (Laurent, 2002). Spatiotemporal pat-
terns generated by PNs provide input to Kenyon cells (KCs)
of the mushroom body via two pathways, a direct excita-
tory pathway from PNs to KCs and a feed-forward inhibitory
pathway leading from lateral horn interneurons (LHIs) (Perez-
Orive et al., 2004). Recent studies have also identified the role
of a single neuron (the giant GABAergic cell) that provides
feedback inhibitory input to KCs (Papadopoulou et al., 2011)
(Figure 1).

Frontiers in Neuroengineering www.frontiersin.org April 2012 | Volume 5 | Article 7 | 1

NEUROENGINEERING
REVIEW ARTICLE

http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/about
http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org/Neuroengineering/10.3389/fneng.2012.00007/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=CollinsAssisi_1&UID=45984
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MaximBazhenov&UID=9101
http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Assisi and Bazhenov Synaptic inhibition controls transient synchrony

AL MB

OR

PN

LN

LHI

KC

+

+ +

-

+

+ -

f.b.i

f.f.i

Antenna

GGN

-

+ f.b.i

FIGURE 1 | Schematic of the insect olfactory system. Projection neurons
(PNs) and local inhibitory interneurons (LNs) receive convergent input from
odorant receptor (OR) neurons. Output from PNs is sent to Kenyon cells
(KCs) of the Mushroom body (MB) and that also receive feed-forward
inhibition from lateral horn interneurons (LHI). Giant GABAergic neuron
(GGN) provides feedback inhibition to KCs.

In this article we discuss the relationship between the struc-
ture of the AL network and the dynamics that emerges from it,
within the context of our earlier theoretical studies (Bazhenov
et al., 2001a,b; Assisi et al., 2011). The efficacy and the relevance
of the AL in representing an odor can only be inferred from its
effect on subsequent layers, namely the KCs of the mushroom
body. In contrast to PNs that fire promiscuously in response to
an odor input, KCs generate a sparse and highly odor specific
response. Owing to the intrinsic properties of KCs and network
attributes (Perez-Orive et al., 2002, 2004), these neurons act as
coincidence detectors of presynaptic input; KCs respond only to
PN input that arrives during short windows of time bounded by
the troughs of an oscillatory LFP cycle (Perez-Orive et al., 2002,
2004). If the same subset of PNs spike synchronously through-
out an odor presentation, the odor would completely specified
by identity of active PNs (an identity code) and the same post-
synaptic KCs would be activated in every cycle. However, in vivo
recordings from the locust AL show that different subsets of PNs
are recruited and become transiently synchronized during differ-
ent cycles of the LFP oscillation in a manner that is predictive
of attributes of the odor. Thus, not only the identity of neurons
that spike, but also the timing at which the spikes occur factor in
encoding the odor representation (a spatiotemporal code).

Within the framework discussed here, the odor input is con-
sidered to be static and it stimulates the same set of PNs and
LNs throughout the duration of the stimulus. This provides a
useful first approximation to understand odor coding by the AL.
Network interactions in the AL ensure that, different odors and
odor attributes result in different spatiotemporal patterns of PN
activity that, in turn, trigger different KC responses (Stopfer et al.,
2003). Transient synchrony of AL neurons serves an important
computational idea—it vastly expands the number of states avail-
able to encode odors when compared to a purely identity code.
The upper bound on the number of states of the system increases
as a power of the duration (measured in oscillatory cycles of the
LFP) of the stimulus presentation. This could allow small differ-
ences in input to be amplified in a manner that it can be read out
by KCs. While the animal need not, necessarily, take full advantage
of this increased computational power, there is evidence to sug-
gest that transient patterning plays a role in odor discrimination,
particularly during difficult discrimination tasks (MacLeod et al.,
1998).

Our goal is to elucidate the intrinsic and network mechanisms
that are responsible for transient synchrony seen in the AL net-
work. In particular we elaborate the specific role played by the
inhibitory sub-network of the AL in facilitating the formation
of transiently synchronous ensembles of PNs. In previous papers
we have conjectured that the operational principles that govern
the dynamics of the AL network include competition between
LNs that generates epochs of time where specific LN sub-sets
are activated. These, in turn, transiently entrain PNs that pro-
vide synchronous input to KCs (Bazhenov et al., 2001b; Assisi
et al., 2011). This focused review further discusses and extends
our theoretical ideas regarding odor coding in insect olfaction.

METHODS
Individual LNs and PNs were modeled by a single compart-
ment with voltage and Ca2+ dependent currents described by
Hodgkin-Huxley kinetics. The model LNs and PNs were con-
structed in order to closely emulate the experimentally observed
dynamics of LNs and PNs using a parsimonious conductance
based model [see (Bazhenov et al., 2001b) for a detailed descrip-
tion of the model parameters]. In vivo, PNs show overshooting
sodium spikes in response to a constant depolarizing stimulus.
LNs in contrast, generate low amplitude calcium spikelets that
demonstrate spike frequency adaptation due to a Ca2+ dependent
potassium current. Fast GABA (LN-PN and LN-LN connections)
and nicotinic cholinergic synaptic currents (PN-LN connections)
were modeled by first-order activation schemes. In addition to
fast GABAergic synapses PNs in the AL are known to receive
slow inhibitory input via GABAB type conductances (Bazhenov
et al., 2001a; Wilson and Laurent, 2005). These slow responses
tend to last over durations of 100 s of ms and generate long
epochs when the neuron is hyperpolarized. However, since we
were largely interested in how transient synchrony occurs on a
fast time scale (lasting the duration of a few oscillatory cycles
<100 ms) we chose to minimize the contributions of this slow
form of inhibition. The specific connectivity of the networks and
the excitatory and inhibitory coupling strengths were varied in
individual simulations. The values are specified with individual
figures. The model equations and other parameter values are
specified in (Assisi et al., 2011). In the insect olfactory system,
odor stimulation activates odor specific subset of PNs and LNs. In
this study, to focus on the network driven spatiotemporal dynam-
ics, we considered simplified stimulus model—a suprathreshold
input was simultaneously provided to all PNs and LNs. The
amplitude of this input was constant across all neurons except
for a low amplitude additive noise term (∼5% of the stimulus
amplitude).

THE ROLE OF INHIBITION IN THE DYNAMICS OF SMALL NETWORKS
To understand the role of inhibition in generating transiently syn-
chronous groups of PNs we first considered the dynamics of a
reciprocally coupled pair of neurons consisting of an LN that
inhibits a PN and receives excitatory input from it (Figure 2A).
Both these neurons received identical depolarizing input that
exceeded the spiking threshold of each neuron. The reciprocally
coupled pair oscillated out of phase with a frequency of ∼25 Hz.
The frequency of oscillation can vary as a function of the strength
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FIGURE 2 | (A) Single PN-LN pair. The top trace shows the membrane
potential of the LN (black) and a frequency filtered version (gray trace,
bandpass filter 10–40 Hz). The middle trace plots the instantaneous
phase of the filtered LN membrane potential. The red dots show the
value of the instantaneous phase at times when the PN generates a
spike. The membrane potential of the PN is shown in the bottom trace.
gACh (PN-LN) = 0.00001. (B) Phase distribution of PN spikes. The

histogram shows the distribution of the phase at which the PN
spikes for different values of the strength of inhibitory coupling from
LN to PN (gGABA−A). The distribution was generated over 20 s.
(C) Mean phase of PN spikes. The mean phase at which the PN spikes is
shown as a function of the inhibitory coupling strength. (D) The circular
standard deviation of the phase as a function of the inhibitory coupling
strength.

of the inhibitory coupling to the PN [see Figure 2 in (Bazhenov
et al., 2001b) for a detailed description]. We sought to deter-
mine the extent of PN entrainment by the inhibitory LN and
the strength of inhibitory synaptic coupling required to entrain
the PN. In order to quantify these features we measured the
instantaneous phase of the LN by first filtering the LN mem-
brane potential (Figure 2A, black line in the top trace) through
a band pass filter (15–40 Hz) and calculating the Hilbert trans-
form (Figure 2A, middle trace) of the resulting smoothed trace
(Figure 2A, gray line in the top trace). The instantaneous phase

thus determined was sampled at times when the PN generated a
spike (red circles in Figure 2A, middle trace). We simulated this
simple network over 20 s and calculated the distribution of these
phase points corresponding to the times when the PN generated
a spike (Figure 2B). The spread of the distribution provided a
measure of the degree to which the LN entrained the dynam-
ics of the PN (Figure 2D). As we varied the strength of the
inhibitory synaptic coupling, the circular standard deviation of
the phase of PN spikes with respect to the LN oscillation decreased
until, at a specific value of gGABA−A, it abruptly dropped from
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∼1.0–∼0.05 radians followed by a gradual monotonic decrease
(Figure 2D). The effect of an LN spike was to shift the onset
of the following PN spike to a later phase of the oscillation as
the coupling strength increased (Figure 2C). The mean phase of
the distribution moved toward the peak of the LN oscillatory
cycle. Thus individual PNs can be entrained by its coupling to a

single LN if the strength of the inhibitory input exceeds a specific
threshold.

Next we sought to determine the collective dynamics of mul-
tiple PNs, all receiving identical inhibitory input from a single
LN. We simulated a network of 10 PNs that were inhibited by
a single LN and provided excitatory input to it (Figure 3A).
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FIGURE 3 | (A) Network consisting of a single LN inhibiting 10 PNs. The LN
receives excitatory input from all PNs. gACh (PN-LN) = 0.00001, gGABA−A

(LN-LN) = 0.00001. (B) The standard deviation of the PN spike phases as a
function increasing strength of inhibitory coupling. (C) The distribution of the

phase of PN spikes for different values of gGABA−A. (D) PN dynamics. Each
dot in a panel corresponds to the instantaneous phase of a PN spike at a
given time. The phase dynamics of 4 PNs of the 10 PNs simulated is shown.
Each column of panels corresponds to a different value of gGABA−A(LN-PN).
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Here too we found that the collective dynamics of all PNs was
strongly entrained by the LN oscillations when the strength of the
inhibitory coupling exceeded a threshold value (Figures 3B,C).
The standard deviation of the phase at which the PNs generated
spikes abruptly decreased as the strength of inhibitory coupling
increased. The dynamics of the PNs however showed complex
patterns of activity relative to the LN (Figure 3D). For different
values of the coupling strength, a given PN could show phase drift
relative to the LN oscillations, multi-frequency phase locking and,
for the strongest coupling strengths, 1:1 phase locked dynamics
(Figure 3D).

These simulations show that LNs can effectively entrain the
dynamics of PNs. Therefore, we hypothesize that transient syn-
chrony between PNs, as seen in experimental recordings in the
locust AL, must, to a significant extent, be driven by its interaction
with the LN sub-network. Evidence for this assertion also comes
from experiments where the influence of fast inhibition medi-
ated by GABAA was selectively abolished by the application of
GABAA antagonist picrotoxin (Stopfer et al., 1997). This had the
effect of curtailing a prominent 20 Hz oscillation that is ubiqui-
tous during odor stimulation. Since the experimentally measured
oscillatory local field potential can be viewed as the synchronized
activity of ensembles of PNs, we can, as subsequent modeling
studies have (Bazhenov et al., 2001b), infer that inhibition indeed
entrains PN activity. Our simulations (Figures 2 and 3) examine
the extent of this entrainment over a broader parameter range
than that simulated in earlier studies (Bazhenov et al., 2001b;
Assisi et al., 2011). Furthermore, reciprocal inhibition between
LNs can enforce competition between groups of inhibitory neu-
rons. This would lead to some groups of LNs being activated in
response to an odor, while other groups are quiescent or hyperpo-
larized by the active LNs (Assisi et al., 2011). Transient synchrony
within groups of LNs, coupled with their ability to drive the
activity of PNs provides a potential mechanism that explains the
observed spatiotemporal patterning of PNs in the AL (see more
on this below).

The role of inhibition in synchronizing the activity of
excitatory PNs has also been examined models of Limax
(Ermentrout et al., 1998) and honeybee (Linster and Cleland,
2001). Synchronization driven by inhibition is not limited to
olfactory networks. In the hippocampus, GABAergic neurons

form the hubs of a network that synchronizes the activity of
pyramidal cells (Bonifazi et al., 2009). Feedback inhibition medi-
ated by LNs can effectively synchronize distributed pyramidal
cells, a mechanism termed pyramidal interneuronal network
gamma (PING) (Borgers and Kopell, 2003, 2005; Borgers et al.,
2005). This mechanism has also been implicated in the genera-
tion of gamma band synchrony (Llinas and Ribary, 1993; Singer
and Gray, 1995; Wang and Buzsaki, 1996).

RECIPROCAL INHIBITION CAN BE RELATED TO THE COLORING
OF THE NETWORK
The two LNs in Figure 4 reciprocally inhibit each other. Over a
wide range of parameters these neurons would tend to spike out
of phase [see (Vreeswijk et al., 1994) for exceptions]. When one
of the neurons generated a burst of spikes it suppressed activ-
ity in the other neuron. In the network simulated above, which
neuron spikes is determined by the calcium concentration in the
cell. Increased intracellular Ca2+ signals a lower propensity for
firing (see (Ahn et al., 2010) for a detailed view of the effects of
Ca2+ on the spiking pattern). We have shown that burst alter-
nation was determined by the activation of Ca2+-dependent K+
currents (Assisi et al., 2011). Each spike led to an increase in the
Ca2+ concentration within a cell and additional K (Ca2+) activa-
tion that consequently delayed the onset of the following spike,
a phenomenon known as spike frequency adaptation. When the
frequency of spiking reduced below certain threshold, the inhibi-
tion provided by this neuron was not sufficient to keep the other
neuron from spiking; as a result, the quiescent neuron switched
to an active state and suppressed activity in the post-synaptic
neuron. Antagonistic interactions between reciprocally coupled
inhibitory neurons allowed us to derive a relationship between
the dynamics of neurons and a structural characteristic of the
underlying network, namely, its coloring.

A coloring of the network is a prescription that assigns dif-
ferent colors to nodes (neurons) that are directly connected to
each other (Chartrand, 1984). The minimum number of colors
required to color a network is known as its chromatic num-
ber. In the example above, the two neurons are reciprocally
coupled and therefore must be assigned different colors. If the
coupling between neurons is inhibitory, we anticipate that neu-
rons associated with different colors, upon stimulation by the

100 ms
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V

FIGURE 4 | A pair of reciprocally coupled LNs generate alternating patterns of spikes. The two traces correspond to different LNs shown in the figure.
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same depolarizing input, will compete with each other and gen-
erate spikes (or bursts of spikes) at different times. In contrast,
neurons that do not compete (are associated with the same color)
will spike in approximate synchrony. This relationship between
the coloring and the dynamics of the inhibitory network is clearly
evident in the simple network constructed in Figure 4. However,
does this relationship generalize to larger and more complex

networks? To address this question we constructed networks that
possessed the required coloring [see (Assisi et al., 2011)]. For
example to construct a network with two colors, we generated two
groups of neurons that were all-to-all connected across groups
but possessed no connections within groups. Figure 5A1 shows
an example of one such network consisting of 40 neurons with 20
being associated with one color and the remaining with another
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FIGURE 5 | Dynamics of a network of reciprocally connected inhibitory

LNs. (A) Bipartite graph with chromatic number 2. Each LN is reciprocally
connected to all the neurons that are associated with a color different from
its own (A1). The adjacency matrix of the network consists of diagonal blocks
of zeros with ones elsewhere (A2). Raster plot showing the activity of 40
neurons in response to identical input to all the neurons. LNs associated with
the same color spike in approximate synchrony (A3). The traces below the
raster plots in Aiii, Biii, Ciii show the input that is given to all the inhibitory
neurons. The parameter values used for this simulation were gGABA−A

(LN-LN) = 0.00007. (B) A graph with four colors can be constructed by picking
four groups of neurons that do not extend connections within a group but

possess all to all reciprocal inhibitory connections with other groups (B1).
The adjacency matrix consists of four diagonal blocks of zeros with ones
elsewhere (B2). As in the previous case neurons associated with the same
color tend to spike in synchrony (B3) (gGABA−A (LN-LN) = 0.00007). (C) Graph
with multiple colorings. Three groups of neurons possess all-to-all reciprocal
connections between groups. A fourth group of neurons extend connections
only to the group marked in green and not to the others. Therefore, it may be
associated with the blue or the red group (C1). Neurons associated with this
group tend to spike in synchrony with either the red or the blue group but
remain silent when the green groups spikes (C3) (gGABA−A (LN-LN) =
0.00002). The corresponding adjacency matrix is shown in C2.
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color. The adjacency matrix of this network consisted of two
20 × 20 diagonal blocks of zeros and ones in all other locations
(Figure 5A2). The diagonal blocks of zeros are the shaded regions
of the adjacency matrices shown in Figure 5A2. The dynamics of
this network with chromatic number, two, clearly showed that
neurons associated with different colors generated an alternat-
ing pattern of activity (Figure 5A3). The antagonistic interactions
between inhibitory groups persisted even as the number of colors
increased (Figure 5B).

A number of experimental recordings show that PNs, and
therefore LNs that entrain them, form transiently synchronous
groups over the duration of an odor. A given PN may participate
in more than one synchronous group. In Figures 5A and 5B, how-
ever, we show that a given LN associated with a particular color,
can only spike in synchrony with LNs that share the same color
and not with any other group. If LNs indeed drive the synchrony
of PN spikes (see below), this would imply that the constitution
of every synchronously spiking group of PNs would never change.
One can circumvent this issue by constructing networks that pos-
sess multiple colorings. For example, the network in Figure 5C1
has chromatic number three. However, in contrast with the net-
works shown in Figures 5A and 5B, this network (Figure 5C1)
can be colored using three colors in two different ways. A group
of ten neurons in Figure 5C1 can be colored either red or blue but
not green since these neurons are connected to the green group
but not to the other two. The adjacency matrix of this network
has three 10 × 10 diagonal blocks of zeros in addition to some
off-diagonal blocks of zeros (Figure 5C2) [see Figure 3 in (Assisi
et al., 2011) for a simplified rendering of this graph where all neu-
rons associated with a color are grouped into a single node]. The
dynamics of this network under constant and identical deploariz-
ing input to all neurons evolves such that the group of neurons
that can be colored using multiple colors spikes in synchrony with
both the red and the blue groups while falling silent when the
green group of neurons spike. Multiple colorings can therefore
be associated with transient synchrony where individual neurons
can participate in multiple synchronous groups as seen in experi-
ments. This example also shows that the neurons in the inhibitory
network do not have to be directly connected to each other to
spike asynchronously.

While our simulations show that antagonistic interactions
between LNs generates clusters of synchronously spiking neurons
that respect the coloring of the network, this need not always be
the case. In all-to-all connected (Golomb and Rinzel, 1993; Wang
and Buzsaki, 1996) and random networks (Wang and Buzsaki,
1996), the dynamics can depend on the interaction of intrin-
sic (spike afterhyperpolarization, heterogeneities in spiking fre-
quency) and synaptic (reversal potential, synaptic current decay
time, sparseness of connections) factors. Clustered solutions of
the type observed here form a sub-set of the full dynamical reper-
toire of purely inhibitory networks. Heterogeneities in network
structure [Figure 6 in (Assisi et al., 2011)] and dense connectivity
between neurons, resulting in a larger number of colors [Figure 2
in (Assisi et al., 2011)] can perturb the coloring based dynamics
of the system. However, the inclusion of feedback excitation has
been shown to reduce the extent of this perturbation [Figure 4
in(Assisi et al., 2011)].

TRANSIENT SYNCHRONY IN PROJECTION NEURONS IS DRIVEN
BY THE INHIBITORY SUB-NETWORK
In our simulations we showed that feedback GABAergic inhibi-
tion mediated by LNs could entrain PNs to spike in synchrony
(Figures 2 and 3). Further, reciprocally coupled networks of LNs
could, as determined by the coloring of the network, form tran-
siently synchronous groups that moved in and out of synchrony
with each other over the duration of the odor input (Figures 4
and 5). In what follows we show that these groups of LNs can
entrain PNs to generate the kind of transiently synchronous
dynamics seen in recordings from PNs in the locust AL. This
entrainment is seen in PNs regardless of whether the LN net-
works are uniquely colored or possess multiple colorings. We
constructed a network consisting of forty PNs and forty LNs. The
LN sub-network consisted of four groups (colors) of neurons that
were all-to-all connected across groups but received no connec-
tions from within each group (Figure 5B). Each LN group pro-
vided inhibitory input to one of four groups of PNs but received
excitatory input from all the PNs (Figure 6A). Non-oscillatory
external input (Figure 6B, bottom panel) triggered ∼30 Hz non-
synchronous spiking in all PNs of the network (Figure 6B, middle
panel). As expected, the LNs generated an alternating pattern of
activity consistent with the coloring of the underlying network
(Figure 6B, top panel). Each burst of spikes by an active LN group
synchronized the activity of post-synaptic PNs. As a result, all
PNs that received input from an active LN group showed syn-
chronized ∼20 Hz oscillations (Figure 6B, middle panel). When
the group of LNs became quiescent the post-synaptic PNs drifted
from synchrony during subsequent epochs of time when other
LN groups generated spikes. These dynamics lead to a complex
pattern of synchronization where different groups of PNs became
synchronized during different epochs of odor stimulation.

DISCUSSION
We demonstrated that competitive interactions between LNs can
lead to the formation of groups of synchronously spiking LNs that
can effectively entrain the dynamics of PNs. The identity of LNs
that participate in each group is determined by a characteristic
feature of the connectivity structure of the inhibitory network,
namely, its coloring. Our simulations in Figure 6 demonstrate
that spikes generated by PNs are phase locked to the dynam-
ics of those LNs that provide direct inhibitory input to it. The
degree of PN synchronization is dependent on the strength of
the inhibitory coupling from LNs. In simple networks consist-
ing of a single inhibitory neuron that was reciprocally connected
to multiple PNs, we demonstrated multi-frequency coordination
between PNs and the LN. Multifrequency coordination has also
been reported in Lotka-Volterra models with competing interac-
tions between the nodes (Rabinovich et al., 2006). Such dynamics
clearly defines a widening of the dynamical repertoire of that these
networks are capable of.

The critical feature of out model is that the strongest inhibition
determines the identities of PNs that “talk” to the downstream
neurons in the mushroom bodies. Indeed only PNs that receive
sufficiently strong inhibition can (transiently) synchronize and
drive responses in the KCs that operate as spike coincidence detec-
tors. Therefore, we can classify our model as multiplicative—the

Frontiers in Neuroengineering www.frontiersin.org April 2012 | Volume 5 | Article 7 | 7

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Assisi and Bazhenov Synaptic inhibition controls transient synchrony

500 ms

10
 N

eu
ro

ns
0.

04
10

 N
eu

ro
ns

LN

PN

LN

PN

A

B

FIGURE 6 | (A) A network of LNs with chromatic number 4 is connected
to a population of PNs. The PNs were separated into four groups. Each
group received inhibitory input only from LNs that were associated with
one color and not others. The PNs provided excitatory input to all LNs
irrespective of the coloring. (gGABA−A (LN-LN) = 0.00004, gGABA−A

(LN-PN) = 0.00006, gAch (PN-LN) = 0.00004). (B) PNs (top raster)
that received inhibitory input from LNs (bottom raster) of a particular
color tended to spike synchronously only when those LNs were
activated. The black trace at the bottom shows the input provided to all
PNs and LNs.

input from olfactory receptor neurons to PNs is multiplied by
feedback inhibition within AL to determine which PNs transmit
information to the mushroom body. PNs receiving sensory input
but no inhibitory feedback cannot reach the mushroom bodies.
This is in contrast to some other theoretical models of olfactory
processing (in vertebrates) where inhibition balances excitation
in many principal neurons of the olfactory bulb and only the
“error” signal is transmitted to the subsequent level—piriform
cortex (Koulakov and Rinberg, 2011).

A long-standing conjecture in neuroscience has been that neu-
ronal networks possess mechanisms that can string groups of
synchronously spiking neurons into elaborate temporal sequences
(Hebb, 1949). These spatiotemporal patterns, termed phase
sequences, then form the basis of all perception (Gray and Singer,
1989), memory (Cheng and Frank, 2008) and action (Bouyer
et al., 1987). Here we demonstrated that the coloring of the
network determines the identity of neurons that spike together.
However, the coloring does not place any specific constrains
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on the sequence in which successive groups of neurons are
recruited. The occurrence of a specific sequence of spiking is
influenced by the nature of the input, the history, and the current
state of the network. In the inhibitory networks simulated here
the intracellular Ca2+ concentration within a cell plays a promi-
nent role in determining the order in which groups of neurons
generate spikes. The lowest Ca2+ concentration determined the
minimal activation of Ca2+ dependent K+ currents and, there-
fore, the most excitable group of LNs (Ahn et al., 2010; Assisi
et al., 2011). In all the simulations in this paper we introduced
a small amount of variability in the intrinsic properties across
PNs and LNs to ensure that the network dynamics does not set-
tle into a pathological and unstable state. This variability could
potentially lead to asymmetries that define a specific ordering of
the PN sequences. Explicitly imposed asymmetries in the prop-
erties of the neurons such as the excitability of different groups
(either intrinsic or stimulus-dependent) could be used to enforce

the stability of some sequences in lieu of myriad others that could
also be present in the completely symmetric network. Finally,
the LN networks simulated here possessed reciprocal connec-
tions between pairs. Directional connectivity between neurons
is known to introduce a strong asymmetry in the network and
restricts number of stable sequences of activity. This can be used
to construct networks that possess a priori specified patterns of
activity.

Our study revealed a link between the structure of the
excitatory-inhibitory network and its dynamics. It presents a new
approach to understand how the dynamics of the network can be
predicted from the connectivity and may lead to strategies that
could allow us to infer the connectivity of the network from its
observed dynamics.
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