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Abstract

Objectives

Epidermal growth factor receptor (EGFR) gene mutations in tumors predict tumor response

to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small-cell lung cancer (NSCLC).

However, obtaining tumor tissue for mutation analysis is challenging. Here, we aimed to de-

tect serum peptides/proteins associated with EGFR gene mutation status, and test whether

a classification algorithm based on serum proteomic profiling could be developed to analyze

EGFR gene mutation status to aid therapeutic decision-making.

Patients and Methods

Serum collected from 223 stage IIIB or IV NSCLC patients with known EGFR gene mutation

status in their tumors prior to therapy was analyzed by matrix-assisted laser desorption/ioni-

zation time-of-flight mass spectrometry (MALDI-TOF-MS) and ClinProTools software. Dif-

ferences in serum peptides/proteins between patients with EGFR gene TKI-sensitive

mutations and wild-type EGFR genes were detected in a training group of 100 patients;

based on this analysis, a serum proteomic classification algorithm was developed to classify

EGFR gene mutation status and tested in an independent validation group of 123 patients.

The correlation between EGFR gene mutation status, as identified with the serum proteomic

classifier and response to EGFR-TKIs was analyzed.

Results

Nine peptide/protein peaks were significantly different between NSCLC patients with EGFR
gene TKI-sensitive mutations and wild-type EGFR genes in the training group. A genetic al-

gorithm model consisting of five peptides/proteins (m/z 4092.4, 4585.05, 1365.1, 4643.49

and 4438.43) was developed from the training group to separate patients with EGFR gene
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TKI-sensitive mutations and wild-type EGFR genes. The classifier exhibited a sensitivity of

84.6% and a specificity of 77.5% in the validation group. In the 81 patients from the valida-

tion group treated with EGFR-TKIs, 28 (59.6%) of 47 patients whose matched samples

were labeled as “mutant” by the classifier and 3 (8.8%) of 34 patients whose matched sam-

ples were labeled as “wild” achieved an objective response (p<0.0001). Patients whose

matched samples were labeled as “mutant” by the classifier had a significantly longer pro-

gression-free survival (PFS) than patients whose matched samples were labeled as “wild”

(p=0.001).

Conclusion

Peptides/proteins related to EGFR gene mutation status were found in the serum. Classifi-

cation of EGFR gene mutation status using the serum proteomic classifier established in the

present study in patients with stage IIIB or IV NSCLC is feasible and may predict tumor re-

sponse to EGFR-TKIs.

Introduction
Lung cancer is the leading cause of cancer-related death worldwide [1]. Non-small-cell lung
cancer (NSCLC) is the most common histologic type of the disease and accounts for approxi-
mately 80% of lung cancers [2]. Because more than 70% of patients with lung cancer are diag-
nosed with advanced-stage disease [3], systemic treatment plays an important role in clinical
management. Chemotherapy has been the cornerstone of treatment for NSCLC for many
years. However, epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs),
such as erlotinib, gefitinib and icotinib, have been shown to greatly improve clinical outcomes
and safety when compared with chemotherapy in some patients with advanced NSCLC [4–8].
EGFR-TKI sensitivity has been associated with activating mutations in the kinase domain of
the EGFR gene, especially an exon 19 deletion and mutations in exon 21(L858R) and exon 18
(G719X) [9–11]. All EGFR gene TKI-sensitive mutations result in activation of the EGFR tyro-
sine kinase domain, which is the target of EGFR-TKIs. Therefore, patients with these EGFR
gene TKI-sensitive mutations have a significantly better response to EGFR-TKIs, whereas
those with wild-type EGFR genes exhibit a worse tumor response. Assessment of EGFR gene
mutation status is critically important for therapeutic decision-making.

National comprehensive cancer network (NCCN) guidelines state that DNA mutational
analysis in tumor cells is the preferred method to assess EGFR gene mutation status. However,
in some cases, tumor tissue either is inadequate for molecular testing because of its small quan-
tity or very low tumor content or is not readily available [3]. Several groups have detected
EGFR gene mutations in DNA isolated from plasma [3, 12–16] or serum samples [17, 18],
which serve as substitutes for tumor tissue; some groups have demonstrated a correlation be-
tween mutation status in the plasma/serum and tumor tissue [3, 12, 13, 15–18]. Furthermore,
EGFR gene mutations detected in plasma or serum may be predictive of the response to
EGFR-TKIs [3, 13, 14, 16, 18]. However, the methods used to assess EGFR gene mutation sta-
tus in plasma or serum samples are not approved by the current guidelines. Thus, other sensi-
tive and noninvasive approaches for evaluating EGFR gene mutation status using surrogate
tumor tissues to predict EGFR-TKI efficacy are still needed.

Classification of EGFR in NSCLC

PLOSONE | DOI:10.1371/journal.pone.0128970 June 5, 2015 2 / 17

Competing Interests: The authors have declared
that no competing interests exist.



Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-
TOF-MS) is a sensitive, rapid, inexpensive, and simple technique for proteomic analysis of
complex biological samples, such as tissue, urine and blood [19–26]. Peaks in the mass spec-
trum correspond to ions formed from relatively abundant species in the sample, predominantly
peptides and proteins. Recently, peptide mass fingerprinting based on MALDI-TOF-MS has
been widely used to detect diagnostic, prognostic, and predictive proteomic biomarkers. In re-
cently published studies, peptide mass fingerprinting has been successfully applied to analyze
serum from patients and healthy controls to detect differences in peptides/proteins; these dif-
ferences were used to develop classification algorithms for disease diagnosis [22–25]. In addi-
tion, peptide mass fingerprinting can detect differences in serum/plasma peptides/proteins
between subgroups of patients with same type of disease. Taguchi [26] andWu [27] used MAL-
DI-TOF-MS to analyze serum and plasma from NSCLC patients; they observed subtle differ-
ences in serum/plasma peptides/proteins between two subgroups that experienced significantly
different EGFR-TKI efficacies and developed classification algorithms using differential pep-
tides/proteins to predict the efficacy of EGFR-TKI in NSCLC patients. Because the efficacy of
EGFR-TKI has been associated with EGFR gene mutation status, the constituting peptides/pro-
teins of the serum/plasma classification algorithms developed by Taguchi and Wu to predict
EGFR-TKI efficacy may be associated with EGFR gene mutation status [27, 28].

In this study, we aimed to detect serum peptides/proteins associated with EGFR gene muta-
tion status and test whether a classification algorithm based on serum proteomic profiling
could be developed for analysis of EGFR gene mutation status to assist in therapeutic decision-
making. To accomplish this, we applied peptide mass fingerprinting using MALDI-TOF-MS
coupled with ClinProTools software to analyze serum from 223 NSCLC patients with a known
EGFR gene mutation status (i.e., determined by amplification refractory mutation system
[ARMS] in tumor tissue) and detect differences in serum peptides/proteins between NSCLC
patients with EGFR gene TKI-sensitive mutations and NSCLC patients with wild-type EGFR
genes. We developed a serum proteomic classifier to evaluate EGFR gene mutation status and
tested the classifier on an independent validation group. We also analyzed correlations between
EGFR gene mutation status as identified by the serum proteomic classifier and response to
EGFR-TKIs to test the potential utility of EGFR gene mutation status identified by the serum
proteomic classifier for predicting clinical responses to EGFR-TKI treatment.

Patients and Methods

Patients and samples
To be eligible for the study, patients were required to have pathologically confirmed stage IIIB
or IV NSCLC, an Eastern Cooperative Oncology Group performance status of 0 to 2, prede-
fined EGFR gene mutation status in tumor tissues based on ARMS (scorpions amplification re-
fractory mutation system, Qiagen, Germany) prior to therapy, and available serum. Only
patients treated at 307 Hospital of PLA fromMay 2011 to April 2013 were enrolled. This study
was performed according to protocols approved by the local ethical committee (the Ethics
Committees of 307 Hospital, PLA), and all the patients provided written informed consent to
participate in this study and gave permission for the use of their blood samples. For the tumor
response assessment, we evaluated objective responses after 8 weeks of treatment on the basis
of computed tomography (CT) scans. Tumor response was determined according to RECIST
1.0. Overall survival (OS) was defined as the time from the date of lung cancer diagnosis to the
date of death. Progression free survival (PFS) was defined as the time from the start of
EGFR-TKI treatment to the date of disease progression or death from any cause. The cutoff
date for follow-up was November 10, 2014. Smoking status was based on records from the
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patients’ first clinic visits, and people who had smoked more than 100 cigarettes in their life-
time were considered smokers. Laboratory data were obtained and recorded independently by
investigators who were blinded to the clinical data until the analyses were completed by
a biostatistician.

Fifty patients were randomly selected from patients with EGFR gene TKI-sensitive muta-
tions and wild-type EGFR genes respectively (a total of 100 patients) to form the training group
for the detection of differences in serum peptides/proteins between NSCLC patients with
EGFR gene TKI-sensitive mutations and NSCLC patients with wild-type EGFR genes, and the
generation of the classification model, and the remaining patients formed the validation group
to test the model.

The patients fasted overnight. All blood samples were collected before the patients received
first-line treatment. Blood samples were collected in vacuum blood collection tubes containing
coagulant and separation gel and centrifuged at 3000 rpm for 10 min at 4°C to separate the
serum. The supernatant was divided into 100-μl aliquots and stored at −80°C until processing.

Peptidome isolation
Serum samples were thawed on ice and fractionated with weak cation exchange magnetic
beads (MB-WCX, National Center of Biomedical Analysis, China). The samples were pro-
cessed following three steps: binding, washing and elution. For each analysis, 5 μl of beads
washed three times in 50 μl of binding solution (National Center of Biomedical Analysis,
China), 20 μl of binding solution and 5 μl of sample were added into an Eppendorf tube and in-
cubated for 10 min at room temperature. The tube was placed on a magnetic bead separation
device to isolate the peptidome. The supernatant was removed, and the beads were washed
three times with 100 μl of washing solution (National Center of Biomedical Analysis, China) to
discard unbound proteins. Finally, the beads were washed with 20 μl of eluting solution (Na-
tional Center of Biomedical Analysis, China) to acquire bound proteins for MALDI-TOF-MS
analysis.

MALDI-TOF-MS analysis
For the MALDI-TOF-MS analysis, 1 μl of peptide eluate mixed 1:1(v/v) with a matrix solution
consisting of saturated α-cyano-4-hydroxy-cinnamic acid (α-HCCA, Bruker Daltonics, Ger-
many) in 50% acetonitrile (ACN, Sigma-Aldrich, USA) and 0.1% trifluoroacetic acid (TFA,
Sigma-Aldrich, USA) was spotted onto the sample anchor spots of an AnchorChip 600/384
target plate (Bruker Daltonics, Germany) and allowed to air-dry at room temperature to let the
matrix crystallize. ClinProt Peptide Calibration Standard I (Bruker Daltonics, Germany), a
commercially available mixture of protein/peptide calibrators that consisted of angiotensin II
(m/z 1,047.19), angiotensin I (m/z 1,297.49), substance P (m/z 1,348.64), bombesin (m/z
1,620.86), ACTH clip 1–17 (m/z 2,094.43), ACTH clip 18–39 (m/z 2,466.48), and somatostatin
(m/z 3,149.57) was mixed 1:1 (v/v) with matrix solution, and 0.5 ml was deposited onto cali-
brant anchor spots of the AnchorChip target plate for instrument calibration.

Mass spectrometry analyses were performed on an Ultraflex III MALDI-TOF-MS (Bruker
Daltonics, Germany). The operating conditions were as follows: linear positive ion mode; repe-
tition rate, 200 Hz; ion source voltages, 25 and 23.50 kV; lens voltage, 6.5 kV; pulsed ion extrac-
tion time, 100 ns. For matrix suppression, we used a high gating factor with signal suppression
of up to 300 m/z. For each spectrum, 3000 shots were acquired manually from six random po-
sitions over the surface of the spot (i.e., 500 shots per position). Data acquisition was carried
out at 43% of the maximum laser energy. Each spectrum was externally calibrated. Peaks in the
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m/z range of 800–10,000 Da were recorded with the FlexControl acquisition software v3.4
(Bruker Daltonics, Germany).

Bioinformatics
Spectral processing. ClinProTools software v2.1 (Bruker Daltonics, Germany) was used

to automatically process MALDI-TOFMS spectra data using data preparation settings accord-
ing to the following standard workflow: Each raw spectrum was normalized to its total ion cur-
rent; all the spectra were recalibrated using the prominent, common m/z values; baseline
subtraction, smoothing, and peak detection were performed; and peak areas for each spectrum
were calculated. The signal-to-noise ratio was set at 5 for peak detection. Peak areas were calcu-
lated using zero level integration type. Spectra were also ‘‘top hat” baseline subtracted with the
minimum baseline width set to 10%, smoothed and processed in the 800–10,000 Da range.

Training and classification model establishment in the training group. Only spectra
from the training group were used. Differences in peptide peaks between patients with EGFR
gene TKI-sensitive mutations and patients with wild-type EGFR genes were selected using
peak areas on the basis of statistical differences. Built-in mathematical models in ClinProTools
2.1 (i.e., genetic algorithm (GA), supervised neural network (SNN) algorithm and quick classi-
fier (QC) algorithm) were then used to select peptide peaks and set up classification models to
determine the optimal separation planes between samples from patients with EGFR gene TKI-
sensitive mutations and wild-type EGFR genes. After each model was generated, a random
cross-validation process was carried out with the software, and the percent to leave out and
number of iterations were set at 20 and 10, respectively.

To determine the accuracy of the class prediction model, the software quantifies cross-
validation and recognition capability. Cross-validation is a measure of the reliability of a model
and can be used to predict how a model will behave in the future. This method is used for eval-
uating the performance of an algorithm for a given data set and under a given parameteriza-
tion. Recognition capability describes the performance of an algorithm, i.e., the proper
classification of a given data set.

Blind test of the classification model that most efficiently separated samples from pa-
tients with EGFR gene TKI-sensitive mutations from samples from patients with wild-type
EGFR genes in the validation group. This validation was performed in a blinded manner in
that MALDI-TOF-MS analysis was performed and samples were classified before the clinical
outcome data were made available to the investigators.

For each patient from the validation groups, a corresponding spectrum was presented to the
selected classification model (named classifier), which then returned a label, either “mutant”
(i.e., classification to class consisting of samples from patients with EGFR gene TKI-sensitive
mutations) or “wild” (i.e., classification to class consisting of samples from patients with wild-
type EGFR gene), or output a message that the spectrum was unclassifiable. The results from
the selected classification model were compared with findings from ARMS in tumors to esti-
mate the separation efficiency of the model.

Statistical analysis
The clinical and disease characteristics between different arms, the objective response rate
(ORR) and disease control rate (DCR) between patients whose matched samples were labeled
as “mutant” and “wild” were compared using a χ2 or Fisher’s exact test. The concordance be-
tween ARMS in tumors and the serum proteomic classifier in evaluating EGFR gene mutation
status was assessed using a Kappa test. Survival curves were estimated by the Kaplan—Meier
method, and differences between curves were evaluated by the log-rank test. Statistical analyses

Classification of EGFR in NSCLC

PLOSONE | DOI:10.1371/journal.pone.0128970 June 5, 2015 5 / 17



were performed with SPSS software, v19.0 (SPSS Inc., USA). A p-value less than 0.05 was con-
sidered statistically significant.

Results

Patient Characteristics
A total of 223 patients met the enrollment criteria and were enrolled in this study. Based on the
criterion of ARMS in tumors, there were 102 patients with EGFR gene TKI-sensitive mutations
and 121 patients with wild-type EGFR genes. Fifty patients were randomly selected from those
with EGFR gene TKI-sensitive mutations and from those with wild-type EGFR genes (i.e., a
total of 100 patients) to form the training group, and the remaining 123 patients (i.e., 52 pa-
tients with EGFR gene TKI-sensitive mutations and 71 with wild-type EGFR genes) formed the
validation group. The clinical and disease characteristics of all the patients are listed in Table 1.
The patients were balanced between the training group and the validation group (Table 2). In
the training group, there were no significant differences between patients with EGFR gene

Table 1. Clinical and disease characteristics of all patients.

Characteristics No. of patients (N = 223) % of patients

Age, years

Mean 57.0

Standard deviation 11.5

Sex

Male 109 48.9

Female 114 51.1

Smoking history

Smoker 95 42.6

Never smoker 128 57.4

Histologic type

ADC 205 91.9

SCC 13 5.8

Other 5 2.3

Disease stage

IIIB 41 18.4

IV 182 81.6

EGFR-TKI treatment

No 69 30.9

Yes 154 69.1

First-line 72 32.3

Second-line 61 27.4

Third-line or greater 21 9.4

EGFR gene mutation status determined by ARMS

E19del 55 24.7

L858R 43 19.3

G719X 4 1.8

wild-type 121 54.2

ADC = adenocarcinoma; SCC = squamous cell carcinoma; TKI = tyrosine kinase inhibitor;

EGFR = epidermal growth factor receptor; ARMS = amplification refractory mutation system; E19del = exon
19 deletion; L858R = exon 21 (L858R) mutation; G719X = exon 18 (G719X) mutation.

doi:10.1371/journal.pone.0128970.t001
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TKI-sensitive mutations and wild-type EGFR genes with respect to age, histologic type, or dis-
ease stage, but differences in sex and smoking history were observed between these two arms,
with more females and more non-smokers in patients with EGFR gene TKI-sensitive mutations
(Table 3).

Differences of peaks in serum between patients with EGFR gene TKI-
sensitive mutations and patients with wild-type EGFR genes in the
training group
A total of 129 peptide peaks were identified in the spectra of the training group data set gener-
ated by MALDI-TOF-MS, and 9 peaks were significantly different (p<0.05) between the pa-
tients with EGFR gene TKI-sensitive mutations and patients with wild-type EGFR genes
(Table 4). Two signals (with m/z 1365.1 and 1866.47) exhibited a lower peak area and seven
signals (with m/z 3315.75, 3883.79, 3956.66, 4092.4, 4585.05, 4643.49, and 5866.96) exhibited a
higher peak area in patients with EGFR gene TKI-sensitive mutations compared to patients
with wild-type EGFR genes. Peptide peaks with m/z 4092.4 and 4585.05 exhibited the greatest
difference in peak areas between patients with EGFR gene TKI-sensitive mutations and patients

Table 2. Clinical and disease characteristics of patients in the training and validation groups.

Characteristics Training group (N = 100) Validation group (N = 123) P value

Age, y 0.155

Mean 58.2 56.0

Standard deviation 11.1 11.7

Sex, No. (%) 0.813

Male 48(48.0) 61(49.6)

Female 52(52.0) 62(50.4)

Smoking history, No. (%) 0.870

Smoker 42(42.0) 53(43.1)

Never smoker 58(58.0) 70(56.9)

Histologic type, No. (%) 0.868

ADC 93(93.0) 112(91.1)

SCC 5(5.0) 8(6.5)

Others 2(2.0) 3(2.4)

Disease stage, No. (%) 0.893

IIIB 18(18.0) 23(18.7)

IV 82(82.0) 100(81.3)

EGFR-TKI treatment, No. (%) ND

No 29(29.0) 40(32.5)

Yes 71(71.0) 83(67.5)

First-line 34(34.0) 38(30.9)

Second-line 28(28.0) 33(26.8)

Third-line or greater 9(9.0) 12(9.8)

EGFR gene mutation status determined by ARMS, No. (%) ND

E19del 27(27.0) 28(22.8)

L858R 21(21.0) 22(17.9)

G719X 2(2.0) 2(1.6)

wild-type 50(50.0) 71(57.7)

ND = not done.

doi:10.1371/journal.pone.0128970.t002
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Table 3. Clinical and disease characteristics of patients with EGFR gene TKI-sensitive mutations and patients with a wild-type EGFR gene in the
training group.

Characteristics Mutation arm (N = 50) Wild-type arm (N = 50) P value

Age, y 0.419

Mean 57.3 59.1

Standard deviation 11.6 10.5

Sex, No. (%) 0.016

Male 18(36.0) 30(60.0)

Female 32(64.0) 20(40.0)

Smoking history, No. (%) 0.043

Smoker 16(32.0) 26(52.0)

Never smoker 34(68.0) 24(48.0)

Histologic type, No. (%) 0.131

ADC 49(98.0) 44(88.0)

SCC 1(2.0) 4(8.0)

Others 0(0) 2(4.0)

Disease stage, No. (%) 0.603

IIIB 8(16.0) 10(20.0)

IV 42(84.0) 40(80.0)

EGFR-TKI treatment, No. (%) ND

No 3(6.0) 26(52.0)

Yes 47(94.0) 24(48.0)

First-line 29(58.0) 5(10.0)

Second-line 15(30.0) 13(26.0)

Third-line or greater 3(6.0) 6(12.0)

EGFR gene mutation status determined by ARMS, No. (%) ND

E19del 27(54.0) 0(0)

L858R 21(42.0) 0(0)

G719X 2(4.0) 0(0)

wild-type 0(0) 50(100)

doi:10.1371/journal.pone.0128970.t003

Table 4. The 9 differential peaks in serum from patients with EGFR gene TKI-sensitive mutations and
patients with wild-type EGFR genes in the training group.

m/z Peak areas of the wild-type
arm (X±S)

Peak areas of the mutation
arm (X±S)

P value

Signals showed a lower peak area in patients with EGFR gene TKI-sensitive mutations

1365.1 15.96±5.37 9.1±4.01 < 0.000001

1866.47 638.6±548.7 170.42±124.03 0.00393

Signals showed a higher peak area in patients with EGFR gene TKI-sensitive mutations

3315.75 40.92±26.8 77.98±59.56 0.000608

3883.79 7.13±2.97 12.26±5.33 0.00000221

3956.66 32.42±31.73 56.98±35.78 0.00163

4092.4 4.57±1.63 10±4.29 < 0.000001

4585.05 4.04±1.67 8.15±3.3 < 0.000001

4643.49 30.23±14.08 48.54±23.42 0.0000792

5866.96 1.8±0.97 3.96±3.18 0.0201

doi:10.1371/journal.pone.0128970.t004
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with wild-type EGFR genes (p<0.00001). Therefore, these two peaks (m/z 4092.4, x axis; m/z
4585.05, y axis) were plotted in a 2D peak distribution view (Fig 1).

Classification model establishment
Three algorithms, GA (optimized by adjusting the number of neighbors for a k-nearest neigh-
bor classification), SNN and QC, were applied for classification model construction using spec-
tral data from the training group generated by MALDI-TOF-MS. The recognition capability
and cross-validation of the models are presented in Table 5, and the Model GA-7 (named clas-
sifier), which was composed of five peptide peaks with m/z 4092.4, 4585.05, 1365.1, 4643.49
and 4438.43, exhibited the best efficiency in separating samples from patients with EGFR gene
TKI-sensitive mutations and samples from patients with wild-type EGFR genes, with a recogni-
tion capability of 93.32% and a cross-validation of 81.23% (Fig 2).

Blinded test of the classifier in the validation group
The classifier was then validated in an independent validation group of 123 NSCLC patients in
a blinded test (Table 6). Three of the 123 samples yielded unclassifiable spectra (i.e., one sample
was from a patient with EGFR gene TKI-sensitive mutation, and two were from patients with
wild-type EGFR genes, as confirmed by ARMS in tumors). Among the 52 samples from pa-
tients with EGFR gene TKI-sensitive mutations confirmed by ARMS in tumors, 44 (84.6%)

Fig 1. 2D peak distribution of peptides with m/z 4092.4 (x-axis) and 4585.05 (y-axis) between patients with EGFR gene TKI-sensitive mutations
(green circles) and patients with wild-type EGFR genes (red crosses). The discriminating features of the two selected peptides were generated by
ClinProTools bioinformatics software. The values represent the peptide abundance ratio, and these values were significantly different between patients with
EGFR gene TKI-sensitive mutations and patients with wild-type EGFR genes. The ellipses represent the standard deviation of the class average of the peak
areas/intensities.

doi:10.1371/journal.pone.0128970.g001
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were labeled as “mutant” by the serum proteomic classifier; and among the 71 samples from
patients with wild-type EGFR genes confirmed by ARMS in tumors, 55 (77.5%) were labeled as
“wild” by the serum proteomic classifier, achieving an overall accuracy of 80.5%, with a sensi-
tivity of 84.6% and a specificity of 77.5%, which indicated a high consistency between ARMS in
tumors and the serum proteomic classifier in evaluating EGFR gene mutation status (P<0.001;

Table 5. The cross-validation and recognition capability of three algorithms used to classify patients with EGFR gene TKI-sensitive mutations and
wild-type EGFR genes.

Algorithm Model name Cross-validation (%) Recognition capability (%)

GA

Number of neighbors: 3 GA-3 75.50 92.16

Number of neighbors: 5 GA-5 74.52 93.30

Number of neighbors: 7 GA-7 81.23 93.32

SNN SNN 74.04 91.28

QC QC 64.01 81.62

GA = genetic algorithm; SNN = supervised neural network; QC = quick classifier algorithm.

doi:10.1371/journal.pone.0128970.t005

Fig 2. ClinProTools image showing the average intensity, in arbitrary units, of five peptides composing the classifier in patients with EGFR gene
TKI-sensitive mutations and wild-type EGFR genes.

doi:10.1371/journal.pone.0128970.g002
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Kappa value, 0.648; 3 patients with invalid spectra were excluded). However, of 52 samples
from patients with EGFR gene TKI-sensitive mutations confirmed by ARMS in tumors, 7
(13.5%) were labeled as “wild” by the classifier; similarly, of 71 samples from patients with
wild-type EGFR genes determined by ARMS in tumors, 14 (19.7%) were labeled as “mutant”
by the classifier.

Correlation between EGFR gene TKI-sensitive mutations identified by
the classifier and the therapeutic effect of EGFR-TKIs in the validation
group
In the validation group, three of the 123 samples yielded unclassifiable spectra, and the three
corresponding patients were excluded from the analysis. Among the remaining 120 patients,
81 had measurable tumors and received EGFR-TKI treatment. The clinical and disease charac-
teristics of these 81 patients are presented in Table 7, and the median follow-up time of these
patients was 29.0 months (range, 7.0 to 40.0 months). Patients whose matched samples were la-
beled as “mutant” and “wild” by the classifier exhibited different tumor responses to EGFR-T-
KIs; these responses are listed in Table 8. Twenty-eight (59.6%) of 47 patients whose matched
samples were labeled as “mutant” by the classifier and 3 (8.8%) of 34 patients whose matched
samples were labeled as “wild” by the classifier exhibited an objective response (p<0.0001).
Disease control was noted in 41 (87.2%) of 47 patients whose matched samples were labeled as
“mutant” by the classifier and 12 (35.3%) of 34 patients whose matched samples were labeled
as “wild” by the classifier (p<0.0001). Kaplan—Meier survival plots of PFS and OS for patients
whose matched samples were labeled as “mutant” and “wild” by the classifier are shown in Fig
3. The median PFS time for patients whose matched samples were labeled as “mutant” and
“wild” by the classifier were 10.0 months (95% CI, 9.0 to 10.9) and 2.3 months (95% CI, 1.9 to
2.7), respectively. Patients whose matched samples were labeled as “mutant” by the classifier
had a significantly longer PFS than patients whose matched samples were labeled as “wild” by
the classifier (p = 0.001, log-rank test, Fig 3A). Patients whose matched samples were labeled as
“mutant” by the classifier had an OS time of 29.0 months (95% CI, 25.2 to 32.8) compared with
28.0 months (95% CI, 17.7 to 38.3) for the patients whose matched samples were labeled as
“wild-type” by the classifier. There was no significant difference in OS between the two groups
(p = 0.441, log-rank test, Fig 3B).

Discussion
The assessment of EGFR gene mutation status in tumor tissue has important predictive value
and can be used to select therapies for the treatment of NSCLC. Many patients with advanced

Table 6. Blind test results of the classifier in the validation group.

Serum proteomic
classifier

Invalid spectra Total Sensitivity (%) Specificity (%) Accuracy (%)

Labeled as
“mutant”

Labeled as
“wild-type”

Determined by ARMS in tumors

EGFR-mutant 44 7 1 52 84.6 77.5 80.5

EGFR-wild 14 55 2 71

Total 58 62 3 123*

*P<0.001; Kappa value, 0.648; 3 patients with invalid spectra were excluded

doi:10.1371/journal.pone.0128970.t006
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and metastatic NSCLC are diagnosed with small biopsies or by fine needle aspiration of tu-
mors, which often yields insufficient DNA for evaluating EGFR gene mutation status. Nonin-
vasive approaches of evaluating EGFR gene mutation status using substitutes for tumor tissues
would be of value for patients in whom sufficient tumor tissue is not available [16]. Table 9

Table 7. Clinical and disease characteristics of patients enrolled in the analysis of EGFR-TKI therapeutic effects in the validation group.

Characteristics Total (N = 81) Labeled as “mutant” by
the classifier (N = 47)

Labeled as “wild-type” by
the classifier (N = 34)

Age, y

Mean 55.1 55.1 55.2

Standard deviation 12.2 13.6 10.2

Sex, No. (%)

Male 37(45.7) 19(40.4) 18(52.9)

Female 44(54.3) 28(59.6) 16(48.1)

Smoking history, No. (%)

Smoker 34(42.0) 17(36.2) 17(50.0)

Never smoker 47(58.0) 30(63.8) 17(40.0)

Histologic type, No. (%)

ADC 76(93.8) 45(95.8) 31(91.2)

SCC 3(3.7) 1(2.1) 2(5.9)

Others 2(2.5) 1(2.1) 1(2.9)

Disease stage, No. (%)

IIIB 15(18.5) 8(17.0) 7(20.6)

IV 66(81.5) 39(83.0) 27(79.4)

EGFR-TKI treatment, No. (%)

First-line 37(45.7) 29(61.7) 8(23.5)

Second-line 32(39.5) 15(31.9) 17(50.0)

Third-line or greater 12(14.8) 3(6.4) 9(26.5)

EGFR-TKI, N (%)

Gefitinib 40(49.4) 24(51.1) 16(47.1)

Erlotinib 31(38.3) 17(36.2) 14(41.2)

Icotinib 10(12.3) 6(12.7) 4(11.7)

EGFR gene mutation status determined by ARMS, No. (%)

E19del 25(30.9) 21(44.7) 4 (11.8)

L858R 19(23.5) 16(34.0) 3(8.8)

G719X 3(3.7) 2(4.3) 1(2.9)

wild-type 34(41.9) 8(17.0) 26(76.5)

doi:10.1371/journal.pone.0128970.t007

Table 8. Tumor response in patients whosematched samples were labeled as “mutant” and “wild” by the classifier in the validation group.

Classification Response Total ORR (%) DCR (%)

CR PR SD PD

Labeled as “mutant” 0 28 13 6 47 59.6 87.2

Labeled as “wild” 0 3 9 22 34 8.8 35.3

Total 0 31 22 28 81

P value <0.001 <0.001

CR = complete response; PR = partial response; SD = stable disease; PD = progressive disease.

doi:10.1371/journal.pone.0128970.t008
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provides details on the various methods used in previous reports to detect EGFR gene muta-
tions in serum/plasma samples [3, 12–18]. Depending on the technique, the concordance be-
tween EGFR gene mutation status in tumor and plasma/serum samples ranges from 66% to
100%, with the highest correlation index being reported for denaturing high-performance
chromatography [3] and mutant-enriched PCR [13]. However, these methods of assessing
EGFR gene mutation status in plasma or serum samples are not widely used to guide
EGFR-TKI therapy in clinical practice because of their inferior sensitivity when compared with
findings from tumor tissue or the fact that studies examining these methods have utilized small
sample sizes. In this study, we found that among 123 patients in the validation group, assess-
ments of EGFR gene mutation status using serum proteomic classifiers yielded results that
were concordant with the results of ARMS in tumors in 80.5% of the cases, with a high sensitiv-
ity of 84.6%.

Fig 3. Kaplan-Meier plots of PFS (A) and OS (B) for 81 patients treated with EGFR-TKIs in the validation group. (A) PFS between patients whose
matched samples were labeled as “mutant” (n = 47) and patients whose matched samples were labeled as “wild” (n = 34). (B) OS between patients whose
matched samples were labeled as “mutant” (n = 47) and “wild” (n = 34).

doi:10.1371/journal.pone.0128970.g003

Table 9. Methods used in selected previous reports to detect EGFR genemutations in plasma and serum samples of lung cancer patients.

Assay design n Sensitivity Specificity Sample

Bai[3] Denaturing high-performance liquid chromatography 230 82% 90% Plasma

Yung[12] Microfiuidics digital PCR 35 92% 100% Plasma

He[13] Mutant-enriched PCR 18 100% 89% Plasma

Jian[14] Lightcycler PCR with Taqman-MGB probes 88 n.a. n.a. Plasma

Liu[15] Scorpion-amplification refractory mutation system 86 67.5% 100% Plasma

Brevet[16] Mass spectrometry genotyping 31 44.4% 84.6% Plasma

Kimura[17] PCR + Direct sequencing 12 66% 63/71%a Serum

Kimura[18] Scorpion-amplification refractory mutation system 42 85% 94% Serum

n.a.: Sensitivity and specificity are not available because of a lack of correlation with the primary matched tumors.
a: Before/after treatment.

doi:10.1371/journal.pone.0128970.t009
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However, we did find EGFR gene mutations that were successfully identified by only one
method (i.e., serum proteomic classifier or ARMS in tumors) in 17.1% of patients in the valida-
tion group (i.e., 11.4% [14/123] by the serum proteomic classifier only, 5.7% [7/123] by ARMS
in tumors only). It is important to note that cases in which test results were inconsistent be-
tween the serum proteomic classifier and ARMS in tumors cannot be considered as conven-
tional “false-negatives” or “false-positives.”One possible explanation for this inconsistency in
the determination of mutational status is heterogeneity of genetic abnormalities in the tumors.
In such instances, tumor biopsy specimens might not carry the EGFR gene mutations identified
by the serum proteomic classifier because these classifier-constituting peptides/proteins related
to EGFR gene mutation status could be derived from different parts of the tumor. The lower
tumor cell content in some of the tumors might also contribute to the lack of detectable muta-
tions. Similarly, either there is little or no classifier-constituting peptides/proteins related to
EGFR gene mutation status being shed in the blood in a given case, or the quantity of peptides/
proteins in the serum is affected by certain conditions, such as inflammation, the classification
of EGFR gene mutation status based on serum proteomic profiling might be impeded despite
the presence of mutations in tumors.

EGFR encoded by the wild-type EGFR gene is a transmembrane tyrosine kinase receptor
with a molecular weight of 170 kDa. The difference between EGFR encoded by EGFR gene
with TKI-sensitive mutations and EGFR encoded by wild-type EGFR gene is that the former
harbors activating tyrosine kinase domain. These two EGFRs should have similar molecular
weights. Due to the high molecular weight, it is important to note that the MALDI-TOF-MS
described in this study is neither suited for directly detecting EGFR encoded by EGFR gene
with TKI-sensitive mutations nor EGFR encoded by wild-type EGFR gene because the typical
observable mass range is 800–10000 Da. Instead, we detected the differential peptide/protein
profiles between EGFR encoded by EGFR gene with TKI-sensitive mutations and EGFR en-
coded by wild-type EGFR gene. The identities of the constituting peptides/proteins are un-
known at present; it is possible that they are unknown co-expressed peptides/proteins with low
molecular weights involved, or that we detected fragments of EGFR or other high molecular
weight proteins, such as proteins from the EGFR signaling pathway [29]. It is well known that
tumor cell dissemination and apoptotic processes in tumors and at tumor-tissue boundaries in-
volve changes in the proteolytic activities of a series of different proteases that may lead to the
formation of protein fragments, thus providing a strong correlation with tumor tissue, and that
as well serve as a basis for tumor differentiation and prognosis [29–32]. In agreement with this
assumption, the proteins that have been identified thus far from blood samples by MALDI--
TOF-MS have largely been degradation products of larger proteins [29, 33–36].

We also analyzed the potential implications of EGFR gene mutation status, as identified by
the serum proteomic classifier, for predicting clinical outcomes in patients with NSCLC who
received EGFR-TKIs. Our findings of a correlation between EGFR gene mutations identified by
the classifier and tumor response to EGFR-TKI treatment and such treatment’s lack of impact
on OS were also consistent with previous studies in which EGFR gene mutation status was test-
ed in tumor tissue [4–8]. In patients treated with EGFR-TKIs in the validation group, 59.6% of
the patients whose matched samples were labeled as “mutant” responded to EGFR-TKIs,
whereas 8.8% of the patients whose matched samples were labeled as “wild” also responded. Al-
though no difference in OS was observed between patients whose matched samples were la-
beled as “mutant” and “wild”, patients whose matched samples were labeled as “mutant” had
significantly longer PFS after EGFR-TKI treatment, which suggests that these patients might
have benefitted from the treatment. It should be noted that our study was not specifically de-
signed to test EGFR-TKI treatment and that many patients received other chemotherapeutic
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agents, which makes data interpretation difficult. Additional clinical studies with specifically
defined treatment regimens and larger sample sizes are necessary.

Tumor-based assays require well-preserved biopsy material, are technically difficult, incur
substantial costs, and have a slow turnaround time. By contrast, the MALDI-TOF-MS method
that we have described can be performed using less than 1 μl of pretreatment serum. Addition-
ally, this method is inexpensive and rapid, and it can easily be fully automated. In our study,
the assessment of EGFR gene mutation status using the serum proteomic classifier produced
results that were not completely consistent with those obtained with ARMS in tumors. Howev-
er, the inability to obtain primary tumor tissues, particularly through repeated biopsies, from
patients with advanced-stage lung cancer makes the use of a serum proteomic classifier for
analysis of EGFR gene mutation status clinically important given the high sensitivity (84.6%) of
the technique and the favorable response to EGFR-TKIs in patients whose matched samples
were labeled as “mutant” by the serum proteomic classifier.

One limitation of our analysis is the inability of the serum proteomic classifier to precisely
determine the type of EGFR gene TKI-sensitive mutation, such as exon 19 deletion (E19del
[LREA deletion]) and exon 21mutation (L858R). Several studies have demonstrated that pa-
tients with an exon 19 deletion experienced, on average, longer PFS and OS than those with an
L858Rmutation after first-line EGFR-TKI treatment for advanced non-small cell lung cancer
[37, 38], indicating the clinical significance of the type of EGFR gene TKI-sensitive mutation.
Therefore, our serum proteomic classifier must be modified to enable it to determine the type
of EGFR gene TKI-sensitive mutation. Another limitation is the unknown biology underlying
the correlation of these features with EGFR gene mutation status. Identification and analysis of
the informative peaks might lead to important insights into the mechanisms underlying the
correlation, and these studies are underway.

In conclusion, in this study, we detected differences in serum peptides/proteins between pa-
tients with EGFR gene TKI-sensitive mutations and patients with wild-type EGFR genes; based
on these differences, a classification algorithm was developed for the analysis of EGFR gene
mutation status. Furthermore, EGFR gene mutation status, as determined by the serum proteo-
mic classifier, may be predictive of the response to EGFR-TKIs. All of the above provide evi-
dence to suggest that a serum proteomic classifier may be used instead of tumor tissue for
analysis of EGFR gene mutation status in NSCLC. It will be important to validate these findings
and determine the value of the assay in predicting patients’ responses to TKIs in randomized
trials with larger cohorts.
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