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In many medical research studies, survival time is typically the primary outcome of interest. The Cox
proportional hazards model is the most popular method to investigate the relationship between cova-
riates and possibly right-censored survival time. However, in many clinical trials, the true covariates may
not always be accurately measured due to natural biological fluctuation or instrument error. It is well
know that for regression analysis in general, naively using mismeasured covariates in conventional
inference procedures may incur substantial estimation bias. In the presence of covariate measurement
error, several functional modeling methods have been proposed under the situation where the distri-
bution of the measurement error is known. Among them are parametric corrected score and conditional
score. Although both methods are consistent, each suffers from severe problem of multiple roots or
absence of appropriate root when the measurement error is substantial. The problem persists even when
the sample size is practically large. We conduct a detailed investigation on the pathological behaviors of
parametric corrected score and propose an approach of incorporating additional estimating functions to
remedy these pathological behaviors. The estimation and inference are then accomplished by means of
quadratic inference function. Extensive simulation studies are conducted to evaluate the performance of
proposed method.
© 2015 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The proportional hazards model is one of the most popular
models to investigate the relationship between time to failure and
covariates. However, in many clinical trials, the true covariates may
not always be accurately measured due to natural biological fluc-
tuation or instrument error. In some studies, the magnitude of
measurement error could be substantial to the extent that it is
comparable to or even larger than that of the true underlying co-
variate. A typical example is the HIV viral load in HIV/AIDS studies.

For regression analysis in general, naively using mismeasured
covariates in conventional inference procedures may incur sub-
stantial estimation bias and several statistical methods have been
suggested to address covariate measurement error; see the
monograph of Carroll et al. for a good summary [1]. Regression
calibration is used frequently to yield approximate estimation.
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However, it is well known that the regression calibration estimator
is inconsistent in general. For consistent estimation, methods have
been developed under either structural or functional modeling, i.e.,
with or without parametric distributional assumptions imposed on
the true covariates. By definition, functional modeling approach
might be more appealing, particularly for its robustness. Available
functional modeling methods for Cox proportional hazards model
include the conditional score [2], the parametric corrected score
[3e5], and the nonparametric corrected score [5e8]. The idea of the
conditional score is to condition away the nuisance parameters
based on certain sufficient statistics whereas the last two classes
adopt a correction strategy by constructing a corrected estimating
function with error-contaminated covariates that shares the same
limit as a reference estimating function with true underlying
covariates. If the reference estimating function admits consistent
estimates only, the corrected estimating function shall inherit this
property in a compact parameter space containing the true value.
Conditional score and parametric corrected score are generally
different. But in the case of the Cox proportional hazards model and
normal measurement error, the conditional score and parametric
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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corrected score estimators are asymptotically equivalent.
Although all three aforementioned methods produce consistent

estimators, they all suffer from finite-sample pathological behav-
iors especially when the measurement error is substantial, which
limit the applicability of these methods in practice. Recently, Huang
[9] proposed an approach to incorporate additional estimating
functions which constrain the derivatives of the parametric cor-
rected score for loglinearmodel. This approach effectively remedies
those pathological behaviors and also considerably improves the
estimation efficiency. Huang's approach provides a promising
general strategy to handle similarly ill-behaved estimating
functions.

In this paper, we first conduct a detailed investigation on
pathological behaviors of parametric corrected score and condi-
tional score. After that, we propose an augmented estimation
procedure in which additional estimating functions are added to
the parametric corrected score for the proportional hazards model.
In Section 2, we briefly describe the parametric corrected score and
conditional score for the proportional hazards model and present
the investigation results on the pathological behaviors when co-
variatemeasurement error is substantial. The proposed approach of
incorporating additional estimating functions for the parametric
corrected score is presented in Section 3. Simulation studies with
practical sample size are reported in Section 4 together with an
application to the ACTG 175 clinical trial data. Further discussion is
given in Section 5. Technical details is collected in the Appendix.
2. Parametric corrected score and conditional score for
proportional hazards model and their pathological behaviors

The proportional hazards model postulates that the cumulative
hazard function Lð,Þ of survival time T of an individual with a p-
vector of covariate Z has the form

LðdtjZÞ ¼ expðb0ZÞL0ðdtÞ

where b is a p-vector parameter of interest and L0ð,Þ is an un-
specified underlying cumulative hazard function. Let C denotes the
censoring time and adopt the usual independent censoring
mechanism: given Z,C is independent of T.

The observed data, (Xi,Di,Zi,i¼ 1,…,n), consist of n independent
and identically distributed (i.i.d) replicates of {X≡T∧C,D≡I(T� C),Z}.
The standard inference procedure for Cox proportional hazards
model is then to maximize the partial likelihood or, equivalently, to
solve estimating function

x�
�
b; ~L0ð,Þ

� ¼ n�1
Xn
i¼1

Zt
0

�
1
Zi

��
dNiðtÞ � YiðtÞexpðb0ZiÞd~L0ðtÞ

�
;

(1)

whereNi(t)¼ I(Xi� t, Di¼ 1) is the counting process, Yi(t)¼ I( X i� t)
is the at-risk process and t is a positive constant such that Pr(T� t)
> 0. Profiling out ~L0ð,Þ, the estimating function for b alone is

xðbÞ ¼ n�1
Xn
i¼1

Zt
0

(
Zi �

Pn
j¼1YjðtÞZjexp

�
b0Zj

�Pn
j¼1YjðtÞexp

�
b0Zj

� )dNiðtÞ: (2)

Estimating function (2) is actually the usual partial score
function.
2.1. Parametric corrected score and conditional score

Split covariates Z ¼ ðZT
a ;Z

T
e ÞT where Za are those covariates that
can be accurately measured and Ze are covariates prone to mea-
surement error and cannot be accurately measured. Though Ze
cannot be measured directly, we can observe them through their
surrogates We. Under the classical additive measurement error
model, We¼ Zeþ εe, where εe is the error vector and εe is assumed
to be independent of (T,C,Z). In this paper, we assume that the
distribution of εe is known; The situation where distribution of εe is
unknown will be discussed in Section 5.

Let W¼ (Za,We) and ε¼ (0,εe). The observed data now consist of
(Xi,Di,Wi,i¼ 1,…,n) in the presence of covariate measurement error.
It is well known that naively replacing Z by W in estimating func-
tions (1) or (2) could incur substantial estimation bias. Denote the
cumulant-generating function of ε as UðbÞ≡logE fexpðb0εÞg and its
derivative _UðbÞ≡vUðbÞ=vb. The parametric corrected score esti-
mating function is given by

h��b; ~L0ð,Þ
� ¼ n�1

Xn
i¼1

Zt
0

�
1

Wi � _Uð0Þ
�
dNiðtÞ

�
Zt
0

YiðtÞexpfb0Wi � UðbÞg

�
�

1
Wi � _UðbÞ

�
d~L0ðtÞ: (3)

Further profiling out ~L0ð,Þ, we obtain the corrected score for b
[10]:

hðbÞ ¼ n�1
Xn
i¼1

Zt
0

(
Wi þ _UðbÞ � _Uð0Þ

�
Pn

j¼1YjðtÞWjexp
�
b0Wj

�Pn
j¼1YjðtÞexp

�
b0Wj

� )dNiðtÞ (4)

which has the same expectation as reference (2) asymptotically for
each and every finite b. The estimation is then to find the zero
crossing of the above estimating function. The consistency and
asymptotic normality of corrected score estimator are later estab-
lished by Kong and Gu [11].

Huang and Wang [6] defined a root-consistent estimating
function as such that every zero-crossing is consistent and showed
that a normalized estimating function is root-consistent if its limit
has a unique root at the estimand. By definition, reference (2) is a
root-consistent estimating function and the new estimating func-
tion (4) shall inherit the root-consistency from (2). The root-
consistency of (4) assures that in a compact parameter space con-
taining the true parameter b, the parametric corrected score will
admit a unique root asymptotically and the root is consistent and
asymptotically normal.

When the measurement error is normally distributed and as-
sume the variance matrix is S, the conditional score estimating
function for the Cox proportional hazards model [12] can be
written as

hconðbÞ ¼n�1
Xn
i¼1

Zt
0

(
Wi þ Sb

�
Pn

j¼1YjðtÞ
�
Wj þSbdNjðtÞ

	
exp

�
b0
�
Wj þ SbdNjðtÞ

	�Pn
j¼1YjðtÞexp

�
b0
�
Wj þ SbdNjðtÞ

	� )
dNiðtÞ

(5)

In fact, it can be shown that estimators from parametric



Table 1
Prevalence (%) of single-root pattern for the parametric corrected score with E(X)¼
0, Var(X)¼ 1, b¼�1, and ε ~ Normal(0,1).

Censoring rate Distribution of X Size

100 200 400 800

20% Normal 68.0 52.1 38.0 20.3
Modified chi-square 65.8 57.9 52.3 40.1
Uniform 64.5 51.9 37.6 19.6

40% Normal 62.4 49.0 36.3 17.8
Modified chi-square 64.4 58.0 50.9 43.1
Uniform 60.4 49.5 37.1 19.3

60% Normal 61.0 46.5 32.1 16.0
Modified chi-square 62.7 57.3 50.9 42.6
Uniform 58.5 47.9 36.8 21.2
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corrected score and conditional score are asymptotically equivalent
in the case of normal measurement error.

2.2. Pathological behaviors

When the magnitude of measurement error is small, the
asymptotic results of parametric corrected score and conditional
score provide a good approximation for practical purposes. How-
ever, when the measurement error increases, the pathological be-
haviors may start to arise [13]. These pathological behaviors include
multiple zero-crossings or a single wrong zero-crossing that is
inappropriate. These pathological behaviors may cause serious
concerns when the measurement error is substantial and limit the
applicability of parametric corrected score and conditional score in
practice. In this section, we will conduct a detailed investigation of
pathological behaviors for these two methods.

We first consider the parametric corrected score. Consider a
single-covariate model with normal measurement error. In the
absence of measurement error, the partial likelihood score function
x(b) is monotonically decreasing and has a unique root. The
asymptotic result suggests that the parametric corrected score h(b)
should bemonotonically decreasing aswell in a compact parameter
space containing the true parameter when the sample size is large.
One may speculate the parametric corrected score to have an
overall decreasing trend over the entire parameter space. But sur-
prisingly, the overall trend of parametric corrected score in an
unbounded parameter space is increasing. Function h(b) takes a
value of �∞ when b¼�∞ and a value of þ∞ when b¼þ∞. This
observation suggests that the parametric corrected score h(b) has
an odd number of roots. In our numerical studies, only single- and
triple-root patterns have been observed and two typical plots of
parametric corrected score are illustrated in Fig. 1. The same root
patterns were observed in Huang's investigation of loglinear model
[9].

If we characterize a root by increase or decrease of h(,) around
it, the increasing and decreasing roots correspond to local mini-
mizers and maximizers of corresponding objective function,
respectively. Therefore, an increasing root is considered as an
Fig. 1. Observed root patterns of the parametric corrected score h(b). The true b is �1 and t
Portion of a corrected curve is thickened to indicate negative derivative.
inappropriate one. In the case of single-root pattern, the only root is
increasing and thus inappropriate. For the triple-root pattern, an
appropriate root exists since there is only one decreasing root. The
single-root pattern is considered as root-finding failure.

We conduct a simulation study to exam the prevalence of
single-root pattern. We consider a single covariate Z and generate it
from various distributions: A) standard normal distribution, B)
modified chi-square distribution, and C) uniform distribution with
mean 0 and variance 1. To generate the modified chi-square dis-
tribution, the chi-square distributionwith 1 degree of freedomwas
first truncated at 5 and then location-shifted to mean 0 and
rescaled to variance 1. The measurement error follows standard
normal distribution. The true coefficient was taken to be b¼�1 and
the baseline hazard is constant 1. Censoring was generated from a
uniform distribution on [0,m], where m is chosen so that the
censoring rate is ranged from 20% to 60%. These set-ups represent a
practical scenario with substantial error contamination on the co-
variate. The results based on 1000 iterations are reported in Table 1.
The prevalence of single-root patten is similar across different
scenarios with various censoring rates. When the sample size is
100, the percentage of single-root pattern under all three distri-
butions are close to or over 60%. Even when the sample size in-
creases to 800, the prevalence of single-root pattern is still quite
hese two corrected curves correspond to the same profile score (with true covariates).



Table 2
Prevalence (%) of root-finding failure for the conditional score with E(X)¼ 0,
Var(X)¼ 1, b¼�1, and ε~ Normal(0,1).

Censoring rate Distribution of X Size

100 200 400 800

20% Normal 2.7 1.5 .6 .3
Modified chi-square 14.4 12.2 15.1 13.9
Uniform 3.1 1.6 .6 .1

40% Normal 4.6 2.3 .8 .2
Modified chi-square 20.0 16.7 20.9 18.7
Uniform 3.1 2.1 .3 .5

60% Normal 4.7 2.5 .7 .3
Modified chi-square 24.6 21.7 25.7 25.0
Uniform 5.7 2.7 1.4 1.0
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high.
For the conditional score, the patterns are more complicated.

When the absolute value of b gets large, the estimating function
fluctuates around zero and finally approaches zero as b goes to
infinity. Therefore the conditional score may have many zero-
crossings. When the b is not so extreme, two general patterns for
the conditional scores are observed and plots from two simulation
datasets are shown in Fig. 2. In the first pattern, the conditional
score has one zero-crossing close to the true parameter. This single
zero-crossing is decreasing and thus an appropriate one. In the
second patten, the conditional score appears to have no proper
zero-crossing near the truth though it may have multiple zero-
crossings at extreme values of b. For conditional score, we define
root-finding failure as following: we start with the naive estimator
and search locally in the direction of the derivative of estimating
function for a new estimator such that the [2-norm of the esti-
mating functions decreases after each step. Repeat this step and we
will eventually achieve a root or a local minimizer for the [2-norm
of the estimating functions. We consider the latter case as root
finding failure. Table 2 summarizes the prevalence of root-finding
failure for the conditional score. The same simulation set up as in
the corrected score is used. With a sample size of 100, the root-
finding failure rate for conditional score varies from 3% to 5% for
normal covariate and from 14% to 25% for modified chi-square co-
variate. As the sample size increases to 800, the failure rate drops to
0.2% for normal covariate but remains at least 14% for modified chi-
square covariate.

The above investigation results show that, in the presence of
substantial measurement error, both parametric corrected score
and conditional score suffer from severe finite-sample pathological
behaviors. Therefore improvements are required for these methods
to have practical applicability.We observe that an appropriate zero-
crossing of an estimating function should be a decreasing one. This
observation suggests that the trend of estimating function is also
informative and could be taken into account in the estimate
determination. By Taylor expansion, the trend of estimating func-
tion may be quantified by its derivative. Recognizing this feature,
Huang [9] proposed an approach to incorporate additional esti-
mating functions which constrain the derivatives of the corrected
score for the loglinearmodel. The estimation and inference are then
accomplished by means of empirical likelihood. This approach
Fig. 2. Observed root patterns of the conditional
effectively remedies the pathological behaviors of corrected score
for loglinear model and also considerably improves the estimation
efficiency. However, in the case of the Cox proportional hazards
model, we are unable to construct additional estimating functions
that effectively constrain the derivative of the parametric corrected
score or conditional score because of the very nature of these two
estimating functions. Nevertheless, Huang's approach provides an
insight into a new approach to address pathological behaviors of
estimating functions. If we could identify additional estimating
functions that do not share the same wrong roots as the original
estimating function, then by combining the original and additional
estimating functions, pathological behaviors could be reduced or
eliminated. But if either the original estimating function or the
additional estimating functions vanish to zero, then wrong root
sharing would easily arise. We have shown in the simulation that
the conditional score would vanish to zero when the absolute value
of parameter becomes large. Thus, the trend pattern of the para-
metric corrected score is more desirable than that of the condi-
tional score and our method will be developed for the parametric
corrected score.

3. Improving corrected score

3.1. Augmented estimation method

Motivated by Huang's trend-constrained corrected score [9], we
score estimating function. The true b is �1.
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first derive the following result:

Theorem 1. Under the proportional hazards model and the classical
additive measurement error model,
ε

24Zt
0

vk1þ/þkpexpfb0W � UðbÞg
vbk11 /bkpp

dNiðtÞ
��
b¼0

Zt
0

vk1þ/þkpYðtÞexpfb0W � UðbÞg
vbk11 /bkpp

dL0ðtÞ
���
b¼b

35 ¼ 0; (6)
for kl� 0,l¼ 1,…,p, where bl,l¼ 1,…,p, is the lth element of b.

Equation (6) is useful in constructing additional estimating
equations for b. When

Pp
l¼1kl ¼ 0 and 1, one may obtain the usual

parametric corrected score. When
Pp

l¼1kl ¼ 2, the additional esti-
mating functions are the upper triangular elements of the following
symmetric matrix:

n�1
Xn
i¼1

Zt
0

h�
Wi � _Uð0Þ�52 � U€ ð0Þ

i
dNiðtÞ �

Zt
0

YiðtÞexpfb0Wi

� UðbÞg
h�

Wi � _UðbÞ�52 � U€ ðbÞ
i
d~L0ðtÞ:

By profiling out ~L0ð,Þ, we obtain

n�1
Xn
i¼1

Zt
0

"�
Wi � _Uð0Þ�52 � U€ ð0Þ

�
Pn

j¼1YjðtÞexp
�
b0Wj � UðbÞ�h�Wj � _UðbÞ�52 � U€ ðbÞ

i
Pn

j¼1YjðtÞexp
�
b0Wj � UðbÞ�

#
dNiðtÞ

(7)

The additional estimating functions would be helpful if both
parametric corrected score and additional estimating function are
close to 0 around the truth (not necessarily having roots) and the
additional estimating function is not close to 0 when the para-
metric corrected score is close to 0 at any point far away from the
truth. Fig. 3 shows four typical patterns of parametric corrected
score and corresponding additional estimating function based on
Equation (7) for a single-covariate model with true parameter
b¼�1. Plot (a) is the ideal scenario. The parametric corrected score
have three zero-crossings. The additional estimating function
shares the same decreasing zero-crossing as the parametric cor-
rected score. Moreover, they do not share any wrong zero-
crossings. In plot (b), the parametric corrected score have three
zero-crossings and two of them are close to each other. In this case,
discriminating the two roots around the truth is not very important
since they are close to each other anyway. In plots (c) and (d), the
parametric corrected score has a singlewrong zero-crossing but the
additional estimating function is not close to 0 near this wrong
zero-crossing. Both estimating functions are close to 0 around the
truth.

3.2. Estimation and inference

With the additional estimating functions, we have more esti-
mating functions than the number of parameters. Available
methods to synthesize estimating functions that exceed the num-
ber of parameters include empirical likelihood [14] and quadratic
inference function (QIF) method [15]. In this research, we shall use
the quadratic inference function method to determine the estimate
since the estimating functions are not sums of iid terms, thus the
empirical likelihood would be computational difficult.

Let 4(b) denotes the estimating functions. 4(b) is comprised of
the original parametric corrected score and additional estimating
functions. The quadratic inference function takes the form

Q


b; bC� ¼ 40ðbÞbC�1ðbÞ4ðbÞ; (8)

where bCðbÞ is any consistent estimator for the asymptotic variance
of 4(b). Then the estimator is defined as the minimizer of (8) and is
consistent for the true value of b. Furthermore, the estimator is
asymptotically efficient in the class of consistent estimators based
on linear combination of parametric corrected score and additional
estimating functions. The construction of a quadratic inference
function helps to solve both aspects of pathological behaviors of the
parametric corrected score. Firstly, in the case of multiple zero-
crossings, the introduction of additional estimating functions
helps to pick up the right zero-crossing out from multiple ones if
the additional estimating functions do not share the same wrong
roots as the original parametric corrected score. Secondly, the
problem of no appropriate zero-crossing could be solved by mini-
mizing the quadratic inference function.

We name the method to incorporate additional estimating
functions based on (6) as the augmented parametric corrected score.
One important special case is the method incorporating the upper
triangular elements of matrix (7) and was termed the second order
augmented parametric corrected score. Augmented parametric cor-
rected scores with higher order are also available, with additional
estimating functions corresponding to kl such that

Pp
l¼1kl >2. In

Section 4, we will conduct extensive simulation studies to evaluate
the performance of the augmented parametric corrected score and
its applicability in practice.

Fig. 4 plots quadratic inference functions corresponding to the
two datasets in Fig. 1. The second order augmented parametric
corrected score is adopted. The formula for a consistent estimator of
the asymptotic variance of 4(b) is given in Appendix.

The interval estimation can be easily achieved by inverting the
hypothesis testing statistics. As an inference function, Qðb; bCÞ has
similar properties as the log-likelihood function [15].

(a) Qðb0Þ � QðbbÞ is asymptotically chi-squared with degree of
freedom p;

(b) the profile test statistics Qðj0; bl0Þ � Qðbj; blÞ, where (j,l) is a
partitioning of the parameter of b, is asymptotically chi-
squared as a test of H:j¼j0, with degree of freedom equal
to the dimension of j.
4. Numerical studies

4.1. Simulations

Extensive simulations studies were conducted to evaluate the
performance of augmented parametric corrected score. For refer-
ence and comparison, the ideal, naive, regression calibration, con-
ditional score, and parametric corrected score were also studied.



Fig. 3. Parametric corrected score and additional estimation function based on Equation (7) for a single-covariate model with b¼�1.
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The ideal estimator used the ordinary partial score function with
true covariates and, of course, it is not a realistic estimator. The
naive approach uses the mismeasured surrogates in place of true
covariates in the partial score function. For the regression calibra-
tion method, Ze is replaced by E(ZejZa,We) in the partial score
function. For the proposed approach, the optimization algorithm of
Nelder and Mead [16] will be used.

As shown in previous section, both conditional score and
parametric corrected score have high prevalence of root-finding
failure. To utilize all simulated data and conduct a fair compari-
son, we propose the following re-defined conditional score and re-
defined parametric corrected score. If an appropriate zero-crossing
could be found, the estimators will take the value of zero-crossing.
But if root-finding failure occurs, the estimators will be defined as
the local minimizer of the [2-norm of the estimating functions
closest to the naive estimator. Operationally, we will use the
following modified NewtoneRaphson algorithm. We start with the
naive estimator and calculate the NewtoneRaphson step size. Since
the goal is to find a root or local minimizer, we need prevent
overshooting. In our simulation, we cap the step size at .2. During
each iteration, we compare the [2-norm evaluated at new estimator
to that evaluated at current estimator. If the [2-norm evaluated at
new estimator is smaller, then the new estimator will be accepted
and the algorithm continues to the next iteration. Otherwise, we
will halve the step size and calculate the new estimator again. It-
erations will be repeated until that i) the absolute value of esti-
mating function is less than 10�6 or ii) the step size has been halved
for more than 10 time during any single iteration. If criteria i) is
satisfied, the algorithm converges to a zero-crossing and a root is
identified in this case. If criteria ii) is satisfied, the algorithm con-
verges to a local minimizer and root-finding failure occurs.
Comparing to the original definition that estimators take the values
of zero-crossings of estimating function, this new definition actu-
ally benefits the conditional score and corrected score. As shown in
Figs. 1 and 2, in the case of root-finding failure, zero-crossings of
conditional score and corrected score are at extreme and far away
from the true value.

In the simulation, we consider both single- and double-
covariate models. In the single-covariate models, the true covari-
ate X is of mean 0 and variance 1. The true regression coefficient
was set to be �1 and the baseline hazard is constant 1. The mea-
surement error follows the standard normal distribution. Two
different distributions of X were studied: A) standard normal dis-
tribution and B) modified chi-square distribution. To generate the
modified chi-square distribution, the chi-square distributionwith 1
degree of freedomwas first truncated at 5 and then location-shifted



Fig. 4. Quadratic inference functions for the two datasets in Fig. 1.
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to mean 0 and rescaled to variance 1. Censoring timewas generated
from a uniform distribution on [0,m] and we will consider two
different settings of censoring rate at 20% and 60%.

In the double-covariate models, true covariate X follows bivar-
iate normal distribution with mean (0,0), variance (1,1) and corre-
lation coefficient of .5. The first covariate was subject to a standard
normal measurement error, whereas the second covariate was
accurately measured. The regression coefficients were set to (�1,1)
and the baseline hazard is constant 1. Censoring time was also
generated from a uniform distribution on [0,m], where m is chosen
so that the censoring rate is 20% or 60%.

Sample sizes 100, 200, 400, 800, and 1600were investigated. For
each scenario, 1000 samples were simulated. We report the results
on point and interval estimation separately.

Tables 3 and 4 summarize the simulation results on the esti-
mators in the single-covariate models with censoring rates of 20%
and 60% respectively. The quantileequantile plots are shown in
Figs. 5 and 6. For each scenario, the mean bias, and standard de-
viationwere calculated. For augmented parametric corrected score,
Table 3
Simulation summary statistics for the single-covariate models with 20% censoring rate: I
defined parametric corrected score (CS), and first k augmented parametric corrected sco

Size Ideal NV RC ConS

B SD B SD B SD F B SD

Normal covariate
100 �15 154 593 99 148 254 2.7 �376 920
200 �8 104 602 65 189 163 1.5 �251 719
400 �5 73 601 48 195 113 .6 �202 575
800 1 49 604 32 206 76 .3 �99 351
1600 1 36 605 23 208 53 0 �43 200
c2 Covariate
100 �25 204 639 91 242 247 14.4 �485 1221
200 �5 136 640 63 267 155 12.2 �396 1022
400 �6 98 642 43 280 101 15.1 �329 895
800 �3 70 641 32 281 72 13.9 �249 740
1600 0 47 644 21 289 47 12.5 �139 486

Note: F: root-finding failure (%); B: mean bias (�103); SD: standard deviation(�103).
three sets of additional estimating functions were considered
where k¼ 2,3,4. As expected, the naive estimator has substantial
bias under both scenarios. The regression calibration estimator
shows moderate bias, with larger bias in modified chi-square co-
variate case than normal covariate case. The re-defined conditional
score shows slight bias under both scenarios, probably due to its
left skewness. The quantileequantile plots show that the re-
defined conditional score deviates from normality considerably
even when the sample size is 1600. It also has a much larger
standard deviation comparing to the re-defined parametric cor-
rected score and the augmented parametric corrected score. The re-
defined parametric corrected score is unbiased for both scenarios
and the standard deviation is small. All three augmented corrected
scores are consistent under both scenarios, and they become less
biased as sample size increases. In comparison with higher-order
augmented corrected scores, the second order augmented cor-
rected score seems more favorable overall in terms of bias and
standard error. Compared to the re-defined parametric corrected
score, the second order augmented corrected score has a larger
deal, naive(NV), regression calibration (RC), re-defined conditional score (ConS), re-
re (ACS: k), k ¼ 2, 3, 4.

CS ACS: 2 ACS: 3 ACS: 4

F B SD B SD B SD B SD

68.0 �11 287 46 431 �43 414 �103 381
52.1 �89 273 �60 330 �130 348 �172 351
38.0 �146 282 �99 287 �153 313 �184 327
20.0 �129 267 �87 246 �83 226 �123 256
5.6 �75 206 �45 163 �60 178 �62 166

65.8 145 241 110 387 41 409 9 409
57.9 47 241 �10 351 �81 381 �128 381
52.3 �21 237 �10 285 �76 306 �122 323
40.1 �70 245 �34 241 �81 237 �95 241
30.3 �82 242 �9 152 �29 133 �42 139



Table 4
Simulation summary statistics for the single-covariate models with 60% censoring rate: Ideal, naive(NV), regression calibration (RC), re-defined conditional score (ConS), re-
defined parametric corrected score (CS), and first k augmented parametric corrected score (ACS: k), k ¼ 2, 3, 4.

Size Ideal NV RC ConS CS ACS: 2 ACS: 3 ACS: 4

B SD B SD B SD F B SD F B SD B SD B SD B SD

Normal covariate
100 �24 206 550 134 57 335 4.7 �429 1014 61.0 �27 301 94 478 �24 502 �90 551
200 �15 142 562 88 109 206 2.5 �272 738 46.5 �101 303 10 298 �99 347 �188 395
400 �8 97 563 63 119 142 .7 �197 578 32.1 �139 305 �27 235 �96 257 �152 294
800 �2 65 567 42 132 96 .3 �100 379 16.0 �113 271 �33 189 �72 199 �103 223
1600 1 46 567 30 133 69 0 �51 238 4.9 �68 205 �17 128 �38 125 �57 148
c2 covaraite
100 �66 351 687 124 351 288 24.6 �259 1154 62.7 247 297 196 459 219 531 260 568
200 �24 239 691 84 370 190 21.7 �291 1042 57.3 133 287 81 359 44 429 54 496
400 �16 159 693 57 382 124 25.7 �202 841 50.9 57 268 37 322 �22 368 �52 423
800 �9 112 693 40 385 86 25.0 �172 684 42.6 �8 263 1 280 �55 276 �94 306
1600 0 78 697 28 394 60 21.5 �77 412 34.0 �29 258 �3 232 �29 194 �57 207

Note: Same as in that of Table 3.

Fig. 5. Quantileequantile plots for b in the single-covariate models with 20% censoring rate, where b¼�1. Red, yellow, green, blue, and black correspond to sample sizes 100, 200,
400, 800, and 1600.
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standard deviation when the sample size is small. But the standard
deviation of augmented corrected score decreases rapidly as the
sample size increases and is smaller than that of the re-defined
corrected score when then sample size is 1600.

Tables 5 and 6 show the simulation results for the double-
covariate models. As expected, when two covariates are corre-
lated, the measurement error generally has impact not only on the
mismeasured covariate but also on that of the accurately measured
one. The relative performance of all estimators is similar to what
was observed in the single-covariate models. For multiple-
covariate models, each set of additional estimating functions con-
tains more than one element. For example, when k¼ 2, the addi-
tional estimating functions includes three elements in the upper
triangle of matrix (3.7). Various augmented corrected score could
be constructed depending on the additional estimating functions
chosen. Since the second order augmented corrected score shows a



Fig. 6. Quantileequantile plots for b in the single-covariate models with 60% censoring rate, where b¼�1. Red, yellow, green, blue, and black correspond to sample sizes 100, 200,
400, 800, and 1600.

Table 5
Simulation summary statistics for the double-covariate models with 20% censoring rate: Ideal, naive(NV), regression calibration (RC), re-defined conditional score (ConS), re-
defined parametric corrected score (CS), and augmented parametric corrected score (ACS: 1/3, ACS: 2/3, ACS: 2).

Size Ideal NV RC ConS CS ACS: 1/3 ACS: 2/3 ACS: 2

B SD B SD B SD F B SD F B SD B SD B SD B SD

100 b1 �23 175 637 101 66 381 57.5 215 348 72.0 267 322 170 532 245 514 308 538
b2 23 171 �400 142 �113 246 �67 336 �100 327 �60 456 �97 404 �142 399

200 b1 �13 114 648 66 136 224 46.9 155 315 62.8 186 294 �18 382 42 375 92 339
b2 16 117 �412 101 �154 161 �35 310 �47 286 54 349 18 327 �20 276

400 b1 �5 82 649 48 168 144 33.4 65 297 46.2 71 280 �89 301 �56 277 �28 255
b2 4 80 �416 68 �177 103 5 257 15 243 85 269 60 233 40 210

800 b1 �2 55 651 33 181 93 20.0 22 224 30.5 �3 252 �99 282 �80 262 �56 220
b2 1 56 �420 52 �185 74 16 186 44 203 88 255 72 230 52 186

1600 b1 �2 40 652 23 185 66 8.0 �13 178 10.5 �43 207 �71 219 �67 204 �61 190
b2 1 39 �419 34 �186 49 21 134 45 155 59 180 57 163 51 145

F: root-finding failure (%); B: mean bias (�103); SD: standard deviation(�103).
ACS: 1/3 and ACS: 2/3 correspond to the additional estimating functions containing the (1,1) element and the first row elements of matrix (7), respectively. ACS: 2 is the second
order augmented parametric corrected score.
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more favorable overall performance in the single-covariates
models, we consider only the second order augmented corrected
score and augmented corrected scores using a subset of the three
elements in this simulation. Simulation results show that the sec-
ond order augmented corrected score performs better than two
other augmented corrected scores. The bias of the second order
augmented corrected score reduced quickly as sample size
increased. Meanwhile, it also has the smallest standard deviation.
Tables 7 and 8 report the coverage of three types of 95% confi-
dence intervals in the single- and double-covariate models. All
three scenarios use the second order augmented corrected score. In
constructing the confidence interval, we use two different ap-
proaches: inverting the hypothese testing statistics as introduced in
Section 2.2, and the Wald-type confidence interval. For the former,
we use two critical values based on the asymptotic chi-square
distribution and the bootstrap calibration [17]. Bootstrap size of



Table 6
Simulation summary statistics for the double-covariate models with 60% censoring rate: Ideal, naive(NV), regression calibration (RC), re-defined conditional score (ConS), re-
defined parametric corrected score (CS), and augmented parametric corrected score (ACS: 1/3, ACS: 2/3, ACS: 2).

Size Ideal NV RC ConS CS ACS: 1/3 ACS: 2/3 ACS: 2

B SD B SD B SD F B SD F B SD B SD B SD B SD

100 b1 �32 242 610 140 �13 513 43.3 96 428 64.8 239 320 225 668 326 666 392 660
b2 33 245 �352 206 �40 336 �27 408 �72 362 �50 536 �104 500 147 465

200 b1 �20 160 617 95 59 286 36.1 29 393 57.8 145 300 14 387 93 360 140 344
b2 21 161 �362 138 �81 209 24 344 �8 301 48 369 �7 310 �41 264

400 b1 �6 109 619 65 97 182 21.5 �2 293 40.4 45 279 �65 321 �9 273 30 241
b2 6 111 �366 97 �106 137 31 225 36 254 79 301 35 246 6 197

800 b1 �1 72 621 45 112 120 10.8 �23 249 25.7 �16 257 �73 267 �32 213 �9 192
b2 2 76 �369 69 �115 94 34 198 55 214 72 236 40 189 23 160

1600 b1 �2 53 622 33 114 87 7.6 �24 186 11.3 �46 212 �55 193 �40 171 �29 162
b2 0 53 �371 46 �117 65 28 142 47 161 46 162 36 140 26 124

Note: Same as in that of Table 5.

Table 7
Coverage of 95% confidence interval for the second order augmented parametric corrected scorewith 20% censoring rate. C (chi-square distribution), BC (bootstrap calibration)
and W (Wald-type) indicate the type of confidence interval.

Size 100 200 400 800 1600

C BC W C BC W C BC W C BC W C BC W

Single-covariate: normal covariate
b 90.2 96.8 87.0 91.7 96.6 91.1 87.1 96.6 93.8 87.6 97.1 94.8 91.8 95.6 94.9
Single-covariate: c2 covariate
b 82.0 92.9 76.8 88.8 92.2 84.3 87.6 94.3 85.6 90.0 94.6 89.2 91.6 94.8 91.8
Double-covariate
b1 75.8 94.5 78.4 86.3 95.4 87.3 88.3 96.3 94.0 89.7 96.7 95.8 89.4 96.2 97.2
b2 79.2 93.0 83.9 86.8 93.8 92.3 88.1 92.3 95.6 86.7 93.5 96.2 89.4 95.5 97.6

Table 8
Coverage of 95% confidence interval for the second order augmented parametric corrected scorewith 60% censoring rate. C (chi-square distribution), BC (bootstrap calibration)
and W (Wald-type) indicate the type of confidence interval.

Size 100 200 400 800 1600

C BC W C BC W C BC W C BC W C BC W

Single-covariate: normal covariate
b 89.5 97.6 86.8 94.2 96.7 92.0 91.5 96.8 94.7 93.6 96.2 96.3 98.5 95.5 97.5
Single-covariate: c2 covariate
b 87.5 93.7 73.9 89.7 92.4 79.1 88.4 93.2 80.4 90.4 93.9 85.8 91.8 94.3 88.6
Double-covariate
b1 92.0 92.6 80.7 93.8 96.6 89.6 92.6 94.9 94.1 93.2 96.9 95.8 92.6 96.2 98.0
b2 92.0 93.9 87.3 93.5 94.5 93.7 92.3 92.7 96.0 91.5 93.4 96.3 92.7 95.8 97.1
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500 is used for the bootstrap calibration. TheWald-type confidence
interval and test based one with chi-square distribution critical
values have poor coverage when the sample size is small, but
improve with larger sample size. The coverage probability of test
based confidence interval using bootstrap-calibrated critical value
is close to the nominal level of 95% for all sample sizes, but this
method is much more computational intensive.
Table 9
Comparison of regression coefficient estimators in the ACTG 175 data.

log(CD4) ZDV þ ddl ZDV þ ddC ddl

Est Var Est Var Est Var Est Var

NV �1.838 .1183 �.652 .0881 �.895 .1006 �.598 .0802
ConS �2.172 .1698 �.659 .0916 �.892 .1024 �.604 .0835
CS �2.177 .1678 �.659 .0900 �.892 .1012 �.604 .0819
ACS �2.177 .1422 �.657 .0991 �.876 .1028 �.596 .0827

.1678 .0905 .0964 .0811

Note: For proposed estimator, the first row of variance estimator is obtained by
inverting hypothese testing statistics with bootstrap critical value; the second row
of values is from sandwich variance estimator. Est: Estimated coefficient; Var:
Variance.
4.2. Application to ACTG 175 data

We apply the proposed approach to the AIDS Clinical Trial Group
(ACTG) 175 study, a randomized clinical trial to evaluate four
treatments in HIV-infected patients with an initial screening CD4
counts of between 200 and 500 per cubic millimeter. A total of 2467
patients were enrolled and an almost equal number of patients
were randomized into each of the four treatment groups: zidovu-
dine alone (ZDV), zidovudine plus didanosine (ZDV þ ddI), zido-
vudine plus zalcitabine (ZDV þ ddC), and zalcitabine alone (ddC).
We are interested in assessing the effect of baseline CD4 count on
time to AIDS or death in antiretroviral-naive patients. Among all
study patients, 1067 had no prior antiretroviral therapy at enroll-
ment, among which 1036 patients had two CD4 measurements
prior to the start of treatment and within 3 weeks of randomiza-
tion. For this analysis, we will consider the subset of 1036 patients.
The median length of follow-up was 32 months, and 85 events
were observed.
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We consider a Cox regression mode with 4 covariates: the true
baseline log(CD4) and three indicators for the four treatments with
ZDV group as the reference. We define the baseline log(CD4) as the
average of the two log(CD4) measurements. From the duplicated
measurements, we estimated the variance for error and true un-
derlying log(CD4) to be .033 and .076 respectively. Note that the
variance of measurement error is estimated using two replicated
measurements of baseline log(CD). Therefore there is an additional
estimating function for the variance of measurement error. Table 9
shows the estimators based on the naive, conditional score, para-
metric corrected score, and the proposed augmented corrected
score. In comparison, the naive approach gives an coefficient esti-
mator of log(CD4) with substantially smaller magnitude. All the
other approaches have similar estimates for all coefficients.

5. Discussion

Measurement error is a common issue for many clinical trials.
The main reason for the presence of measurement error is study
participants' natural biological fluctuation. The imprecision of
measurement tool is another contributor. One example of mea-
surement error is from the Nutritional Prevention of Cancer (NPC)
trial, which involved multiple recurrences of skin cancers, basal cell
carcinoma (BCC) and squamous cell carcinoma (SCC) [18]. Baseline
plasma selenium as an important prognostic risk factor for BCC and
SCC is subject to substantial measurement error. The aforemen-
tioned AIDS Clinical Trial Group (ACTG) 175 study is another
example of measurement error in clinical trial.

For proportional hazards model with covariate measurement
error, several consistent methods have been proposed under the
functional modeling framework, including the conditional score
and the parametric corrected score. However, when the measure-
ment error is substantial to the extent that the errors are compa-
rable to the true covariates in variance, both methods might
experience pathological behaviors and root finding failure.
Recently, Huang [9] developed a novel approach to incorporate
additional estimating functions which constrain the derivatives of
the parametric corrected score. That approach proves effective and
eliminates finite sample pathological behaviors of parametric cor-
rected score for the loglinear model. Motivated by Huang's
approach, we conduct an investigation on the pathological behav-
iors of parametric corrected score and conditional score and pro-
pose an augmented parametric corrected score for the proportional
hazards model by incorporating additional estimating functions to
the original parametric corrected score. Results of simulation
studies show the proposed approach is effective in eliminating
pathological behaviors evenwith small sample size and substantial
measurement error. The variance of proposed estimator appears to
be larger than the parametric corrected score when sample size is
smaller than 400, but it decreases rapidly and become smaller than
the parametric corrected score as the sample size increases to 400.
With the ability of eliminating finite sample pathological behaviors
of conditional score and the parametric corrected score, this pro-
posed augmented parametric corrected score could be widely used
for time-to-event data in clinical trials where covariate measure-
ment error issue is of concern.

In this paper, we have only considered the situation where the
distribution of the measurement error is known. With additional
data available on the measurement error, the parametric distribu-
tion imposed on the measurement error may be spared. With the
availability of replicated mismeasured covariates, Huang andWang
[7] developed a nonparametric corrected score method for the
proportional hazards model. Extension of the approach of incor-
porating additional estimating functions to the nonparametric
corrected score is currently under study.
Appendix

A Asymptotic variance of estimating function

For simplicity, we consider the single-covariate model given in
Section 2.2. The second order augmented corrected score has the
form
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With functional delta method [7], straightforward algebra gives
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Thus, n1/24(b) is asymptotically a sum of iid random variables.
For fixed b, n1/24(b) is asymptotically normal with a covariance

matrix S(b) that can be consistently estimated by

bSðbÞ ¼ n
Xn
i¼1

fuiðbÞ � uðbÞgfuiðbÞ � uðbÞg0

where ui(b)¼ n�1(Bi3� Bi4), uðbÞ ¼ n�1Pn
i¼1uiðbÞ, and Bi3 and Bi4

are defined as
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Asymptotic variance of other augmented corrected scores could
be derived similarly.
B Proof of Theorem 1

Given

ε½expfb0W � UðbÞgjZ� ¼ expðb0ZÞ

under additive measurement error model, one may obtain

ε
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Then given the fact that MðtÞ ¼ NðtÞ � R t0 YðuÞexpðb0ZÞdL0ðuÞ is
a mean zero martingale, Equation (6) is implied by the above two
equations.
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