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Abstract: Moving target tracking in wireless sensor networks is of paramount importance.
This paper considers the problem of state estimation for L-sensor linear dynamic systems.
Firstly, the paper establishes the fuzzy model for measurement condition estimation. Then,
Generalized Kalman Filter design is performed to incorporate the novel neighborhood function
and the target motion information, improving with an increasing number of active sensors.
The proposed measurement selection approach has some advantages in time cost. As such, if the
desired accuracy has been achieved, the parameter initialization for optimization can be readily
resolved, which maximizes the expected lifespan while preserving tracking accuracy. Through
theoretical justifications and empirical studies, we demonstrate that the proposed scheme achieves
substantially superior performances over conventional methods in terms of moving target tracking
under the resource-constrained wireless sensor networks.

Keywords: wireless sensor networks; target tracking; generalized Kalman filter; neighborhood
function; fuzzy

1. Introduction

A wireless network consisting of a large number of small sensors with low-power transceivers
can be an effective tool for gathering data in a variety of environments [1]. These sensors are
deployed at a cost much lower than traditional wired sensor systems, and have played significant
roles in security and surveillance control, health care, and habitat monitoring in recent years [2–4].
Keeping the cost and size of these sensors small, they are equipped with low computation capability,
small amounts of memory, and limited energy resources. Wireless sensor networks (WSN) must
rely on these sensors and collaborative signal processing to dynamically manage node resources and
effectively process distributed information [5–7]. Along this direction, moving target tracking will be
considered in WSN.

Moving target tracking continuously reports the position of the target in terms of its coordinates
to a fusion center or a central base station. It transfers one piece of sensor data to its coordinator,
and determines its physical location relative to other neighboring coordinators [8]. Moving objects
tracking methods are often considered with different criteria. These methods are categorized as
tree-based target tracking, cluster-based target tracking and prediction-based target tracking [9].
In tree-based target tracking, nodes in wireless network are organized in a hierarchical tree structure
or represented as a graph structure. Zhang et al. [10] proposed the concept of dynamic convoy
tree-based collaboration, and formalized it as the moving objective optimization problem which
needed to find a convoy tree sequence with high tree coverage. Gui et al. [11] proposed
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a collaborative messaging scheme that woke up and shut down the sensor nodes with spatial and
temporal preciseness. This study quantized the trade-off between power conservation and quality of
surveillance while presented guidelines for efficient deployment of sensor nodes in target tracking
applications. Mehta et al. [12] formalized the location privacy issues in sensor networks under this
strong adversary model and computed a lower bound on the communication overhead needed
for achieving a given level of location privacy. Alaybeyoglu et al. [13] proposed one approach
to awake nodes, which formed look-ahead clusters along the predicted trajectory to decrease the
probability of missing the target. In cluster-based target tracking, the cluster member nodes identify
the target and send the data to cluster heads. Cluster heads collect all data from members, determine
target location and send the data to the sink node. Younis et al. [14] developed the approach to
dynamically adapt the network topology within the cluster, minimized the energy consumption for
communication, and extended the life of the network while achieving acceptable performance for
data transmission. Bernabe et al. [15] proposed a novel cluster selection method based on similar
ideas and tools using the camera activation mechanism, which was capable of accurately tracking
multiple faces in real-time applications. Jiang et al.[16] presented the probability-based prediction
and sleep scheduling protocol (PPSS) to improve energy efficiency. The approach designed one target
prediction method based on kinematics and probability. Teng et al. [17] described the state evolution
model which was employed to describe the dynamical system with neither prior knowledge of the
target moving manner nor precise location information of the sensors. The joint posterior distribution
of the parameters was updated online by incorporating the incomplete and inaccurate measurements
between the target and each of the sensors into a Bayesian filtering framework. Most existing
approaches in sensor networks concentrated on finding efficient ways for transmitting the data
report to the data center, and not much work has been done on how to detect operative sensor
nodes and generate robust and reliable data in an efficient way. Prediction-based methods, with
prediction the target trajectory and its next location, only activate special nodes of network for
tracking and rest of nodes remain in sleep mode for energy saving. Xu et al. [18] addressed the
energy management issue in sensor networks and proposed a prediction-based energy saving scheme
to reduce the energy consumption for object tracking under acceptable conditions. Bhuiyan et al. [19]
proposed a set of fully distributed tracking algorithms, which answered queries on whether a target
remains in localized geographic routing (LGR). Deldar et al. [20] used two parameters, distances
from predicted location and remaining energy of nodes, for selection sensor nodes for tracking.
Mazuelas et al. [21] detected the presence of non-line-of-sight (NLOS) propagation and estimated
the ratio of the measurements coming from NLOS propagation. The approach identified the accurate
measurements to achieve wireless location systems. Although the prediction-based approaches track
the moving objects more accurately, predicted structures result in high-energy consumptions. There
are two major shortcomings to these methods: (1) the sensor nodes takes much computation to
measure the selections and (2) the number of nodes are determined by the capabilities of the fusion
center. For those reasons, our focus here is on measurement condition estimation and tracking
algorithms that are designed specifically based on neighborhood function.

Motivated by the above scenarios and concerns, the design of our approach relies on the
prediction structure. In this paper, we propose a linear dynamic system with multiple sensors
to track the target and monitor its surrounding area. The task is to extend the WSN lifespan
without compromising the desired tracking accuracy. First, the paper establishes the fuzzy model
for measurement condition estimation. Then, Generalized Kalman Filter (GKF) design is performed
to incorporate the novel neighborhood function and the target motion information, improving
with an increasing number of active sensors. The proposed measurement selection approach has
some advantages in time cost. As such, if the desired accuracy has been achieved, the parameter
initialization for optimization can be readily resolved, which maximizes the expected lifespan while
preserving tracking accuracy.
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The rest of the paper is organized as follows. In Section 2, we present the state estimation
problem. Energy-efficient moving target tracking algorithms are proposed in Section 3. We conduct
performance evaluations by simulation comparisons in Section 4. Finally, some conclusions and
future work are given in Section 5.

2. Problem Formulation

We assume that n identical sensor nodes are densely deployed over a 2D area using a uniform
random distribution. All nodes can only get connectivity information in neighbor nodes and measure
Received Signal Strength (RSS) [22] in sensor nodes. All communication links among neighbor nodes
are symmetric. These nodes have the same communication radius, denoted by r. These nodes are
connected, that is to say at least one routing path exists between any pair of nodes. Note that two
nodes are neighbor nodes if and only if dij 6 r, the target will be detected and the distance will be
estimated. We use Mi =

{
j|j 6= i and dij 6 r

}
to denote the set of neighbor nodes of node i. The

network consists of n nodes, and there are m anchor nodes and n−m unknown nodes among them.
Anchor nodes are aware of their coordinates. For convenience, the problem on transmission delay
and packet loss is ignored. Specifically, we consider an L-sensor linear dynamic system [23].

zn (k) = hn (x (k)) + vn (k) , n ∈ Lk (1)

where x (k) is the target position, and zn (k) is the measurement of the nth sensor at time instant k.
hn (x (k)) = ‖x (k)− ρn‖ is the sensor target distance at the kth timestep, vn (k) is the observation
noise at the nth sensor, and ρn is the location of sensor node.

In the practical application, the system that provides such detecting measurements at the kth
timestep is shown in the matrix form [24].

Zk =Hk (Xk) + Vk

=


h1 (x (k))
h2 (x (k))

...
hk (x (k))

+


v1 (k)
v2 (k)

...
vk (k)


(2)

Lk = {n| ‖x (k)− ρn‖ 6 r, 1 6 n 6 N} (3)

Here, the subscripts of h and v in Equation (2) refer to the indices within Lk rather than node
indices among all N sensor nodes, and then the covariance matrix of Vk is

Vk = diag
(

σ2, · · · , σ2
)

lk∗lk
(4)

The transition Equation (2) as a discrete time dynamic state describes the motion of the
moving target.

Xk = FXk−1 + GWk−1 (5)

where Xk is a 4D vetor, consisting of the position vector x (k). For the tracking application, one has

F =


1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

 (6)
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G =


∆2/2 0

∆ 0
0 ∆2/2
0 ∆

 (7)

Here, ∆ is the sampling time interval, and Wk−1 =
[
wx, wy

]T is a Gaussian random vector with
zero mean. To facilitate collaborated sensor signal processing, sensor nodes within the sensing range
of the target dynamically form the cluster. All other sensor nodes within the cluster will transmit
their observations to the cluster head.

3. Proposed Approach

The details of the proposed approach are described in Figure 1, which contains three main steps:
(1) measurement selection based on fuzzy modeling; (2) position estimation with neighborhood
function; and (3) optimization with GKF. Firstly, the measurement possibility is calculated based
on the probability-possibility transformation. Then, the measurements with high possibility and
low possibility are considered as the L-sensor linear dynamic system measurements for position
calculation via neighborhood function. Finally, GKF is utilized to produce the optimization of
smoothed position estimates.

Measurement with 

different BSs

Parameter prepatation

Probability-possibility 

transformation

Fuzzy model

Position estimation 

with MLE 

Optimization with 

GKF 

Position estimation 

GKF prediction

Measurement 

prediction

Calculate the 

possibility 

Figure 1. The proposed tracking approach.

3.1. Measurement Selection

To perform such a transformation, some prior information is required, and it is considered as an
approximation of the optimal transformation. In [25], the paper describes the possibility of specific
type of measurement from the physical sensor using the probability-possibility transformation.
Applying this theory, fuzzy modeling of measurements associated with each base station (BS) is
established to calculate the possibility that the corresponding measurement is taken under linear
dynamic system. We devote the function π (x) as the probability-possibility transformation. When
|x− xc| is less than (xε − xc), the function value is 1 − (1− ε) |x− xc| / (xε − xc); when |x− xc| is
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greater than (xε − xc), π (x) is equal to zero; otherwise, the value is ε. The parameters such as xc, x,
xε are described in Table 1 for different measurement noise laws.

The mean xm can be calculated by

xm =

√
(xk/k−1 − xBS)

2 + (yk/k−1 − yBS)
2 (8)

where xm Raman and σ represent the mean and the standard deviation of the measurement
data, respectively.

Table 1. The parameters of the probability-possibility transformation.

The Law xc x xε ε

Gaussian Law xm xm + σ xm + σ 0.12
Exponent Law xm xm + σ xm + σ 0.13
Triangular Law xm xm + σ xm + σ 0.11
Uniform Law xm xm + σ xm + σ 0

3.2. Position Estimation with Neighborhood Function

We propose a novel distance estimation method only using connectivity information and
geometric features between neighbor nodes. Figure 2 shows the distance model between
two neighbor nodes i and j. The black solid points are other neighbor nodes of nodes i and j.
We can observe that the distance dij between node i and its neighbor node j determine the size of
the intersection area denoted by Sij, and Sij is inversely proportional to dij. Sij can be calculated
as follows.

i jijd

ijS
r

i jijd

ijS

r

Figure 2. The distance model between neighbor nodes.

Sij = 2r2arccos
(dij

2r

)
− dij

√
r2 −

d2
ij

4
(9)

The ratio of Sij and the communication area S of node i can be calculated by

Sij

S
=

Sij

πr2 =
2
π

arccos
(dij

2r

)
−

dij

πr

√
1−

(dij

2r

)2

(10)

Equation (10) can also be written as

y =
Sij

πr2 , x =
dij

2r

y =
2
π

arccos (x)− 2
π

x
√

1− x2
(11)

Using Taylor series expansion, arccos (x) and x
√

1− x2 can be written as
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arccos (x) =
π

2
− x− 1

6
x3 − 3

40
x5 − · · ·

x
√

1− x2 = x− x3

2
− 1

8
x5 − · · ·

(12)

According to Equations (11) and (12), Equation (10) can be written as

Sij

πr2 = 1− 2
π

(dij

r

)
+

1
12π

(dij

r

)3

+
1

320π

(dij

r

)5

(13)

The value of dij is the distance between neighbor nodes, and the value range of dij/r should be
0 6 dij/r 6 1. From Equation (13), we can observe Sij/r2 is mainly determined by 2 ∗

(
dij/r

)
/π, so

it is an approximate linear function relationship between Sij/πr2 and dij/r. When dij/r is 0, Sij/r2 is
1. When dij/r is 1, Sij/r2 is 0.391. We can get the linear function as

dij

r
=

1
0.609

(
1−

Sij

πr2

)
(14)

As we know, the density of sensor nodes is high for range-free wireless sensor networks. Figure 2
describes that the area is direct ratio to the number of nodes, so Sij can be estimated by

Sij ≈ σ ·
Nij

Ni
· πr2 (15)

where Nij =
∣∣Mi ∩Mj

∣∣+ 2 is the number of nodes within the intersection area Sij , and Ni = Mi + 1 is
the number of nodes within the communication range of node i. σ is a correction parameter to make
Equation (15) more accurate and the concrete value will be given in the following test. In practice, Nij
and Ni can be easily obtained by exchanging the neighbor information between nodes i and j. Finally,
we get an important equation from Equations (14) and (15)

DNDRij =
dij

r
=

1
0.609

(
1− σ ·

Nij

Ni

)
(16)

where DNDRij is used to denote the neighborhood distance relationship (NDR) from node i to its
neighbor node j. However, because all nodes are randomly deployed, it is not uncommon that
Ni 6= Nj. That is to say it is not uncommon that DNDRij 6= DNDRji . Since the bigger Ni is, the
more accurate the estimated Sij in Equation (16) is, we use this as follows to estimate DNDR between
neighbor nodes i and j in this paper

DNDRij = DNDRji =
dij

r
=

1
0.609

(
1− σ ·

Nij

max
(

Ni, Nj
)) (17)

where the function max
(

Ni, Nj
)

is used to take the maximum of Ni and Nj. From Equation (17)
we estimate the distance between neighbor nodes dij as follows

d̃ij = r · DNDRij (18)

However, DNDRij is an estimated value and not accurate enough, and the estimated distance dij
is also not accurate. Getting the DNDRij between neighbor nodes, we use the Floyd–Warshall path
algorithm to calculate the shortest NDR-path which is minimal the one with the minimum value of
all NDR-path between two anchor nodes. Then, the paper computes an NDR correction factor λNDR
as follows

λNDR =
∑m

k=1 ∑m
s=1 dks

∑m
k=1 ∑m

s=1 min DNDRks

(19)
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where dks is the Euclidean distance between anchor nodes k and s. m is the number of anchor nodes.
Finally, we estimate the distance between two neighbor nodes as follows

d̃ij = d̃ji = λNDR ∗ DNDRij (20)

Ignoring the constant in Equation (20), the log likelihood function of all the distance
measurements can be written as

f (xk, yk) =
N

∑
i=1

(
zi,j −

(
di,j + µ

))2

σ2 (21)

Applying the Maximum likelihood estimator produces the mobile position estimate as follows

(xk, yk)MLE = argmin f (xk, yk) (22)

3.3. Optimization with Generalized Kalman Filter

The traditional Kalman filter can be viewed as a recursive stochastic algorithm. For the large
application, GKF is more efficient than traditional Kalman filter. When getting the intermediate
position estimation, we compute better position estimates by the GKF. The intermediate estimate
zk can be described as a linear equation of the target state:

z (k) =Hx (k) + v (k) (23)

x (k) =Ax (k− 1) + w (k− 1) (24)

H =

[
1 0 0
0 1 0

]
(25)

where w (k− 1) is a zero-mean white Gaussian noise vector with covariance matrix. In [26], the
noise v (k) is white Gaussian with zero mean. Th implementing the GKF is performed according to
the following

x̂ (k/k− 1) =Ax̂ (k− 1/k− 1) (26)

P (k/k− 1) =AP (k− 1/k− 1) AT + Q (k− 1) (27)

P (k/k) = [I − K (k) H] P (k/k− 1) (28)

x̂ (k/k) =x̂ (k/k− 1) + K (k) ∗ [z (k)− Hx̂ (k/k− 1)] (29)

K (k) =P (k/k− 1) HT
[

R (k) + HP (k/k− 1) HT
]−1

(30)

where K (k) is the Kalman gain, x̂ (k/k) is the state update including the desired position estimate at
time instant k, and P (k/k− 1) and P (k/k) are the state covariance predictions.

4. Simulation Results

In this section, we evaluate the performance of tracking through extensive simulations
and provide more insight into the tracking issues from simulation perspectives. We consider
a 500 m× 500 m deployment field with 300 sensor nodes. All sensor nodes are randomly distributed,
and these nodes can get connectivity information to measure Received Signal Strength (RSS) or other
information.
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4.1. Comparison of Estimated Distance Error

Estimated distance error (EDE) is the average absolute difference between the estimated distance
and corresponding real inter-node distance. In this section, we compare the values of EDE on three
algorithms, including the method based on distance vector in hops (DV-HOP) [27], LGR and the
proposed approach.

EDE =
1

r∑n
i=m+1 |Mi|

n

∑
i=m+1

∑
j∈Mi

∣∣∣dij − d̃ij

∣∣∣× 100%

dij =
√(

xi − xj
)2

+
(
yi − yj

)2

(31)

where Mi is the number of neighbor nodes of unknown node i, dij is the real distance between
neighbor nodes, and d̂ij is the estimated distance generated by the distance estimation method. (xi, yi)

and
(

xj, yj
)

respectively denote the true positions of nodes i and j. In order to make the test more
comprehensive, we test the impact of different communication range and number of anchor nodes on
the EDE. All results are averaged over 100 different network deployments.

The impact of communication range on EDE is shown in Figure 3. We set the number of anchor
nodes as 20. The variation of communication range is from 13 m to 25 m. If the communication
range is smaller than 13 m, sometimes the network is not connected. The EDE of DV-HOP changes
little as the communication range increases because increased communication range confuses the
nodes when hop count is carried out. LGR and our approach decrease as the communication range
increases. The result shows that the distance estimation method in this paper is always better than
those of the DV-HOP and LGR algorithms.
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Proposed Scheme <=1
Proposed Scheme <=0.9

Figure 3. Impact of the communication range on EDE.

We also test the impact of the correction parameter σ in Equation (17) on the distance estimation
method in this paper. Figure 4 shows that the EDE value of the proposed approach increases when
σ > 1, and the EDE in this paper with σ = 0.9 is always smaller. This verifies the effectiveness of the
correction parameter σ and we set σ = 0.9 in subsequent tests.
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Figure 4. Impact of the correction parameter σ on EDE.

4.2. Comparison of the Averages of Root Mean Square Error

We set
[
x̂j (k/k) , ŷj (k/k)

]
as the corresponding position estimation at the kth time instant.

The average of root mean square error (RMSE) is defined by [21].

RMSE =

√√√√ 1
M

M

∑
j=1

[(
x̂j (k/k)− x (k)

)2
+
(
ŷj (k/k)− y (k)

)2
]

(32)

Here, M is the total number of Monte Carlo test. Figure 5 shows the performance in terms of
average RMSE with respect to different predefined possibility thresholds. It can be seen that the
average RMSE is smallest in simulation scenarios, when the threshold is equal to 0.12. The average
RMSE on this paper is lower than those of the DV-HOP and LGR algorithms.

The predefined threshold
0.12 0.18 0.24 0.3

A
ve

ra
ge

 R
M

SE
(m

)

13

15

17

19

21

23

DV-HOP
LGR
Proposed Scheme

Figure 5. Average RMSE versus the predefined possibility threshold.

5. Conclusions and Future Work

In this article, we have described the implementation of energy efficient moving target tracking
in wireless sensor networks where measurements from a subset of sensors are employed at each
time step. The three-step moving target tracking scheme is proposed to maximize the expected
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lifespan while preserving tracking accuracy. A fuzzy modeling method is developed under L-sensor
linear dynamic system for measurement selection. After analyzing the relationship between distance
and intersection area of neighborhood nodes, we describe the novel neighborhood function as
position estimation. The position optimization is smoothed by using the linear GKF to produce
better positioning performance. The position prediction from the GKF is utilized for parameter
initialization in the probability–possibility transformation. Numerical experiments show that the
proposed approach outperforms the existing algorithms in terms of EDE and average RMSE. In the
future, we will implement a real world wireless sensor network to track moving targets.
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