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Abstract: The addictive properties of psychostimulants such as cocaine, amphetamine, metham-
phetamine, and methylphenidate are based on their ability to increase dopaminergic neurotransmis-
sion in the reward system. While cocaine and methamphetamine are predominately used recreation-
ally, amphetamine and methylphenidate also work as effective therapeutics to treat symptoms of
disorders including attention deficit and hyperactivity disorder (ADHD) and autism spectrum disor-
der (ASD). Although both the addictive properties of psychostimulant drugs and their therapeutic
efficacy are influenced by genetic variation, very few genes that regulate these processes in humans
have been identified. This is largely due to population heterogeneity which entails a requirement
for large samples. Drosophila melanogaster exhibits similar psychostimulant responses to humans, a
high degree of gene conservation, and allow performance of behavioral assays in a large population.
Additionally, amphetamine and methylphenidate reduce impairments in fly models of ADHD-like
behavior. Therefore, Drosophila represents an ideal translational model organism to tackle the genetic
components underlying the effects of psychostimulants. Here, we break down the many assays
that reliably quantify the effects of cocaine, amphetamine, methamphetamine, and methylphenidate
in Drosophila. We also discuss how Drosophila is an efficient and cost-effective model organism for
identifying novel candidate genes and molecular mechanisms involved in the behavioral responses
to psychostimulant drugs.

Keywords: genetics; gene discovery; psychostimulant response; SUD; addiction; ADHD; ASD;
Drosophila; cocaine; methamphetamine

1. Introduction

Psychostimulants with abuse potential, such as cocaine, amphetamine, metham-
phetamine, and methylphenidate, are drugs that increase central nervous system activity
and arousal [1]. These drugs also elevate mood by activating the neural substrates associ-
ated with reward [1]. Stimulant drugs have a long history of use in humans and evidence
suggests cocaine, in its unpurified form in the coca leaf, has been ingested for more than
3000 years [2]. More potent stimulants, such as processed cocaine and pharmaceutical am-
phetamine, are relatively new psychoactive substances. Processed cocaine was not available
until the late 19th century, when it gained popularity as an additive in medicines, drinks,
and cigarettes [2]. Pharmaceutical amphetamine and methamphetamine were not available
until the early 20th century when they enjoyed a similar phase of popularity and broad
application [3]. The recognition of abuse liability and harm potential of these substances
led to their prohibition. While cocaine, amphetamine, and methamphetamine have all been
regulated and restricted [2–4], their abuse continues to pose a global health concern, with
an estimated of 47 million global users of cocaine and amphetamine-type stimulants as of
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2019 [5]. The recreational doses of psychostimulant drugs that produce euphoria can lead
to addiction and cognitive impairment, while overdoses can cause psychosis, circulatory
collapse, and death. In contrast, lower doses produce cognitive enhancement and have a
range of therapeutic uses [6,7]. These include treatment of the cognitive and behavioral
impairments associated with attention deficit and hyperactivity disorder (ADHD) [8] and
autism spectrum disorder (ASD) [9,10]. Despite successful clinical application, the molec-
ular mechanisms mediating the different therapeutic actions of psychostimulant drugs
remain unknown. Therefore, two main questions are the focus of continuing research
(1) what molecular mechanisms are involved in the transition from recreational psychos-
timulant use to habitual maladaptive use, and (2) what are the molecular mechanisms that
determine the therapeutic success of psychostimulant drugs for treating the symptoms of
psychiatric disorders such as ADHD and ASD.

One approach to answering these questions is to take advantage of model organisms
that are experimentally amenable and frequently used for their powerful genetics. Genes
are a primary determinant of variation in behavioral responses to the addictive or therapeu-
tic effects of psychostimulant drugs [11,12], and family studies show genes influence drug
initiation [13] and addiction [14]. Addictions are among the most inherited psychiatric
disorders, with an estimated genetic heritability component of ~72% for cocaine [15] and
~42% for non-cocaine psychostimulants [16]. Despite all the evidence from family studies,
it has been challenging to identify the specific genes or genetic modifications that make
an individual more susceptible to becoming a compulsive user [11]. Similarly, while it is
known that genetic variation underlies differences in response to therapeutic drugs [17]
little is known about the specific genes and molecules that impact therapeutic response to
psychostimulants. Heterogeneity in the population and the subsequent need for a large
sample size make it difficult to use human studies for identifying genes that impact psy-
chostimulant response. In contrast to mammals, the model organism Drosophila melanogaster
enables high-throughput analysis of behavior in assays that can scale to accommodate
thousands of flies while supporting targeted genetic and molecular manipulations [18,19].
This review discusses how the model organism Drosophila can help elucidate the genetic
basis of behavioral response to psychostimulant drugs to improve our understanding of
human addiction and psychopathology.

1.1. Drosophila as a Model Organism to Study Addiction

Drosophila is a powerful model organism for studying the genetic and molecular ba-
sis of behavioral responses to drugs of abuse. A fast generation time, excellent genetic
tractability, and a broad range of molecular tools enable precise spatiotemporal manipu-
lation of gene expression, protein function, and cellular activity in Drosophila [18,20–23].
Around 75% of human disease-causing genes are conserved in flies [24], highlighting the
translational application of Drosophila research [25]. Additionally, Drosophila is a valuable
model for studying complex addictive disorders such as alcoholism [26]. Studies over the
last 25 years have shown that flies express a range of alcohol-induced behaviors similar to
those observed in intoxicated humans [27], and numerous genes isolated based on their
involvement in Drosophila alcohol responses have helped identify corresponding genes
that contribute to alcohol use disorder (AUD) in humans [28]. Additionally, the neuro-
transmitters important for mammalian alcohol-induced behaviors are also involved in
Drosophila alcohol responses [29], including dopamine, which is required for reward in
flies [26] and in humans [30]. The successful use of Drosophila to identify novel genes and
mechanisms involved in human AUD provides the rationale for performing similar studies
to investigate other addictive drugs. Psychostimulants increase dopaminergic signaling in
flies as well as humans, but little is known about the genes, molecules, and pathways that
influence the behavioral response to psychostimulants, making Drosophila a great model
organism to answer these questions and provide valuable translational information.
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1.2. Dopamine Is Central to the Molecular Mechanisms of Psychostimulant Response

Experiences that benefit biological fitness, such as food or sex, are perceived as re-
warding [31]. The association of salient stimuli with reward requires dopamine (DA),
a monoamine neurotransmitter central to reward prediction and the reinforcement of
motivated behavior [32–34]. Natural rewards such as food and sex, along with signals
that predict natural rewards, are associated with phasic activation of distinct striatal
dopaminergic neurons [35]. The bursts of dopaminergic signaling associated with natural
rewards involve increased release of dopamine stored by vesicular monoamine transporter
2 (VMAT2) [36]. Dopamine released into the synaptic cleft binds D1-like (DRD1) and
D2-like (DRD2) dopamine receptors, activating downstream G-protein coupled signaling
cascades [37]. The plasma membrane dopamine transporter (DAT) removes dopamine from
the synapse and indirectly reduces the activation of dopamine receptors [38]. Like natural
rewards, drugs of abuse increase dopaminergic signaling, effectively hijacking the endoge-
nous reward system (Figure 1) [39]. Cocaine and amphetamine-like psychostimulants
activate the dopaminergic pathways associated with reward through interactions with the
DAT [40] and VMAT2 [41] that increase synaptic dopamine [42–45]. Human brain imaging
studies confirm that psychostimulants induce phasic firing of dopaminergic neurons in the
brain regions associated with reward [46]. Additionally, this activity correlates with the
reported euphoric effects of psychostimulants drugs [47].
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Figure 1. Dopaminergic signaling in the absence (blue background) and presence (pink background)
of psychostimulant drugs. On the left, the steps of dopaminergic signaling represented include:
(1) uptake of cytoplasmic dopamine by VMAT2 (black dashed line), (2) vesicular release of dopamine,
(3) binding of neurotransmitter to post-synaptic dopamine receptor, and (4) reuptake of dopamine
by the dopamine transporter (black dashed line). The increase in dopaminergic signaling caused
by psychostimulant drugs is depicted on the right and include: (i) depletion of vesicular dopamine
following interaction of VMAT with amphetamine-like psychostimulant drugs (red dashed line),
(ii) amphetamine-induced reverse transport of dopamine (red dashed line), (iii) blockade of dopamine
uptake (inhibition of black dashed line) by cocaine or methylphenidate, (iv) increased binding and
activation of post synaptic dopamine receptor, and (v) increased binding and activation of pre-
synaptic D2-like autoreceptor. Created with BioRender.com.
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1.3. Behavioral Responses to Psychostimulants

Psychostimulant administration in rodents leads to dose-dependent changes in motor
behaviors including grooming, locomotion, dyskinesia, and seizures [48]. Flies exposed
to cocaine exhibit dose-dependent changes in stereotyped behaviors that, as in mammals,
range from increased grooming and hyperlocomotion to seizures and death [49]. Psy-
chostimulants also influence social behavior in rodents, including courtship, where drug
exposure promotes sexual behavior [50,51]. Flies exposed to vaporized cocaine or metham-
phetamine also display an increase sexual behavior and spend more time performing
courtship displays [52]. These parallels demonstrate that Drosophila is a model with high
face validity for studying the behavioral response to psychostimulants.

Dopaminergic signaling is central to psychostimulant-induced behavioral responses.
In mammals, the locomotor activating effects of psychostimulants require increased
dopaminergic signaling in the neural substrates associated with reward [53]. Disrupt-
ing psychostimulant interactions with DAT and VMAT2, or blocking the activation of
downstream dopamine receptors in psychostimulant-activated circuits disrupts the ef-
fects of psychostimulant drugs. Wild-type mice, for example, respond to cocaine with
increased locomotion, while mutant mice with a cocaine-insensitive dopamine transporter
do not display an increase in locomotion after cocaine exposure [54]. Similarly, the VMAT2
inhibitor reserpine reduces amphetamine-induced increases in dopamine in mice [55],
and DRD1 antagonists disrupt self-administration of methamphetamine in rats [56]. In
flies, psychostimulants also increase dopaminergic signaling by binding to the Drosophila
dopamine transporter (dDAT) and vesicular dopamine transporter (dVMAT) [57]. Disrupt-
ing dopamine synthesis in Drosophila with 3-iodo-tyrosine reduces the motor-activating
effects of cocaine [58], blocking synaptic release of dopamine with the VMAT2 inhibitor
reserpine disrupts the locomotor-activating effects of cocaine and amphetamine-like stim-
ulants [59], and mutation of the D1-like dopamine receptor in Drosophila reduces self-
administration of methamphetamine [60]. These experiments show that the molecular
and pharmacological basis of psychostimulant-induced behaviors are conserved in flies
and mammals, highlighting the mechanistic validity of Drosophila as a model organism for
studying the genetic underpinnings of response to psychostimulant drugs.

2. Measuring Behavioral Responses to Psychostimulants in Drosophila

Exposure to psychostimulants impacts many behaviors, including locomotion, sleep,
arousal, attention-like processes, learning, memory, and social interactions. These behav-
iors have been studied using assays that quantify motor behaviors, feeding behavior, and
attention-like processes. Psychostimulant-induced changes in fly motor behavior produce
motor-activating and motor-impairing effects. Assays corresponding to each of these re-
sponses allow measurement of sensitivity and sensitization to the activating or impairing
effects of psychostimulants. Sensitization involves the development of increased sensitivity
to the effects of a drug across subsequent exposures, and is associated with neuroadap-
tations that increase the salience of stimuli associated with drug reward [61]. In assays
of feeding behavior, voluntary consumption of psychostimulant-containing food can be
used to monitor changes in self-administration and preference over time. These behaviors
are especially relevant to modeling the progression of drug-taking behavior observed in
addiction, allowing interpretation of the reinforcing effects of each drug. Attention-like as-
says, on the other hand, can model the therapeutic application of psychostimulant drugs in
rescuing impairments in flies exhibiting behavioral features of ADHD. Here, we discuss the
advantages and shortcomings of these assays of motor activity, feeding, and attention-like
processes, highlighting techniques that effectively decrease labor time, reduce subjectivity,
and take full advantage of the fast generation time and prolific reproduction of Drosophila.

2.1. Assays of Motor-Activity

One of the most obvious effect of psychostimulants is the activation of motor-related
behaviors, an effect that is highly conserved across model organisms. Flies exposed to
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increasing concentrations of cocaine transition through phases of increased grooming
behavior, hyperlocomotion, loss of negative geotaxis, stereotyped circling behaviors, erratic
movements such as twirling, akinesia, seizures, and even death. One of the first ways
this behavior was quantified was assigning a behavioral severity score using a behavioral
scoring assay. Experimenters rated the activity of drug exposed flies from 0 to 7 using an
ordinal scale of defined behavioral responses (Figure 2a). This behavioral scoring assay
can also characterize the temporal dynamics of cocaine response by measuring latency to
the peak of drug-induced behavioral effects and the time required to return to baseline.
The peak response values recorded for individual flies can be used to generate a drug
effect score, which represents the percent of flies that exceed an intoxication associated
score during a defined observation period. In addition to defining the progression of
cocaine-related behaviors in flies, this method allowed the analysis of how different doses or
administration schedules impact sensitivity [49] and sensitization [62,63]. The development
of behavioral sensitization is measured by performing repeated exposures to generate a
time-course of drug effect scores. Exposures where the drug effect score is greater than the
previous recorded score indicate the development of sensitization. The development of
sensitization is a function of the interval after the first exposure, and for flies exposed to
75 µg vaporized cocaine, sensitization is only observed after exposure to a second dose
6–24 h after the initial exposure, but not before [62,63]. A similar interval is required
for sensitization in mice, where cocaine-induced locomotion increases when the second
dose is administered 24 h after initial drug exposure [64]. While the behavioral scoring
assay can effectively measure sensitization, a critical psychostimulant response, scoring
requires detailed observation of Drosophila behavior, is time-intensive, and subjective. One
automated option that provides objectivity and can decrease the time spent scoring the
motor activating effects of psychostimulants is the Drosophila activity monitor (DAM).

The DAM system is a high-throughput automated method of behavioral analysis that
uses an infrared beam to detect motor activity [65]. Flies in the DAM system are individually
housed in glass cuvettes transected by an infrared beam, and locomotor activity is analyzed
by quantifying beam breaks (Figure 2b). The rate of beam breaks in the DAM measures
activity as well as sleep and can be used to infer arousal state. Additionally, the software
for processing DAM system data supports analysis of customized variables such as night
time or day time activity, providing information on circadian patterns of response [66]. The
DAM system has been used to measure the increases in locomotor activity that occur after
injection [67], vaporization [68,69], or oral administration [52] of psychostimulant drugs.
Every method of administration for cocaine or methamphetamine increases locomotor
activity and decreases sleep in the DAM. The DAM also effectively measures sensitization,
which is observed when a second dose of vaporized cocaine or methamphetamine is
administered 6 or 10 h after the first dose, respectively [68,69]. The DAM also shows the
wakefulness-promoting effects of methamphetamine in sleep-deprived flies, which sleep
the same amount as flies that have not been sleep deprived, while sleep-deprived flies that
are not given methamphetamine display significant rebound rest [52].

While each psychostimulant administration method produces measurable changes
in behavior, it is important to consider tradeoffs in speed of delivery, precision of dosing,
and how disruptive each method is to fly behavior. Drug-supplemented food provides
the least control of speed and precision, but does not disrupt fly behavior. Drug injection
is time consuming and disturbs normal fly behavior, but provides strict control of the
dose. The FlyBong [68], designed to administer vaporized drugs in the DAM, provides
a balance of speed and precision that enables simultaneous exposure for all flies without
disrupting data collection, making it a valuable method for standardizing administration
of psychostimulant drugs. Acute responses, in the hour following treatment, can be
analyzed by recording beam break to measure activity rate (beam breaks/min) and number
of activity peaks, where activity rate is at least double that of untreated controls [67].
Sensitization can be quantified based on relative changes in activity rate and number of
peaks observed during successive psychostimulant exposures. For longitudinal assays,
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or experiments with orally administered psychostimulants, periods of inactivity can be
measured to characterize the effects on sleep duration and architecture [52]. Regardless of
drug administration method, the DAM system is a reliable and high-throughput method
for measuring the locomotor response to psychostimulant drugs.
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Figure 2. Assays for measuring the motor activating effects of psychostimulant drugs in Drosophila.
(a) A representation of responses observed in the behavioral scoring assay at different concentrations
of cocaine (left). Numbers correspond to the progression and severity of responses defined in
the behavioral scale, which range from 0 to 7, as follows: (0) basal locomotion, grooming, and
flight (1) decreased locomotion and increased grooming (2) simultaneous locomotion and grooming,
proboscis extension, and loss of negative geotaxis (3) circling behavior and proboscis extension
(4) leg twitching and erratic movements such as twirling and sideways or backwards locomotion
(5) hyperkinesia and wing-buzzing (6) ataxia and seizures (7) akinesia and death. Graphs represent
examples of how behavioral data are used to characterize the temporal dynamics of drug-induced
responses (middle) as well as drug effect scores (right) which are represented here in an example
comparing the percent of untreated flies (white bar) and drug-treated flies (grey bar) with behavioral
score higher than 5, during a 1 min observation period. (b) Drosophila Activity Monitor (DAM)
system cuvettes for measuring infrared (IR) beam breaks as a readout of locomotor activity. For
chronic exposure experiments, drugs can be added to food (Left). In the newer Drosophila Activity
Monitor 5M (DAM5M) each cuvette is intersected by 4 infrared beams, providing information on
locomotion and position (right). Variations of the DAM allow acute administration of vaporized
cocaine while measuring consumption and preference for individual Drosophila. In this setup, flies
have access to two different feeding solutions in capillary tubes positioned at each end of the cuvette
(right). Consumption is measured based on the displacement (∆) of the solution, represented by the
black dashed line. (c) A depiction of two different video-recorded locomotor assays with software
driven automated analysis (1) the open field assay (2) courtship tracking assay (d) A schematic of
the Repetitive Startle-induced Hyperactivity (ReSH) assay where locomotor response to mechanical
stress is measured across eight tubes after flies are forced to one side with repetitive puffs of air.
Created with BioRender.com.
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Multiple methods of drug administration can be combined with the DAM system, as
demonstrated in a modified DAM where flies in each cuvette have access to capillary tubes
filled with feeding solutions of 100 mM sucrose and 100 mM sucrose supplemented with
methamphetamine [69]. Out of a range of concentrations, this experiment showed flies
develop the strongest preference for 0.15 mg/mL methamphetamine, which is evident by
the second day and remains stable for the remainder of the 7-day assay. Flies exposed to
75 µg vaporized methamphetamine in the FlyBong display increased locomotor activity
after exposure, this activity more than doubles for flies subjected to a second exposure
10 h later. Transferring these sensitized flies to the capillary feeding DAM changes the
outcome for preference, which no longer develops during the 3-day period of measure-
ment [69]. These results are similar to those observed in rats, where methamphetamine
self-administration is reduced after the development of sensitization following injections
of methamphetamine [70]. Reciprocally, flies that develop preference in 3-day capillary
feeding DAM performed prior to vaporized methamphetamine exposure in the FlyBong
do not develop sensitization after the second 75 µg dose [69]. The relationship between
preferential drug-consumption and locomotor sensitization, two behaviors with face valid-
ity for modeling addiction, demonstrates how seemingly unrelated endophenotypes can
be intertwined at a mechanistic level. Accordingly, uncovering the molecular mechanisms
involved in a simple response like sensitization can be informative about the molecular
mechanisms that influence preferential self-administration.

While the constrained analysis of locomotion in the DAM is a reliable automated
method for measuring the motor activating effects of psychostimulant drugs, some be-
haviors cannot be measured within the interior of a glass cuvette. Several assays that
address this issue allow measurement of locomotion in freely moving Drosophila. Locomo-
tor responses to psychostimulant drugs in adult or larval Drosophila can be measured by
video recording responses in an observation chamber. Adult Drosophila [71] and 3rd instar
larvae [72] fed cocaine display significantly increased rates of locomotion. These studies
quantify locomotion rate by placing the observation chambers over a grid and counting the
lines crossed during an observation period (Figure 2c). The availability of 2D-tracking and
video processing software support automated processing of video recorded assays, which
reduces the time required for analysis and limits interpretive bias [73–75].

Psychostimulant responses in Drosophila have also been studied by analysis of repeti-
tive startle-induced hyperactivity (ReSH), which is based on locomotor response to recur-
rent puffs of air [76]. Air puffs are delivered to 8 groups of flies using the “puff-o-mat”,
a device based on a similar apparatus used for the delivery of ethanol vapor (now ap-
propriately known as the “booze-o-mat”) [77,78]. Recordings of the assay are analyzed
using a custom software that measures changes in fly position, acceleration, velocity, and
trajectory following mechanical stress from puffed-air (Figure 2d) [76]. Activity peaks
immediately after the startle stimulus, and then slowly returns to baseline. Measurement
of ReSH in untreated control flies shows large increase in velocity followed by a slow
decay toward baseline [76]. Cocaine leads to a dose-dependent decrease in ReSH, reducing
peak velocity after startle and reducing the decay period. Interestingly, the state of arousal
measured during ReSH differs from the locomotor arousal associated with spontaneous
activity quantified in the DAM, and is inversely impacted by cocaine, which reduces rather
than increases locomotor activity [76].

2.2. Assays of Motor-Impairment

While psychostimulants activate some motor behaviors, they can impair others. This
is the case for negative geotaxis [58] and some aspects of courtship behavior [52]. One
possible explanation for this impairment might be the complexity of these behaviors.
Negative geotaxis is a complex behavior that requires flies to integrate sensory information
about light as well as gravity [79], and is even affected by electromagnetic fields [80].
Similarly, Drosophila courtship is a complex social behavior, with successful copulation
requiring the integration of audible [81] visual [82] olfactory [83] and gustatory [84] stimuli.
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For some Drosophila behaviors, such as response to visual stimuli, optimal responses
occur within a specific range of dopaminergic activity and are disrupted when dopamine
levels are outside of that range [52]. It is likely that psychostimulant-induced increases
in dopamine similarly impair negative geotaxis and courtship behaviors, which require
complex processing and integration of sensory information across several modalities to
mount an appropriate response.

Startle-induced negative geotaxis (SING) was one of the first behavioral assays devel-
oped in Drosophila, dating back to Seymour Benzer’s experiments in the 1960s [85]. Benzer
joined two test tubes, forced the flies to the bottom of the enclosure, and scored the portion
of flies that move from the proximal tube to the distal tube within a brief recovery period.
SING condenses the analysis of motor response for multiple flies to one value, defined
by the proportion of flies that make it past a defined height along the tube. The efficient
quantification of this assay makes it amenable to automation: recordings can be processed
with video analysis software. Additionally, this assay is easily scaled up allowing simul-
taneous measurement of locomotor responses across several groups of flies, exploiting
the economy of scale that Drosophila offer. Untreated control flies quickly climb to the
top of the tube, whereas flies exposed to cocaine exhibit dose-dependent impairments in
negative geotaxis [58] (Figure 3a). Several variations of this assay have been developed,
and provide similar measures of intoxication. A drug effect score can be determined with
consecutive climbing assays based on the average number of flies remaining at the bottom
of each cylinder after exposure [86], and acquisition as well as analysis can be automated
using pictures captured from beneath each cylinder [87] to increase measurement speed
and consistency. Alternatively, both the “startle” step and analysis of climbing behavior
have been automated in the rapid iterative negative geotaxis (RING) assay, which allows
measurement of average distance traveled, increasing the resolution and dynamic range of
behavioral analysis [88]. In summary, assays of climbing behavior offer a high-throughput
measurement of sensitivity and sensitization with automated analysis.
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Figure 3. Assays for measuring motor-impairing effects of psychostimulants in Drosophila (a) Repre-
sentation of climbing behavior in the negative geotaxis assay. Untreated flies are located at the top of
the tube, while psychostimulant exposure disrupts climbing behavior in a dose dependent manner.
(b) Depiction of the courtship stages quantified in the courtship behavior assay. Numbers represent
successive steps in the courtship process, where 1–4 (left) depict a single male fly performing four
sequential courtship displays: (1) orientation (2) tapping (3) wing-song (4) licking. Step (5) and (6)
portray copulation attempts (mounting behavior) along with successful copulation, respectively.
Recorded video data are used to quantify the number and duration of courtship behaviors. Created
with BioRender.com.
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In contrast to the simplicity of measuring negative geotaxis behavior, the quantification
of Drosophila courtship requires analysis of a series of distinct behaviors. An established
method for studying these behaviors in males is the courtship behavior assay (Figure 3b).
This assay involves quantification of courtship activities that follow a stereotyped order
which includes orientation, tapping, wing vibration, licking, attempted copulation, and
copulation [89]. A male is observed in a behavioral chamber together with one or more
females to quantify the time it takes to initiate courtship, the number and duration of each
courtship behavior, the number of copulation attempts, and the duration of successful
copulation events. The copulation success rate is quantified in an index generated by
recording pairs of Drosophila and measuring the proportion that successfully copulate [52].
While this assay is not high-throughput, it has the advantage of simultaneously allowing
measurement of the motor activating and impairing effects of psychostimulants. Flies
fed methamphetamine have a decreased latency to initiate courtship, and spend more
time performing steps of the behavioral-courtship sequence that precede copulation. This
increase in both speed of initiation and percent of time spent courting are associated
with increased sexual arousal. In contrast, methamphetamine reduces the percentage of
flies that successfully copulate while increasing the latency to copulation in flies that do,
demonstrating how methamphetamine disrupts neural processes involved in initiating and
sustaining the motor behaviors required for copulation [52].

2.3. Assays of Consumption and Preference

Assays of voluntary consumption are indispensable techniques for studying addiction
and can be used to measure increases in self-administration over time. The CApillary
FEeder (CAFE) assay [90] is a reliable feeding assay that allows continuous monitoring
of consumption of liquid food from capillary tubes. Results characterize cumulative con-
sumption, average consumption and consumption rate (Figure 4a). Furthermore, the
CAFE can be modified to administer two different feeding solutions in a two-choice as-
say of consumption enabling analysis of preferential consumption (Figure 4b). Findings
using the CAFE show that the development of amphetamine preference in Drosophila is
concentration-dependent. Flies given the choice between a sucrose solution and a sucrose
solution containing 1 mM amphetamine develop preference for the amphetamine con-
taining solution by the first measurement timepoint at 24 h [91]. When the amphetamine
concentration is increased to 10 mM this effect is not observed, and flies prefer the sucrose
solution instead [91]. A similar experiment comparing daily consumption of two sucrose
solutions, where one is supplemented with methamphetamine, showed that flies develop
preference for 1 mM methamphetamine after one day while always avoiding 10 mM [60]. In
contrast, flies did not develop preference for cocaine at any concentration (10 uM, 100 uM,
1 mM, 10 mM) during a four day CAFE, but avoided the two higher concentrations. The
CAFE can also be used to identify the genes that influence cocaine and methamphetamine
consumption, which has been investigated in large scale assays with hundreds of genet-
ically distinct lines derived from the Drosophila Genetic Reference Panel (DGRP) [92,93].
Additionally, variations such as the FlyCAFE [69] allow measurement of locomotion in
tandem with consumption at single fly resolution, and enable additional administration of
vaporized drug [68]. Together, this combination of techniques allow simultaneous analysis
of drug consumption, preference, and drug-induced locomotion, being a valuable tool for
modeling the changes in consumption observed during the development of addiction.

2.4. Attention-like Processes

Attention to specific stimuli is a process that requires selection and suppression of
incoming sensory information. In tests of visual attention in humans, patients with ADHD
display deficits in attentional selection [94], increased impulsivity, and distractibility [95].
Psychostimulants improve selective attention in patients with ADHD, and low doses
also improve cognitive functioning in non-ADHD subjects [8]. While attention is more
difficult to define in animals, many behaviors allow the measurement of attention-like
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processes. In Drosophila, attention-like processes have been studied by measuring responses
to visual stimuli in the optomotor maze (Figure 5a) [96] and with flies suspended in a flight
arena [97]. The floor of the optomotor maze is transparent and visual stimuli are introduced
by placement over a monitor. Optomotor response is determined in single flies based on
locomotion following the introduction of a uniform field of moving visual stimuli, and
distractibility is measured based on the change in locomotion following the introduction of
competing visual stimuli that move in opposite directions [52]. In flight arena experiments,
attention-like processes are studied by measuring responses to visual stimuli in controllable
panoramic [98] or programmable visual environments [99] that allow manipulation of
visual stimuli presented to a single fly positioned within the arena (Figure 5b). In closed-
loop flight arenas, fly behavior directly impacts the observable environment, creating a
“closed” feedback loop, or a virtual flight simulator [100]. In contrast, flies in the flightless
open-loop experiments have a limited range of motion and their responses do not influence
visual stimuli, which rotate at a constant frequency independent of fly behavior (Figure 5c).
In these experiments, shifts in visual fixation associated with presentation of novel stimuli
are reflected in fluctuations of activity in 20–30 Hz local field potentials, as measured
with a recording electrode [101]. Dynamics of 20–30 Hz have been used characterize
“attention span” by measuring responses to novel stimuli, and responses to conflicting
stimuli in assays of distractibility [101]. These attention-like processes can also be studied
by measuring the intensity of torque that occur in response to visual stimuli. Both locomotor
and electrophysiological measurements have been used to characterize behavior in mutant
flies that have impairments in attention-like processes.
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Figure 4. Assays used to measure psychostimulant consumption and preference in Drosophila (a) A
single-fly assay of voluntary consumption where the rate of consumption is determined by monitoring
displacement of the solution over time. The black dashed lines represent the cumulative change in
volume recorded at the first and second measurement timepoints. (b) Flies housed in a Multiple
Capillary Feeder (MultiCAFE) Assay with access to two different feeding solutions, depicted here
as red and blue. The consumption of each solution over time is determined by monitoring the
displacement the meniscus in each capillary. Data are used to characterize rate of consumption,
cumulative consumption, and preference. Created with BioRender.com.
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Figure 5. Assays for measuring attention-like processes in Drosophila (a) Depiction of a fly at the first
of 8 successive choice points in a optomotor maze with nine possible outcomes. The bottom of the
maze is clear, allowing presentation of visual stimuli by placement on top of monitor, here the maze
is depicted in the absence of visual stimuli. The numbers across the top represent collection tube
designations, and the values used for assigning tube score. A representation of two different patterns
of moving visual stimuli (middle) that can be placed under the Y-maze to measure optomotor response
(1) or optomotor distraction (2). Line graph depicting the proportion of flies in each collection tube
(right) for an assay performed in the absence of visual stimuli (black dashed line) and an optomotor
response assay involving presentation of a moving-grating pattern (red dashed line). (b) Ilustration of
a tethered fly positioned in a visually programmable flightless arena where responses to visual stimuli
are determined based on (1) electrophysiological recordings of brain activity and (2) measurement of
physical response using a torque meter. (c) Depiction of visual-stimuli sequentially presented in a
panorama during a closed-loop assay above representative responses to novel and non-novel visual
stimuli that move across a tethered fly’s field of view, which is centered at the middle of each pane.
The top row of boxes depicts 20–30 Hz Low Field Potential recordings of neural activity while the
lower row represents the magnitude of torque responses. Created with BioRender.com.

3. Studying the Therapeutic Use of Psychostimulants with Drosophila

ADHD and ASD are complex diseases that impact arousal, attention, and sleep.
Dopaminergic dysfunction is a common characteristic of ADHD and ASD that contributes
to cognitive and behavioral impairments [102,103]. Psychostimulant drugs improve some
of the deficits seen in ADHD in humans [104], as well as in fly models of ADHD-like
behavior [105], which we review in this section. We discuss how Drosophila responses
to psychostimulant drugs have been used to characterize the behavioral effects of ASD-
related mutations from human patients with dopaminergic dysfunction. The results of
psychostimulants studies in Drosophila the models of ADHD and ASD are also discussed in
Table 1.
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Table 1. Genes involved in Drosophila psychostimulant response.

Gene Homologue 1 Gene Function 2 Mutant 3 SUD Related Behavior Psychostimulant Response 4 Disease Model

iav TRPV6 ion channel LoF sensitization mutants do not sensitize to COC [62]

Dop1R1 DRD1, DRD5 DA signaling KD consumption, preference MB KD alters experience dependent change in consumption of
COC and MA [93]

LoF, KD consumption, preference mutation or MB KD disrupts acute and experience dependent
MA preference [60]

Dop1R2 ADRB1 DA signaling LoF, KD consumption, preference reduced preference for MA [60]

Dop2R DRD2 DA signaling null consumption, preference reduced preference for MA [60]

DopEcR GPR21 DA signaling null consumption, preference increased preference for MA [60]

DAT DAT1 DA reuptake null locomotion dDATfmn flies do not exhibit hyperlocomotive response to
AMPH [106]

partial LoF locomotion DATfmn flies expressing hDAT-T356M have blunted locomotor
response to AMPH [107]

ASD

partial LoF locomotion DATfmn flies expressing hDAT-∆N336 are hyperactive and have
impaired AMPH -induced reverse DA transport [108]

ASD

partial LoF locomotion DATfmn flies expressing the ASD-associated variant hDAT-R/W
display a decrease in AMPH-induced locomotion [109]

ASD

partial LoF locomotion DATfmn flies expressing hDATK/A have blunted locomotor
response to AMPH [110]

partial LoF locomotion hDAT-R443A mutants have a blunted locomotor response to
AMPH [91]

partial LoF consumption, preference hDAT-R443A mutants do not develop preference in the CAFE [91]

KD sleep, arousal MPH rescues sleep deficit in DAT pan-neuronal KD [105] ADHD

null sleep, arousal AMPH decreases hyperactivity and induces sleep in DATfmn

flies [111]
ADHD

CaMKII CAMK2D cell signaling expression of inhibitor locomotion dopaminergic expression of CaMKII inhibitor abolishes
AMPH-induced hyperlocomotion [112]

Flo1 FLOT1 membrane protein LoF locomotion Flotillin 1 mutants (Floe02554) have a blunted locomotor response
to AMPH [106]
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Table 1. Cont.

Gene Homologue 1 Gene Function 2 Mutant 3 SUD Related Behavior Psychostimulant Response 4 Disease Model

dVMAT VMAT2 MOA transport OE motor-impairment OE decreases COC-induced impairment of negative geotaxis [71]

OE locomotion OE blunts COC-induced increases in locomotion [71]

null locomotion reduced locomotor response to COC [72]

null locomotion reduced locomotor response to AMPH [59]

pharmaco- logical inhibition locomotion VMAT2 inhibitor reduces COC-induced motor activation [58]

ple TH DA biosynthesis null locomotion ple flies do not exhibit AMPH-induced increases in
locomotion [106]

DA biosynthesis partial KO locomotion TH-deficient files have a blunted locomotor response to
AMPH [111]

DA biosynthesis targeted silencing, or
activation attention-like processes

acute MA exposure rescues optomotor response in flies
expressing UAS-tnt or a truncated potassium channel

(UAS-eag∆932) in DA neurons [113]

LMO LMO1 circadian regulation GoF motor-impairment mutants are resistant to COC-induced impairment of negative
geotaxis [86]

null, partial LoF motor-impairment mutants have increased sensitivity to COC-induced impairment
of negative geotaxis [86]

dbt CSNK1D/E circadian regulation hypmorph, hypemorph motor- activation mutants have reduced sensitivity to initial COC exposure, and do
not sensitize to repeated exposures [63]

per PER3 circadian regulation null, motor-activation,
motor-impairment

mutants are sensitive to initial COC exposure, but do not sensitize
to repeated exposures at any dose [63,67,87]

hypmorph, hypemorph motor-activation
short and long period mutants display increase in behavioral

score for initial COC exposure, but display limited sensitization
to repeated exposures [63]

null sensitization null mutants do not develop locomotor sensitization to vaporized
MA [69]

null consumption mutants do not self-administer MA [69]

Pdf NA circadian regulation null sensitization mutants fail to develop sensitization to COC [68]

dClk CLOCK circadian regulation hypomorph sensitization mutants are less likely to develop sensitization to COC [68]

cyc BMAL1 circadian regulation LoF sensitization mutants are less likely to develop sensitization to COC [68]

tim TIM circadian regulation LoF locomotion mutants have increased sensitivity to COC [68]

msi MSI2, MSI1, development targeted KD consumption MB KD increases COC preference [93]
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Table 1. Cont.

Gene Homologue 1 Gene Function 2 Mutant 3 SUD Related Behavior Psychostimulant Response 4 Disease Model

Snoo SKI; SKIL development targeted KD consumption, preference MB KD increases initial COC preference in males and decreases
initial MA preference in females [93]

ed NPHS1 development targeted KD consumption, preference MB KD increases initial MA preference in males, and decreases
experience dependent MA preference in males and females [93]

NA APP; BACE1 dysregulated in NDD targeted expression sleep, arousal pan-neuronal expression of AβPP and hBACE1 produce
ADHD-like phenotype rescued by MPH [114] ADHD

Cirl LPHN1 cell adhesion, signaling KD sleep, arousal methylphenidate rescues ADHD-like behavior in pan-neuronal
knockdown [105] ADHD

Nf1 NF1 GTPase activation KD sleep, arousal MPH rescues ADHD-like behavior in pan-neuronal
knockdown [105] ADHD

moody GPR84 BBB permeability partial LoF motor-impairment increased sensitivity to COC-induced impairment of negative
geotaxis [115]

pika-
RII PRKAR2A cAMP signaling severe LoF/null motor-activation reduced sensitivity to the motor-activating effects of COC; no

sensitization to repeated exposure [116]

whir ARHGAP9 GTPase activation LoF motor-impairment resistant to the motor-impairing effects of COC on righting
behavior [77]

radish GARNL3 synaptic morphology,
memory LoF attention-like processes MPH rescues optomotor response, response to novel visual

stimuli, and hyperactivity [101] ADHD

Rab10 RAB10 GTPase DN-Rab10 locomotion pan-neuronal expression of DN-Rab10 reduces MA-induced
locomotion and MA-induced mortality [117]

1 Human orthologues of Drosophila genes involved in psychostimulant response. 2 Gene function abbreviations include dopamine (DA), monoamine (MOA), neurodegenerative disease
(NDD), blood brain barrier (BBB), dominant negative (DN). 3 Mutant description abbreviations include gene knockout (KO), loss of function (LoF), gain of function (GoF), knockdown
(KD), partial knockdown (pKD), overexpression (OE). 4 Abbreviations in psychostimulant response column include cocaine (COC), amphetamine (AMPH), methamphetamine (MA), and
methylphenidate (MPH), tetanus-toxin light chain (UAS- tnt), mushroom body (MB), blood brain barrier (BBB), human platelet amyloid-β protein precursor (AβPP), and Beta-secretase
1 (hBACE1).
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3.1. Attention Deficit Hyperactivity Disorder (ADHD)

Hyperactivity and reduced sleep are common behavioral symptoms of ADHD [118–120].
Several mutant fly lines also exhibit hyperactivity and reduced sleep, making them face-valid
models of ADHD-like behaviors. Among these are mutant lines for Drosophila orthologs of
the dopamine transporter (DAT), latrophilin-3 (LPHN3), and neurofibromin-1 (NF1). These three
genes are associated with ADHD in humans, and were chosen to test whether disruption
of the fly ortholog would mimic ADHD-like behaviors in Drosophila [105]. The dopamine
transporter was selected through database mining by searching for Drosophila genes with
phenotypic descriptors related to hyperactivity, excitability, or attention. This search produced
a list of 78 genes, with 69 conserved in humans. Five of those conserved genes, including
DAT, were also identified in a list of 91 human ADHD-associated genes. The Drosophila
DAT null mutant DATfmn was identified based on its sleep phenotype—fmn stands for fumin,
Japanese for sleepless [121]. Observation of DATfmn flies using the DAM system showed
hyperactivity and reduced sleep, with hyperactivity exacerbated in the absence of light,
e.g., at night, but also during the subjective daytime when housed in dark:dark conditions.
Feeding DATfmn flies methylphenidate [105] or amphetamine [111] rescued hyperactivity
and sleep loss. This study highlights how disruption of Drosophila DAT, the orthologue of a
well-known ADHD risk gene highly represented in human GWAS studies, recapitulates two
common symptoms of ADHD observed in humans that can be rescued by psychostimulant
drugs used to treat the symptoms of human ADHD.

While DAT knockout is useful for modeling the effects associated with loss of function,
there is significantly more variability in the DAT mutations that contribute to the prevalence
of ADHD in humans [122–124]. Experiments in cell culture show that many psychiatric
disorder-associated DAT variants exhibit heterogenous molecular phenotypes, including
differences in DA uptake kinetics, reverse transport, and altered binding to psychostimulant
drugs [125]. Drosophila is an efficient model for studying the effects of human DAT mutants
in vivo and have shown that DAT mutations associated with early-onset Parkinson’s [126]
as well as ASD [107] lead to impairments in motor behavior. Drosophila is a feasible system
for performing similar experiments to unravel the behavioral and molecular nature of
DAT variants associated with ADHD, offering a practical model to identify the molecular
mechanisms involved in response to psychostimulant drugs.

In contrast to DAT, the influence of the G-Protein coupled receptor and cell adhesion
protein Latrophilin-3 on dopaminergic signaling is poorly understood. LPHN3 is an ADHD-
risk gene that was identified in a linkage study based on a prevalence of ADHD with large
generational families of an isolated population in the Paisa region of Colombia [127]. LPHN3
variants that lead to haploinsufficiency are associated with the development of ADHD in
humans [128]. While patients with LPHN3 risk alleles respond to stimulant medication, a
molecular mechanism linking reduced LPHN3 expression to dopaminergic dysfunction
has not been unraveled in human studies [128]. The behavioral effects of knockdown
of the LPHN3 fly ortholog have also been studied in Drosophila using the GAL4/UAS
binary expression system. This method uses a cell type or tissue-specific enhancer to drive
expression of the yeast transcriptional activator GAL4. Transgenes coupled to the GAL4
upstream activation sequence (UAS), are expressed wherever GAL4 is transcribed. The
pan-neuronal driver elav-GAL4 was used to drive expression of UAS-Cirl-RNAi, the single
Drosophila orthologue for the Latrophilin family of genes. This reduced complexity can
be beneficial when attempting to characterize a gene’s molecular function. In mammals,
the effects of mutating a gene that is a member of a multi-gene family can be difficult to
observe because of genetic redundancy. In flies, the reduction in gene copy number makes
characterizing loss of function phenotypes more straightforward. Neuronal knockdown
of the Drosophila orthologue of LPHN3 was sufficient to produce the hyperactivity and
decreased sleep associated with dopaminergic dysfunction [105]. As with the DAT null
mutants, hyperactivity was more pronounced at night and could be exacerbated during
the day by turning off the lights. Both the hyperactivity and sleep loss were rescued by
feeding Drosophila methylphenidate. Tyrosine hydroxylase staining in fly brains showed
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that knockdown of the Drosophila orthologue of LPHN3 did not alter the distribution or
survival of dopaminergic neurons, indicating that LPHN3 regulates dopaminergic signaling
directly [105]. The role of LPHN3 in dopaminergic signaling and variation in response to
psychostimulant drugs is poorly understood. Drosophila is a useful model for studying
neurotransmission [129,130] and offers a flexible system for the future identification of the
molecular mechanisms that lead to altered amphetamine and methylphenidate responses
in models of LPHN3 disruption.

NF1 is associated with the autosomal dominant disease neurofibromatosis type I.
Neurofibromatosis type I is a multi-system disorder involving tumors of the nervous
system that lead to complications such as eye disease, musculoskeletal disorders, and
epilepsy, among others. In addition to the physical impairments associated with neurofi-
bromatosis type I, most patients display cognitive deficits [131], including symptoms of
ADHD [132]. In some patients, these ADHD symptoms are improved by treatment with
methylphenidate [133]. To investigate whether loss of NF1 would lead to ADHD-like be-
havior in flies, NF1 was knocked down in all neurons of the Drosophila by using elav-GAL4
to drive expression of UAS-NF1-RNAi. Knockdown of NF1 in Drosophila neurons induced
a hyperactivity and sleep-deficiency phenotype, with a noticeable increase in nighttime
hyperactivity. Feeding NF1 knockdown flies methylphenidate rescued both hyperactivity
and sleep dysregulation [105].

The psychostimulant-mediated rescue of hyperactivity as well as sleep-deficiency
phenotypes observed for DAT, LPHN3, and NF1 orthologue mutants in the DAM system
indicate that (1) hyperactivity along with reduced sleep is an endophenotype for ADHD in
flies, (2) flies are a model with mechanistic validity for studying ADHD such that genes
whose disruption leads to ADHD in humans also produce ADHD-like behavior in flies, and
(3) flies are a model with predictive validity for studying ADHD since the psychostimulant
drugs that reduce the behavioral symptoms of ADHD in humans also reduce ADHD-
like impairments in flies. While DAT, LPHN3, and NF1 all respond to treatment with
methylphenidate, the molecular basis for the psychostimulant-mediated rescue of ADHD-
like behaviors is unknown. Targeted knockdown of DAT, LPHN3, or NF1 specifically in
Drosophila dopamine neurons or subsets of dopamine neurons might help unravel how
mutations with opposite effects on dopaminergic signaling can display similar response to
psychostimulant drugs such as methylphenidate.

In addition to the locomotor signature observed with ADHD-like changes in sleep and
hyperactivity, Drosophila can model more complex ADHD-like symptoms associated with
dysregulation of attention-like processes [101]. Humans patients with ADHD have deficits
in visual attention [94,134,135] that are improved by treatment with psychostimulants [134].
The Drosophila memory mutant radish1 also displays impaired responses to visual-stimuli
in the optomotor maze and experiments of tethered flight [101]. Wild-type flies traveling
through the optomotor maze turn in the direction of moving visual stimuli, an optomotor
response that is absent in radish1 mutants flies [101]. This deficit in response is not a result
of visual impairment, as radish1 mutants are successful in operant visual learning [135].
Methylphenidate rescues optomotor response in radish1 mutants, generating responses to
visual stimuli similar to those observed for wild-type flies in the optomotor maze [101].
In addition to the altered locomotor response to visual information in the optomotor
maze, radish1 mutants flies also exhibit altered brain activity in response to visual stimuli.
Normally, flies display an increase in 20–30 Hz local field potentials (LFP)—observed by
brain recordings—in response to visual stimuli. Electrophysiological recordings from flies
suspended in a flightless arena show that flies repeatedly shown the same shape will
display an increase in 20–30 Hz response when presented a novel shape. In contrast, radish1

mutants have a diminished 20–30 Hz response to novel visual stimuli. Treatment with
methylphenidate also rescues the 20–30 Hz response to novelty in radish1 [101].

The impairment of visual attention-like processes observed in radish1 mutants and
pharmacological rescue with methylphenidate demonstrate how the optomotor maze and
tethered flight experiments can identify genetic and molecular determinants of attention
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span. Moreover, these assays can uncover the molecular basis of psychostimulant-mediated
rescue in attention-like processes such as visual fixation, novelty response, and distractibil-
ity. However, with radish1 as the sole example of psychostimulant-mediated rescue of
attention-like processes, these assays would benefit from validation using other known
ADHD-linked mutants. The observation of similar deficits in ADHD-associated mutants,
along with improvement following treatment with psychostimulants, would provide sup-
port for impaired responses in the optomotor maze and tethered flight experiments as
endophenotypes for attention-like processes dysregulated in ADHD. Because ADHD is
predominantly a polygenic disorder, with impairments occurring on a spectrum, it is un-
likely that a single behavioral assay will be effective in studying every putative risk gene.
The current models of ADHD-like behavior in flies address two broad features of ADHD:
dysregulation of attention-like processes and dysregulation of arousal. Complementary
use of the DAM system, optomotor maze, and flight loop experiments may be useful in un-
raveling how specific behaviors are improved with psychostimulant treatment, supporting
the identification of genes and pathways that determine treatment efficacy.

Rare genetic variants associated with ADHD such as LPHN3 and NF1 have a large
effect size, meaning a large portion of observed phenotypic variance can be attributed
to these individual genes. In contrast, common genetic variants associated with ADHD
have a smaller effect size, meaning their individual contribution to observed phenotypes
is less severe. Rare disease variants, because of their increased severity, can be helpful in
elucidating molecular mechanisms that can help understand the deficits observed in mild
cases disease. However, identifying the common variants that contribute to mild-cases of
diseases has been more difficult. Because these common variants have a small effect size, it
is difficult to perform studies with enough subjects to reach the statistical power necessary
to identify common risk genes. The first successful identification of common variant risk
was performed in a 2019 GWAS that used data from more than 50,000 subjects to identify
of 12 ADHD risk loci [136]. In contrast to human studies, Drosophila offer a model where
additional genetic tools can circumvent the limitations associated with underpowered
research. A recent study combined transcriptome and behavioral analysis across hundreds
of methylphenidate exposed flies, to behavioral analysis of 172 lines from the DGRP
to identify genetic variants that contribute methylphenidate response [137]. The study
assigned 650,766 segregating single nucleotide polymorphisms (SNP) to 7472 gene networks
and used an integrative genomic prediction approach to predict SNPs associated with
differentially expressed transcripts. Of the 87 networks, including 1727 genes predicted to
impact methylphenidate response, 14 of the top candidate genes were validated with RNAi
using a ubiquitous GAL4 driver, and 10 of those genes altered response to methylphenidate.
Twenty percent of the networks predicted to contain methylphenidate response genes are
involved in histone modifying processes, and 4 of the 10 genes that were validated with
RNAi are involved in histone modification [137], a process that is also relevant to human
psychostimulant addiction [138]. This transcriptomic study demonstrates how Drosophila
is a model that enables identification of novel candidate genes that mediate response
to treatment with psychostimulant drugs, information that might also help elucidate
differences in genetic etiology that contribute to treatment resistance in humans.

3.2. Autism Spectrum Disorder (ASD)

Most cases of ASD are polygenic and 80% of cases involve multiple genes, making it
difficult to unravel how each gene contributes disease-related impairments [139]. Addi-
tionally, many patients with ASD also have comorbid ADHD, with estimates from clinical
samples between ranging between 37–85% [140]. Flies are a useful model for studying the
impact of individual genes associated with ASD [139]. The impact of several ASD-linked
mutations on DAT function, reverse transport of dopamine, and sensitivity to amphetamine
psychostimulants have been characterized in Drosophila [107–109].

Hamilton and colleagues used Drosophila to functionally characterize an ASD-associated
de novo mutation in the human dopamine transporter (hDAT) at residue 356 (hDAT
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T356M). [107] Cell culture experiments showed hDAT-T356M caused constitutive reverse
transport of dopamine and reduced amphetamine-induced reverse transport of dopamine.
To identify how these changes impact behavior and response to psychostimulants, a trans-
gene carrying the human ASD-associate DAT mutant was introduced into a Drosophila
DAT knockout background (DATfmn). hDAT-T356M expressing flies displayed increased
baseline locomotor activity compared to control flies expressing hDAT. Additionally, while
amphetamine increases locomotor activity in hDAT expressing flies, Drosophila expressing
the ASD-associated mutant do not display an amphetamine-induced increase in locomo-
tion [107].

A similar behavioral phenotype was observed in flies during an experiment involving
the first characterization of an ASD-associated in-frame deletion in the human dopamine
transporter (hDAT), which eliminates asparagine residue 336 (hDAT-∆N336) [108]. Cell
culture experiments performed to molecularly characterize hDAT-∆N336 showed that
the ASD-associated mutation stabilizes the transporter in a half-open and inward-facing
conformation that disrupts DA uptake, but not reverse transport. To study the effects of
this mutation in vivo, the ASD-associated DAT transgene was expressed in DAT knockout
flies (DATfmn), and compared to hDAT expressing controls. Flies expressing hDAT-∆N336
displayed hyperactivity and increased grooming behavior compared to hDAT express-
ing control flies [108]. Flies expressing the mutant transporter also exhibited impaired
amphetamine-induced reverse dopamine transport [108].

Another ASD-associated DAT mutant that impacts psychostimulant response contains
an arginine to tryptophan substitution at N-terminal position 51 (hDAT-R/W), a residue
important for interaction with the membrane protein Syntaxin-1A (STX1A) [109]. Murine
models showed that the interaction of the DAT with STX1A support amphetamine-induced
reverse transport of dopamine, and that STX1A overexpression increased reverse transport
of dopamine [141]. Experiments in cell culture revealed that the ASD-associated hDAT-
R/W did not affect DA uptake, but reduced amphetamine-induced reverse transport of
DA [109]. DATfmn flies expressing the ASD-associated variant were used to characterize
how this mutation impacts behavior. No difference in basal locomotion was observed
between hDAT-R/W expressing flies and hDAT expressing control flies. However, hDAT-
R/W expressing flies exhibited a significant reduction in amphetamine-induced locomotion
compared to hDAT expressing control flies [109].

These experiments demonstrate how flies be used to study the behavioral impact of
mutations, linking the behaviors in question to molecular mechanisms characterized in cell
culture. These experiments cannot be performed in humans, and can help characterize how
specific mechanisms contribute to the pathogenesis of complex polygenic disorders such as
ASD [107]. While these experiments analyzed psychostimulant response in the context of
locomotion, flies have potential for modeling more complex behavioral features of ASD,
which is known to impact social behavior. Drosophila display broad repertoire of social
behaviors that range from population scale changes in group dynamics [142] to pairwise
interactions involved in displays of aggression [143] and courtship [144]. Quantification of
group density [145] and analysis of courtship behavior [89] are both established methods
that have been used to study social behavior in Drosophila, and both respond to changes in
dopamine. As social deficits are common in fly models of ASD, Drosophila could provide an
effective model to study whether psychostimulant drugs can rescue social responses. These
experiments could help identify specific genes and molecules required for psychostimulant-
mediated improvements in social behavior.

4. Studying Psychostimulant Abuse with Drosophila

Addiction is an etiologically complex polygenic disorder that develops in an experience-
dependent manner. In humans, features of addiction include increases in drug preference
and consumption. Individual differences in sensitivity to the behavioral activating effects of
psychostimulant drugs, the development of sensitization, initial preference, and patterns of
drug consumption are all important factors predictive of future psychostimulant response
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and propensity to develop substance use disorder. Studies of psychostimulant-induced
behavior in mammals show that simple locomotor responses can be predictive of more
complex addiction-related behaviors such as the acquisition of self-administration. In rats,
for example, sensitivity to the locomotor activating effects of cocaine predict the develop-
ment of cocaine-conditioned place preference [146]. Here, we discuss the genes implicated
in psychostimulant sensitivity, sensitization, and preference in Drosophila, and highlight
their relevance in modeling psychostimulant addiction.

4.1. Using Drosophila to Study the Mechanism of Action of Psychostimulant Drugs

While the intoxicating effects of commonly abused psychostimulants vary in intensity
and duration, they all act to increase dopaminergic signaling [41]. Dopamine is involved in
many behaviors in Drosophila, including locomotion, attention-like processes, memory, and
reward [147–151]. As dopamine is central to the mechanism of action for psychostimulant
drugs, the genes involved in dopamine synthesis, neurotransmission, and dopamine
receptor coupled signaling pathways directly impact psychostimulant response.

Tyrosine hydroxylase is the rate limiting enzyme involved in the conversion of
L-tyrosine to dopamine [152]. RNAi-mediated knockdown of tyrosine hydroxylase in
dopaminergic neurons of Drosophila larvae ablates locomotor response to amphetamine [106].
Tyrosine hydroxylase influences coloration of the flies’ cuticle, and loss of function mutants
were named pale because of their discoloration [153]. pale mutants have reduced brain
dopamine, are hypoactive [154,155], and do not exhibit a reduction in sleep after treatment
with amphetamines [111]. Reducing dopamine also impacts response to cocaine, and flies
fed 3-iodotyrosine (3IY), a competitive inhibitor of tyrosine hydroxylase show a reduction
in cocaine-induced locomotion [58].

dDAT codes for the Drosophila plasma membrane dopamine transporter (DAT) that
functions to remove extracellular dopamine from the synaptic cleft [156]. DAT structure,
function, and interaction with psychostimulants are highly conserved in Drosophila and
humans [38,40]. In Drosophila, the activating effects of psychostimulants on arousal are
dopamine transporter dependent. Both amphetamine and methylphenidate increase loco-
motion in Drosophila larvae, a response that is blunted in DATfmn flies or flies expressing
dDAT RNAi in dopaminergic neurons. Expression of the human dopamine transporter
(hDAT) in DATfmn mutants rescues the hyperlocomotive response to both amphetamine
and methylphenidate [106], demonstrating that a conserved DAT-dependent mechanism
facilitates the locomotor-activating effects of psychostimulant drugs. Consistent with the
data showing that response to psychostimulant drugs is contingent on the presence or
absence of functional DAT, sensitivity or resistance to psychostimulants drugs is also
dependent on DAT cell surface expression [157]. Drosophila Ric, encodes a Ras-related
small GTPase involved in dopamine transporter trafficking [158]. Rit2, the mammalian
orthologue of Ric, has been shown it impact cocaine sensitivity in mice [159]. In Drosophila,
dopaminergic expression of a constitutively active Ric-GTPase mutant (RicQ117L) increases
cell surface expression of DAT and enhances sensitivity to the locomotor activating effects
of amphetamine [157].

While the activating effects of cocaine, methylphenidate, and amphetamine-like psy-
chostimulants are all DAT-dependent, they do not increase dopaminergic signaling through
the same mechanism of action (Figure 1). Cocaine as well as methylphenidate act as com-
petitive inhibitors of the dopamine transporter [160] that increase dopaminergic signaling
by binding dDAT and reducing uptake of synaptic dopamine [161], while amphetamine-
like psychostimulant bound to the dopamine transporter activate reverse transport of
dopamine [43,162,163]. In vitro studies first showed the reverse transport of dopamine
stimulated by amphetamine-like psychostimulants was regulated by Calcium/calmodulin-
dependent protein kinase II (CaMKII) mediated phosphorylation of the DAT the N-terminal
domain [152,153] and localization of the DAT to specific plasma membrane microdomains
by the membrane lipid raft protein flotillin-1 [164]. The first in vivo experiment to show
that flotillin-1 is required in dopamine neurons for amphetamine-induced locomotion



Biomedicines 2022, 10, 119 20 of 34

was performed in Drosophila [106]. In contrast to the increased locomotion observed in
wild-type flies, Flotillin 1 mutant (Flo102554) larvae or larvae expressing Flo1 RNAi in
dopamine neurons did not display an increase in locomotive speed after administration of
amphetamine [106]. Expressing human FLOT1 in dopaminergic neurons of Flo102554 mu-
tant larvae rescued the hyperlocomotive response to amphetamines [106]. One explanation
for the requirement of Flo1 in amphetamine-induced reverse transport might be the role
of lipid rafts in acting as a scaffold for other signaling proteins such as CamKII [165,166].
In vitro experiments showed that amphetamine-induced reverse transport depends on
CamKII-mediated phosphorylation of DAT N-terminal serine residues (2, 4, 7, 12 and 13), a
modification associated with the inward-facing transporter conformation that facilitates
reverse transport [162]. This dependency was confirmed in vivo using Drosophila DATfmn

mutants, where dopaminergic expression of an hDAT construct with serine to alanine
substitutions that prevent phosphorylation ablates amphetamine-induced hyperlocomo-
tion [106]. The hyperlocomotive response to amphetamines is rescued by dopaminergic
expression of wild-type hDAT, as well as a mutant hDAT where N-terminal serine residues
are replaced with phospho-mimetic aspartate residues. Flies were also used to demonstrate
DAT phosphorylation requires CAMKII in dopamine neurons, and that expressing CaMKII
inhibitory peptide in the dopamine neurons of larvae ablates amphetamine-induced hy-
perlocomotion [112]. Dopaminergic expression of the N-terminal domain phosphomimic
hDAT mutant rescues the locomotor response to amphetamine in flies expressing CaMKII
inhibitory peptide [112]. Drosophila were also the first model organism to show that the
membrane phospholipid Phosphatidylinositol (4,5)-bisphosphate (PIP2) interaction with
the human dopamine transporter is important for amphetamine-induced dopamine ef-
flux [110]. In silico experiments predicted that DAT N-terminal lysine residues 3 and 5 were
involved in interaction with PIP2. In vitro experiments demonstrated that neutralizing
alanine substitutions lysine residues 3 and 5 (hDAT-K/A) do not alter DAT cell surface
expression, but to reduced amphetamine-induced dopamine efflux. To test the behavioral
impact of the hDAT-K/A mutation, DATfmn mutant flies expressing hDAT or hDAT-K/A
in dopaminergic neurons were fed amphetamine and monitored for changes in locomotor
behavior. While hDAT expressing flies fed amphetamine showed an significant increase in
locomotion, this effect was abolished in hDAT-K/A expressing flies [110]. The DAT lysine
at residue 337 and arginine 443 in intracellular loop 3 and 4 were also predicted to inter-
act with PIP2 based on computational modeling experiments [110]. In vitro experiments
showed that neutralizing alanine substitutions at K337 and R443 lead a reduction in DAT
cell surface expression of more than 80% [110]. To test the behavioral impact of the arginine
to alanine substitution at residue 443 (hDAT-R443A), which did not affect surface localiza-
tion, DATfmn mutant flies expressing hDAT or hDAT-R443A in dopaminergic neurons were
observed in the DAM system. No difference was observed when comparing baseline loco-
motion of hDAT and hDAT-R443A expressing flies. However, a difference in locomotion
was observed after exposure to 1 mM amphetamine, and DATfmn flies expressing hDAT
displayed an increase in cumulative locomotion while no significant change was observed
in DATfmn flies expressing hDAT-R443A [91]. In addition to impacting locomotion, the
interaction of PIP2 with DAT residue 443 is required for amphetamine preference in a CAFE
with the choice between sucrose and sucrose supplemented with amphetamine. Preventing
the interaction of PIP2/DAT in DATfmn flies expressing hDAT-R443A abolishes preference
of 1 mM amphetamine that is observed in DATfmn flies expressing wild-type hDAT. In
contrast to the preference observed at low doses of amphetamine (1 mM), DATfmn flies
expressing hDAT avoid amphetamine at higher doses (10 mM amphetamine). DATfmn flies
expressing hDAT-R337A also display avoidance for 10 mM amphetamine in the CAFE,
suggesting the interaction of PIP2 with DAT is required for amphetamine preference, but
not amphetamine avoidance [91].

The vesicular monoamine transporter 2 (VMAT2) regulates the storage and release of
dopamine, and is a key mediator of behavioral responses to psychostimulants of abuse [167].
The Drosophila homologue of VMAT2 (dVMAT) has two splice variants, with dVMAT-A
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identified to play a role in dopamine transport similar to VMAT2 [168]. In flies, overex-
pression of dVMAT-A in Drosophila dopamine neurons leads to increased release of DA,
along with an increase in grooming behavior, an increase in locomotion, and a decrease in
negative geotaxis [71]. Similar increases in grooming behavior and locomotion are observed
in wild-type flies after 5–7 days of cocaine administration, as well as control flies that do
not overexpress the dVMAT-A transgene. Interestingly, flies that overexpress the dVMAT-A
transgene in dopaminergic neurons display a decrease in behavioral sensitivity to cocaine
in assays of locomotion, grooming, and negative geotaxis. One explanation for this blunted
response to cocaine might be a ceiling effects related to the overexpression of dVMAT-A,
suggesting that cocaine mediated increases in synaptic dopamine are behaviorally inert in a
system that is already saturated with dopamine. This explanation does not, however, justify
the response to acute cocaine exposure in flies overexpressing dVMAT-A, where increasing
dVMAT-A expression actually reduced the sensitivity to the impairing effects of cocaine
on negative geotaxis [71]. This effect was dose-dependent: flies with more copies of the
dVMAT-A transgene displayed the greatest reduction in cocaine induced impairment [71].
These experiments highlight the utility of Drosophila in uncovering molecular interactions
that cannot be determined in humans. Such experiments might be especially useful for
identifying the behavioral effects VMAT2 polymorphisms associated with an increased risk
of addiction [169,170].

In contrast to flies overexpressing dVMAT-A, mutant flies with a null mutation of dV-
MAT show a decrease in dopamine levels compared to wild-type flies, with measurement of
dopamine in whole heads from flies heterozygous and homozygous for null mutation con-
taining 35% and 75% of normal dopamine levels, respectively [72]. Surprisingly, opposite
responses were observed in flies heterozygous and homozygous for the null mutation in
the context of larval locomotion, negative geotaxis, and dark reactivity, with heterozygotes
displaying an increase larval locomotion, and adult climbing behaviors and homozygotes
displaying a decrease in the same behaviors [72]. In adult Drosophila, both heterozygotes
and homozygotes displayed an increase in baseline locomotor activity compared to wild-
type flies. Additionally, while cocaine produced a large increase in locomotor activity in
wild-type flies, only a small increase in locomotion was observed in heterozygous flies,
and no significant change was observed in flies homozygous for the null mutation [72].
VMAT is also important in the context of behavioral response to amphetamine. Wild-type
as well as dVMAT null Drosophila larvae display an increase in locomotion in response to
amphetamine, however, that response is diminished by 5-fold in dVMAT null mutants [59].
VMAT is an established therapeutic target and changes in VMAT function are known to
influence responses to drugs of abuse [171], making it a relevant molecule for studying
response to psychostimulant drugs in Drosophila.

All psychostimulants of abuse act to increase synaptic dopamine, and their locomotor
activating as well as rewarding effects similarly depend on the activation of dopamine
receptors along with their downstream signaling pathways. In Drosophila, there are two
different D1-like dopamine receptors (Dop1R1 and Dop1R2), one D2-like dopamine recep-
tor (DD2R), and one dopamine and ecdysone hormone receptor (DopEcR) [172]. Drosphila
dopamine receptors are integral to the effects of psychostimulants on arousal [173], loco-
motion [76], and reward [60]. In wild-type flies, methamphetamine [173] and cocaine [76]
increase arousal and reduces sleep. The sleep reducing effects of methamphetamine are
lost in dumb1 mutant flies, where Dop1R1 expression is significantly reduced. Expressing
Dop1R1 in the mushroom body of dumb1 mutant flies restores the methamphetamine-
induced reduction in sleep [173]. Dop1R1 expression is also significantly reduced dumb2

mutant flies, who show no reduction in sleep after cocaine exposure [76]. dumb2 mutant
flies also display an increase in repetitive startle induced hyperactivity (ReSH), where
active flies subjected to repeated bouts of mechanical stimulation display an increase in
locomotion and a protracted period of hyperactivity greater than that observed in wild-type
flies [76]. Interestingly, while cocaine increases arousal of wild-type flies in the context of
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sleep, cocaine decreases the arousal associated with ReSH. This effect is not observed in
dumb2 mutant flies, where ReSH is the same in the presence and absence of cocaine [76].

In addition to regulating psychostimulant-induced arousal, Drosophila dopamine
receptors regulate psychostimulant preference, and mushroom body knockdown of Dop1R1
or Dop1R2 both suppress acute methamphetamine preference in the CAFE [60]. In contrast,
DopEcR mutants display an increase in acute preference for methamphetamine [60]. These
results highlight the dynamic nature of dopaminergic signaling in driving appetitive as
well as aversive responses, and demonstrate how dopamine receptor subtypes modulate
psychostimulant preference. Dopamine receptors play a similar role in the modulation
of preference in humans, where changes in receptor expression are associated with drug
craving and drug seeking behavior [174]. Identifying the specific dopaminergic circuits
that mediate psychostimulant preference or avoidance in Drosophila will aid in discovery
of the genes that modify each pathway, and bias behavior for or against the development
of addiction.

4.2. Using Drosophila to Identify Novel Genes Involved in Response to Psychostimulant Drugs

While Drosophila have been useful in molecular characterization of genes known to
impact the psychostimulant response in mammals, they have also been instrumental in
identifying novel genes that regulate response to psychostimulant drugs. Research in flies
was the first to show that mutation of the circadian gene period increased initial sensitivity to
the motor activating effects of cocaine, but disrupted the development of sensitization [63].
The role of circadian genes clock, cycle, and doubletime were also identified in mutant
flies that failed to develop sensitization to the motor activating effects of cocaine [63].
Subsequent studies confirmed the role of Period [175] and Clock [176] in response to cocaine
in mammals. Additional experiments in Drosophila also demonstrated that period is involved
in the regulation of dopamine receptor responsiveness [177]. Additionally, while wild-type
flies develop a preference for methamphetamine in the CAFE, period null mutants do not
develop preference and do not self-administer methamphetamine [69].

Drosophila were also used to identify a novel role of Lim-only (dLmo) gene in modulating
response to cocaine [86]. The expression of dLmo regulates the sensitivity of primary pace-
maker neurons to cocaine-induced increases in synaptic dopamine, with loss of function
mutants exhibiting an increase in sensitivity to the motor-activating effects of cocaine on
locomotion and the motor-impairing effects of cocaine on negative geotaxis [86]. In contrast,
dLmo gain of function mutants are resistant to the effects of cocaine, and display a reduction
in cocaine-induced locomotion and a decrease in impairment of negative geotaxis [86].
While the relationship between dysregulation of circadian rhythms and substance abuse is
now well established in mammals [178], the initial experiments demonstrating of role of
circadian genes in modulating response to drugs of abuse were performed in flies. These ex-
periments highlight the value of Drosophila as a translational genetic model for identifying
novel regulators of drug response that can inform our understanding of human disease.

Protein kinase (PKA) is involved in signaling molecular targets downstream of the
Drosophila circadian pacemaker cells [179]. The Drosophila type II cAMP-dependent protein
kinase (PKA-RII) is also involved in circadian regulation, and acts downstream of circa-
dian pacemaker cells. PKA mutants display reduced sensitivity to the motor activating
effects of cocaine in the behavioral scoring assay, require more than double the amount
required to generate a response in control flies, and do not develop sensitization to repeat
exposures [116]. D1 receptor-mediated PKA signaling is also involved in the expression
of behavioral sensitization to cocaine in rats [180], and chronic cocaine administration
in mammals is associated with dopamine receptor-mediated activation cAMP and PKA
signaling cascades involved in the development of addiction [174]. Several components
of the cAMP and PKA signaling pathway have demonstrated success as drug target, and
Drosophila are a promising model organism to help identify potential druggable targets that
might be useful in the development of therapeutics for the treatment of addiction [181].
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In addition to PKA, several other molecules associated with regulating synaptic plas-
ticity have also been shown to impact psychostimulant response in flies. The Rho family
GTPase activating protein RhoGAP18B regulates actin dynamics and response to alcohol in
Drosophila, and several whir mutants have reduced sensitivity to the motor impairing effects
of cocaine on negative geotaxis behavior [77]. The Ste20 family kinase Tao is also a regulator
of cocaine response in flies, and tao mutants are resistant to the motor-impairing effects of
cocaine on negative geotaxis [182]. The Drosophila GSK-3β homologue shaggy is another
molecule implicated in the regulation of synaptic plasticity that is immediately downstream
of PKA, and regulates the activity of multiple proteins including cAMP-response element
binding protein (CREB), timeless, and the microtubule-binding protein tau [183]. The
shaggyEP1379 mutant, missing the serine 9 site regulated by PKA, produces flies sensitive to
cocaine-induced effects on negative geotaxis [184]. While the mechanisms of these genes
in regulating psychostimulant response remain to be determined, there is evidence of
psychostimulant regulation by analogous genes in mammals. Rho family GTPases are
G-proteins that regulate actin dynamics [185], and are involved in the locomotor response
to amphetamines [186] and the development of cocaine preference [187] in mice. TAOK1,
the mammalian orthologue of tao, is transcriptionally regulated in mammalian models of
cocaine and methamphetamine addiction [188,189]. GSK-3β is involved in the develop-
ment of behavioral sensitization to the locomotor activating effects of cocaine in rats [190],
and cocaine withdrawal disrupts the circadian regulation of GSK-3β [191]. Knockout of
Tau enhances cocaine conditioned place preference in mice while Tau overexpression in
the hippocampus suppresses cocaine conditioned place preference [192]. The identifi-
cation of parallel pathways for the regulation of psychostimulant response in flies and
mammals has implications for the identification of novel regulators of psychostimulant
response. Unbiased screens identifying genes that modify alcohol consumption in flies
have been successfully translated to identify the genes that regulate alcohol consumption
in humans [193,194]. Additionally, Drosophila provide the ability to test hypotheses related
to the development of targeted therapies for addiction, which is specifically relevant for
Rho family GTPase and GSK-3β signaling pathways which are promising drug targets for
the treatment of neuropsychiatric disorders [195,196].

While the assays used to measure psychostimulant response in Drosophila do not
completely recapitulate the features of psychostimulant abuse in humans, they effectively
capture features of drug response that can be used to identify novel genes that predict
the risk to develop addiction. While there is currently no Drosophila equivalent of the
operant-controlled psychostimulant self-administration paradigms commonly used in
rodent models of addiction, such as the lever press, analysis of simple behaviors such
as voluntary consumption are an equally effective measure of hedonic value [197]. The
decrease in complexity of behavioral assays in flies is directly related to the increase in speed,
simplicity, and throughput of functional genetic experiments that make Drosophila such a
powerful model organism. The benefits of this model are especially relevant to the study
of complex polygenic disorders such as addiction, which are difficult to study in human
populations. While the heritability of risk genes for the development of addiction has been
established with family studies and genome-wide association studies (GWAS), it is difficult
to collect enough human data to identify all of the genes involved in psychostimulant abuse.
In addition solving the problem of sample size, tools such as the Drosophila melanogaster
Genetic Reference Panel (DGRP) enable characterization of the relationship between genetic
variation and quantitative traits [198]. The DGRP is used for mapping quantitative trait
loci (QTLs) associated with various psychostimulant phenotypes among a population of
192 inbred strains that provide a representative pool of naturally occurring genes [198].

The DGRP has been used to study the genetic basis of variation in cocaine and metham-
phetamine consumption in a 2-choice CAFE [93]. Voluntary consumption, preference, and
experience-dependent changes in voluntary consumption or preference were found to be
significantly influenced by large polygenic gene networks both distinct and shared between
cocaine and methamphetamine. Specific groups of genes were identified in relation to
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consumption, preference, and the effect of exposure on consumption and preference. Genes
underpinning variation in responses related to sexual dimorphism were also identified.
Additionally, analyses of consumption behavior for each drug were performed to identify
interactions between exposure, sex, and solution preference. A total of 1358 candidate genes
were identified across all networks, with a significant network of 81 shared candidate genes
for all traits combined [93]. The network of candidate was validated with a series of RNAi
experiments. First, in 34 selected candidate genes with a weak, ubiquitous GAL4 driver,
which produced an effect on at least one measure of consumption for each gene. Then
again, using neuron and glial specific drivers, to knockdown the 10 genes that displayed
the strongest phenotype among the 34 analyzed in the first round of RNAi. All of the
tested genes had a significant effect on at least on measure of consumption, highlighting
the capability of Drosophila in effectively identifying genes the determine consumption and
preference for psychostimulant drugs [93].

A similar experiment was performed to identify the genetic basis of variation in cocaine
and methamphetamine consumption in single-fly CAFE assays with 18,000 individuals flies
generated from an outbred advanced intercross population (AIP) derived from 37 highly
diverse, fully sequenced inbred lines from the DGRP [92]. This design maximizes genetic
variability to provide more precise estimates of QTL. In contrast to the previous screen,
flies in this assay were only offered one feeding solution, restricting analysis to voluntary
consumption, and the change in voluntary consumption over time. Similar analyses were
performed to identify gene networks associated with phenotypic difference in consumption,
relative change in consumption over time, and variation in responses related to sexual
dimorphism. A total of 1962 candidate genes were identified, and 22 were validated using
RNAi, 17 of which influenced consumption of methamphetamine or cocaine. In addition
to plausible technical issues such as functional redundancy or weakness of the driver
for RNAi, one explanation for the lack of effect in all 22 genes could be the inability of
candidate-based RNAi validation to recapitulate variability that might arise from intergenic
regions of DNA. Therefore, a single nucleotide polymorphism-based validation was used
to isolate the two alleles from the AIP that caused high and low consumption, respectively,
in a shared genetic background to test the effect of intragenic and intergenic, naturally
occurring SNPs on consumption. Using this method, an effect was observed for all but one
candidate SNP. This not only highlights the power of Drosophila in performing unbiased
screens genes that regulate psychostimulant consumption, but also demonstrates the ability
to identify the contribution of common intergenic SNPs—analogous to many human SNPs
associated in various GWAS analyses—to phenotypic variation.

One question that is not possible to investigate in human studies is what genes are
transcriptionally regulated in response to acute psychostimulant drug exposure. Analysis
of single-cell transcriptional responses in psychostimulant-exposed flies enables investiga-
tion of this question at scale and resolution that is not feasible in other models organisms.
To characterize the impact of cocaine on transcriptional response, 114 female along with
128 male flies were selected for analysis after ingesting equal amounts of cocaine solution,
and similar number of control flies were selected after ingesting an equivalent volume of
sucrose [199]. The acute behavioral effects of cocaine were analyzed by measuring effects on
locomotion, impairment of negative geotaxis, startle response, and seizure activity. An anal-
ysis of single-cell transcriptional responses revealed 691 and 322 differentially expressed
genes in males and females, respectively. These genes were segregated into 36 distinct
clusters based on expression profiles. The results indicate the single-cell transcriptional
response to cocaine is sexually dimorphic, influences a large range of cellular processes,
induces significant responses in neurons of the mushroom body to include transcription of
signaling genes as well as regulators of dopaminergic neurotransmission, and impacts tran-
scription of several genes in glia including those involved in blood–brain barrier regulation.
Importantly, different clusters of brain cells reveal distinct suites of cocaine-regulated genes,
indicating cell-type specific consequences of acute drug exposure. Sixty-nine percent of
the genes involved in the transcriptional response to cocaine in Drosophila have human
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orthologues, and several of the identified genes are known to play a role in cocaine response
in humans [199]. The identification of genes with an established role in reward, addiction,
and cocaine response in humans highlights the potential for identifying novel genes that
are transcriptionally regulated by psychostimulants of abuse using Drosophila.

With the increasing accessibility of high-throughput sequencing techniques, multi-
ple methods of genetic analysis might be combined to identify novel genes involved in
response to psychostimulant. The recent experiments using AIPs generated from inbred
lines of the DGRP exemplify the capability of Drosophila in unveiling novel regulators
psychostimulant response, demonstrating how flies can be used to identify the genes that
regulate psychostimulant response in complex polygenic disorders such as addiction and
ADHD [90,91]. These screens are leading examples of the speed and throughput Drosophila
offers, enabling analyses that would be prohibitive in a mammalian model organism. Simi-
lar utility is showcased in analysis of single-cell transcriptional response to cocaine [199].
While these studies are leading the field in characterizing the genetic basis of psychostimu-
lant response, they are the only examples of high-throughput screens for novel genes, and
there is significant opportunity for future replication and mechanistic investigation.

5. Future Directions

Drosophila is in the evolving stages as a model for studying the biological basis of
response to psychostimulant drugs of abuse, but has unparalleled potential for identifying
novel genes and molecules with an efficiency that could not be achieved in other models.
Genetic and behavioral accessibility of Drosophila contribute to flexible manipulation of
genes in high-throughput experiments that recapitulate many of the complex behavioral
responses observed in humans. There are over 200 human disease models in Drosophila,
including diseases that respond to psychostimulant treatment such as ADHD and ASD.
Additionally, Drosophila is a powerful translational model for studying addiction, and have
proven successful in identifying genes that regulate alcohol consumption in humans. In
contrast to the substantial amount of research on AUD in flies, there are still relatively few
studies on psychostimulant response. The majority of psychostimulant experiments in
Drosophila focus on sensitivity to motor-activating or motor-inhibiting drug effects, and the
development of behavioral sensitization. While these assays of sensitivity and sensitization
have been used for more than 20 years [62,63], studies involving self-administration are
relatively new. Regarding studying of the effects of psychostimulants on attention-like
processes, the optomotor maze along with the flightless arena are significantly involved
and low throughput. There is, therefore, an opportunity window to optimize the current
assays to improve the study of psychostimulant responses in Drosophila.

In the context of addiction, several newer assays of consumption and preference such
as the Fly Liquid-Food Interaction Counter [200] and Fly Liquid-Food Electroshock Assay
(FLEA) [201] provide improvements in automation for acquisition as well as analysis of
behavior, enabling comprehensive tracking of experience dependent changes in response.
Both the FLIC and the FLEA support high-throughput continuous monitoring of behaviors
indicative of consumption and preference. Additionally, the FLEA supports the pairing
of a punishing electric shock with a food source, which allows analysis of persistence of
voluntary consumption or preference in the presence of aversive stimuli. This experimental
design provides an opportunity to model important features of human addiction such as
continued drug use in spite of negative consequences. The punishing shock could also
be used to examine drug-induced changes in delay-discounting, another endophenotype
important for understanding substance abuse.

These assays can also be used to investigate the mechanisms of psychostimulant re-
sponse in ADHD models. While psychostimulant medication is effective in ameliorating the
cognitive and behavioral deficits associated with ADHD, the mechanism of this behavioral
response is poorly understood. The unbiased generation of candidate genes that impact
psychostimulant response from screens using AIPs of the DGRP [92,93] provide a pool of
putative genes that might also contribute the pathogenesis of ADHD. Similarly, an analysis
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of single-cell transcriptional responses to both cocaine [199] and methylphenidate [17] en-
ables clustering of transcriptional profiles that could provide information on the circuits and
pathways are activated by psychostimulant drugs in wild-type flies. Replicating the same
experiment with mutant Drosophila that display behavioral features of ADHD [101,105,121]
would allow comparison of transcriptional responses and the clustering of transcriptional
profiles comparing ADHD-related and control flies. Analysis of changes in transcriptional
response between ADHD-phenotypes might provide correlative data associating pheno-
type severity with clustering of transcriptional profiles. This representation could provide
an innovative way to identify disease related patterns of transcriptional regulation. This
data might be especially relevant for disorders such as ADHD and ASD, where deficits
occur on a spectrum, with some impairments resulting from cumulative deficits between
and within neurological circuits.

In examining the use of Drosophila to study behavioral responses to psychostimulant
drugs we have shown several ways that flies can provide new insights into the biological
basis of psychostimulant addiction. Additionally, we have reviewed how Drosophila is
an effective model organism for identifying genes that impact the therapeutic efficacy
of psychostimulant drugs. Together, the implementation of improved behavioral assays
combined with high-throughput next generation analysis methods will help identify the dis-
tinct gene networks and mechanisms that mediate psychostimulant responses in Drosophila
models of ADHD, ASD, and substance abuse. Due to the translatability of Drosophila
research, these experiments have the potential to uncover novel druggable targets relevant
for human therapeutics.
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