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Mediation analysis investigates the intermediate mechanism through which an exposure exerts its influ-
ence on the outcome of interest. Mediation analysis is becoming increasingly popular in high-throughput
genomics studies where a common goal is to identify molecular-level traits, such as gene expression or
methylation, which actively mediate the genetic or environmental effects on the outcome. Mediation
analysis in genomics studies is particularly challenging, however, thanks to the large number of potential
mediators measured in these studies as well as the composite null nature of the mediation effect hypoth-
esis. Indeed, while the standard univariate and multivariate mediation methods have been well-
established for analyzing one or multiple mediators, they are not well-suited for genomics studies with
a large number of mediators and often yield conservative p-values and limited power. Consequently, over
the past few years many new high-dimensional mediation methods have been developed for analyzing
the large number of potential mediators collected in high-throughput genomics studies. In this work,
we present a thorough review of these important recent methodological advances in high-dimensional
mediation analysis. Specifically, we describe in detail more than ten high-dimensional mediation meth-
ods, focusing on their motivations, basic modeling ideas, specific modeling assumptions, practical suc-
cesses, methodological limitations, as well as future directions. We hope our review will serve as a
useful guidance for statisticians and computational biologists who develop methods of high-
dimensional mediation analysis as well as for analysts who apply mediation methods to high-
throughput genomics studies.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
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1. Introduction

Advances of various high-throughput biological technologies
have revolutionized the field of genomics. In particular, both
array-based and sequencing-based techniques have enabled geno-
mics studies to be performed at the genome-wide scale [1–11],
providing unprecedented insights into many fundamental biologi-
cal questions that are previously impossible to address [7,12–18].
These genomics studies produce various molecular-level traits by
measuring gene expression profiles and characterizing different
covalent modifications of DNA and histone proteins. The
molecular-level traits, including both expression and methylation,
have been revealed to mediate the effects of DNA, environments
and/or behaviors on many diseases and traits [5,19–31], and hold
the key to understanding the genetic and environmental founda-
tions of disease susceptibility and phenotypic variation.

As one example, genome-wide association studies (GWASs)
have recently identified hundreds of thousands of genetic loci asso-
ciated with complex diseases and traits, but most of the discovered
genetic variants are located outside protein-coding regions and are
of unknown functions [7,13,14,32]. It has been hypothesized that
genetic associations with diseases in many cases might be medi-
ated at the epigenomic level through molecular-level traits
[33,34]. Evidence that supports the mediating role of molecular-
level traits includes differential gene expression analyses which
(A) Citations of the Baron-Kenny’s 1986 classical mediation analysis article in
ical research areas. (B) Word cloud shows the key words of the names of journ
ical research displines which employ various mediation methods.
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have detected plentiful associations between expressions and dis-
ease status [35–37], and expression quantitative trait loci (eQTL)
mapping studies, as well as allelic specific expression analyses
which have detected associations between expressions of specific
transcripts with individual genetic alleles [38,39]. Evidence also
includes other genomics studies which have identified differen-
tially methylated GpG sites or regions with respect to disease sta-
tuses [35,40] and have linked differences in methylation to specific
genetic alleles [41]. Therefore, mounting evidence suggests that
the molecular-level traits such as expression and methylation
can mediate the genetic effects on disease susceptibility.

As another example, many epidemiological studies have also
been performed to elaborate the environmental and socioeco-
nomic basis of disease susceptibility. It has been well established
that socioeconomic indicators (such as education, income, wealth,
and occupation) and overall socioeconomic status (SES)/position
(SEP) are associated with cardiovascular disease (CVD) risk [42–
47]; such that CVD incidence, prevalence and mortality are all
higher in persons with lower socioeconomic status. The effects of
these socioeconomic factors are also confirmed to be mediated,
as least in part, through molecular-level traits including methyla-
tion, as socioeconomic status/position are associated with changes
in DNA methylations [26,48–52], which in turn are also related to
CVD risk [53,54]. Therefore, integrating various molecular-level
traits from omics studies with data from either GWASs or epidemi-
terms of PubMed retrieval, which reflects the popularity of mediation analysis in
als that published articles citing the Baron-Kenny’s work, reflecing the diversity of
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ological studies has become an important topic in the genomics
era. Such integrative analysis can improve our understanding of
the molecular basis of complex diseases and traits. Indeed, treating
molecular-level traits as mediators and evaluating how they medi-
ate the genetic or socioeconomic effects on disease susceptibility
or phenotypic variation has become an important first step
towards better characterization of disease etiology and phenotypic
distinction [55–63].

Mediation analysis is a contemporary statistical method that
can be employed to elucidate the mediating role of various
molecular-level traits in genomics. Conceptually, mediation analy-
sis aims to investigate how an intermediate variable, commonly
referred to as a mediator, explains the mechanism or pathway
through which an exposure affects an outcome [64,65]. The rudi-
mentary idea of mediation analysis can be at least dated back to
Woodworth’s stimulus–response model in dynamic psychology
in 1928 [66] and Wright’s path analysis in statistics in 1934 [67].
Since Baron and Kenny (1986) [68] established the classical statis-
tical formula for mediation analysis, there is a tremendous growth
in both methodological development and applications of media-
tion methods over the past two decades (Fig. 1A), across a wide
variety of research areas (Fig. 1B). Mediation analysis is now being
routinely carried out in the fields of psychology [69–71], sociology
[65,72,73], epidemiology [74–77], environmental science [19],
genetics [78–84], and appears in a substantial proportion, some-
times more than a third, of research articles published in many dis-
ciplines [69,85]. Various mediation analyses performed thus far
have helped establish the foundation of many important psycho-
logical and sociological theories. Overall, mediation analysis has
become an effective statistical tool for understanding the causal
and mediating mechanism underlying the exposure effect on the
outcome across a wide range of applications [64,65].

Detailed statistical methodology for mediation analysis is gen-
erally constructed under the counterfactual framework, which is
also known as the potential outcome framework or Rubin’s model
[64,65,86–92], developed in the field of causal statistical inference.
The counterfactual framework facilitates methodological estab-
lishment for mediation analysis to accommodate different out-
Fig. 2. Timeline of several key mediation methods developed over the years. Orange col
color represents classical mediation methods developed for univariate and multivariate
targeted for a large number of potential mediators. HIMA: high-dimensional mediation a
test. (For interpretation of the references to color in this figure legend, the reader is refe
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come types that include continuous [64,65,69,70], binary
[76,88,93] and survival outcomes with censoring [74,80,92,94–
96], as well as to account for possible interactions between expo-
sure and mediator [64,88]. Under the counterfactual framework,
mediation analysis makes further modeling assumptions to effec-
tively represent the relationship among the exposure, mediator,
and outcome through a directed acyclic graph that links the expo-
sure to the outcome through the mediator (see below) [97,98].
Mediation analysis then proceeds by decomposing the total effect
of the exposure on the outcome into two parts: a direct effect,
which represents the exposure on outcome effect not mediated
through the mediator; and an indirect effect, which represents
the exposure on outcome effect mediated through the mediator.
Decomposition of the total effect allows for a mechanistic charac-
terization of the exposure effect on the outcome, facilitating the
investigation of causal mediating role of the mediator.

Methodological development for mediation analysis in the past
three decades has been primarily focused on univariate mediation
analysis where only one mediator is present or multivariate medi-
ation analysis where a few mediators are present [64,65,69,70].
Methods for univariate and multivariate mediation analyses have
been thoroughly reviewed by multiple excellent review articles
[64,69–72,75,85,87,99–106], which describe at length the identifi-
cation, estimation, inference, decomposition and explanation of
causal effects in various application fields
[65,68,70,85,86,107,108]. Unfortunately, it has become increas-
ingly challenging and often infeasible to directly apply them
towards the large and complex data collected in genomics due to
several reasons listed as follows [78,79,81,109]. First, the number
of potential mediators in the form of molecular-level traits col-
lected in high-throughput genomics studies is in general large,
often in the order of thousands to hundreds of thousands, exceed-
ing the collected sample size and thus the capacity accommodated
by the univariate and multivariate mediation analyses. For exam-
ple, the Illumina Infinium HumanMethylation450 BeadChip can
array approximately half a million GpG sites but the sample size
in methylation studies is typically restricted to be at most a few
hundreds or thousands due to heavy experimental costs
or represents initial methods with rudimentary ideas for mediation analysis. Green
mediation analysis. Yellow color represents high-dimensional mediation methods
nalysis, BAMA: Bayesian mediation method, DACT: divide-aggregate composite-null
rred to the web version of this article.)



Fig. 3. Directed acyclic graph depicting the relationship among an exposure (X), a mediator (M) or multiple mediators (M = (M1, . . ., Mm)), and an outcome (Y) in the classical
mediation analysis. (A) Relationship between the exposure and the outcome, without considering the mediator. Here, c is the total exposure effect on outcome. (B)
Relationship between the exposure, the mediator, and the outcome. Here, c0 is the direct effect of exposure on outcome, a is the exposure effect on the mediator, and b is the
mediator effect on the outcome. The product of a and b (i.e., ab) represents the indirect/mediation effect. (C) Relationship between the exposure and the outcome with
multiple mediatorsM = (M1, . . .,Mm). Here,m is the total number of potential mediators; a = (a1, . . ., am) is a vector of exposure effects on the mediators; and b = (b1, . . ., bm) is a
vector of mediator effects on the outcome. The product of a and b (i.e., aTb) represents the indirect/mediation effects.
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[78,79,81,109]. Second, genome-wide genomics studies are gener-
ally interested in identifying among a large number of potential
mediators the ones which exhibit non-zero mediation effects.
While univariate mediation methods can perform hypothesis test
to examine one potential mediator at a time [70], these methods
are often overly conservative and do not fare well for large-scale
multiple testing tasks [78,79,81,109]. In particular, the univariate
mediation methods rely on asymptotics for hypothesis testing
and do not directly accommodate for the composite nature of the
null hypothesis as will be detailed below. Third, the potential
mediators in genomics are often correlated with each other, some-
times quite strongly. For example, methylation measurements on
proximal CpG sites are generally similar to each other and genes
in the same pathway also show coordinated co-expression pattern
[110]. However, existing univariate and multivariate mediation
methods do not explicitly model correlation among potential
mediators. Altogether, the above new challenges brought by
high-throughput genomics have motivated the intense recent
development of high-dimensional mediation methods that aim to
accommodate a large number of potentially correlated mediators
[78,79,81,82,96,109,111–115].

Here, we present a thorough literature review on statistical
methods that have been developed in recent years for performing
high-dimensional mediation analysis in high-throughput genomics
studies. A timeline of these methods is shown in Fig. 2. In the
review, we begin with the classical univariate and multivariate
mediation methods to setup notations and basic statistical formula
for mediation analysis. These classical methods include the uni-
variate Baron-Kenny linear mediation model and its extensions
to multiple mediators. There, we will introduce the basic concepts,
modeling assumptions, effect estimation and decomposition, infer-
ence, and significance test for mediation analysis. We will then
review recently developed high-dimensional mediation methods
for genomics studies that can model thousands of correlated medi-
ations jointly or perform hypothesis tests that can account for the
composite nature of the null hypothesis. We discuss their detailed
modeling assumptions, important methodological benefits, as well
as potential practical drawbacks. We finally conclude our review
with future directions for high-dimensional mediation analysis.
2. Modeling framework for univariate mediation analysis

We first describe the classical univariate mediation analysis
framework [64,65,68,86,101,116], also known as Baron-Kenny
mediation model [68]. This classical mediation model describes
3212
the relationship among a triplet that includes an exposure variable
(X), a continuous mediator variable (M), and a continuous outcome
variable (Y) (Fig. 3A and 3B)

exposure� outcome mod el Y ¼ X � c þ UX þ eX
exposure�mediator mod el M ¼ X � a þ UM þ eM

mediator � outcome mod el Y ¼ X � c0 þ M � b þ UXM þ eXM

8><
>:

where c is the total exposure effect on the outcome; a is the
exposure effect on the mediator; c0 is the direct exposure effect
on the outcome after controlling for the mediator; b is the media-
tor effect on the outcome; UX, UM and UXM are confounding effects
from known covariates; and eX, eM and eXM are residual errors that
are mutually independent of each other. For simplicity of presenta-
tion, we assume that the mediator and the outcome are standard-
ized to have mean zero, thus ignoring the intercept terms in the
above models.

These effects (i.e., a, b, c and c0) in model can be interpreted in a
causal way when the mediation model is correctly specified and
certain identifiability assumptions are satisfied [75,85,86]. The
required identifiability assumptions are known as the sequential
ignorability assumptions and are sometimes also referred to as
the no unmeasured confounding assumptions. In particular,
besides the implicit assumption of temporal ordering between
the exposure, mediator and outcome, we assume that all con-
founders in the three equations are correctly controlled for and
that no confounders affecting both the mediator and the outcome
are affected by the exposure [72,78,101,103,104]. While some of
these assumptions can be enforced in observational studies, some
of them cannot [72,117–119]. For example, it is sometimes feasible
to control for unmeasured confounders in the exposure-mediator
model and in the exposure-outcome model through randomizing
the exposure. However, it is challenging to randomize the mediator
to control for confounders in the mediator-outcome model. Never-
theless, mediation analysis methods can still be applied for screen-
ing purposes, identifying potential biomarkers and genetic regions
for further exploration, even when the above causality conditions
are not completely satisfied.
3. Extensions of the univariate mediation analysis

The univariate mediation model in has been extended to
accommodate a binary mediator and/or a binary outcome
[76,88,93]. In this case, a logistic regression model is applied in
place of the corresponding linear regression to model the



Fig. 4. Possible relationships among the exposure (X), outcome (Y), and two ordered mediators (M1 and M2). (A) Only the direct effect from the exposure to the outcome is
present; neither M1 nor M2 has a mediating role. (B) The indirect effect of the exposure is mediated byM1 only. (C) The indirect effect of the exposure is mediated byM2 only.
(D) The indirect effect of the exposure is mediated by M1, followed by M2. The case where the indirect effect of the exposure is mediated by M2 followed by M1 is not
displayed. In all panels, the solid line stands for the presence of a relationship while the dot line stands for the absence of a relationship. Here, we ignore the residual terms
that are shown in Fig. 3.
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exposure-mediator and/or the mediator-outcome relationship. The
univariate mediation model has also been extended to accommo-
date interactions between the exposure and the mediator by add-
ing an interaction term to the mediator-outcome model [75,88]. In
addition, the univariate mediation model has been generalized to
accommodate multiple mediators [77,111,120–122]. With m con-
tinuous mediators M = (M1, . . ., Mm) (Fig. 3C), the relationship
among the exposure, mediators and outcome can be characterized
by the following equations

exposure � outcome mod el Y ¼ X � c þ UX þ eX
exposure �mediator mod els Mk ¼ X � ak þ UM þ eM ; k ¼ 1; :::; m
mediator � outcome mod el Y ¼ X � c0 þ Mb þ UXM þ eXM

8><
>:
where a = (a1, . . ., am) is the m-vector of the exposure on mediator
effects; and b = (b1, . . ., bm) is the m-vector of the mediator on out-
come effects. The multivariate mediation model defined in equation
can easily accommodate binary mediators and/or binary outcome
through logistic regressions. The model effectively treats all media-
tors en bloc, where the indirect effect is defined as the exposure on
outcome effect mediated through at least one of the mediators
while the direct effect is defined as the exposure on outcome effect
acting around all mediators [64,65].

The model is not the only multivariate mediation extension.
Indeed, other than treating all mediators en bloc, one can also
attempt to incorporate the ordering of mediators into considera-
tion and decompose the total exposure on outcome effect as the
sum of separate effects along each possible pathway that consists
of a set of ordered mediators [77,121]. An example of the relation-
ship among the exposure, outcome and two ordered mediators is
displayed in Fig. 4. If the detailed ordering of the mediators and
their relationship with respect to the exposure and outcome is
known, one can perform proper decomposition of mediation effect
and potentially interpret the causal mediation effect under the
counterfactual framework. Certainly, the ordering of potential
mediators is generally unknown in most genomics studies, making
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the causal interpretation of the mediation estimation challenging.
In addition, exploring the exponential number of possible order-
ings among mediators can quickly become computationally infea-
sible in high-dimensional settings.

Fig. 1. (A) Citations of the Baron-Kenny’s 1986 classical media-
tion analysis article in terms of PubMed retrieval, which reflects
the popularity of mediation analysis in biomedical research areas.
(B) Word cloud shows the key words of the names of journals that
published articles citing the Baron-Kenny’s work, reflecing the
diversity of biomedical research displines which employ various
mediation methods.

Fig. 2. Timeline of several key mediation methods developed
over the years. Orange color represents initial methods with rudi-
mentary ideas for mediation analysis. Green color represents clas-
sical mediation methods developed for univariate and multivariate
mediation analysis. Yellow color represents high-dimensional
mediation methods targeted for a large number of potential medi-
ators. HIMA: high-dimensional mediation analysis, BAMA: Baye-
sian mediation method, DACT: divide-aggregate composite-null
test.

Fig. 3. Directed acyclic graph depicting the relationship among
an exposure (X), a mediator (M) or multiple mediators (M = (M1,
. . ., Mm)), and an outcome (Y) in the classical mediation analysis.
(A) Relationship between the exposure and the outcome, without
considering the mediator. Here, c is the total exposure effect on
outcome. (B) Relationship between the exposure, the mediator,
and the outcome. Here, c0 is the direct effect of exposure on out-
come, a is the exposure effect on the mediator, and b is the medi-
ator effect on the outcome. The product of a and b (i.e., ab)
represents the indirect/mediation effect. (C) Relationship between
the exposure and the outcome with multiple mediators M = (M1,
. . ., Mm). Here, m is the total number of potential mediators; a =
(a1, . . ., am) is a vector of exposure effects on the mediators; and
b = (b1, . . ., bm) is a vector of mediator effects on the outcome.
The product of a and b (i.e., aTb) represents the indirect/mediation
effects.
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4. Partition of total effect: Natural direct effect and natural
indirect effect

As brought up earlier, the total effect (TE) of the exposure on the
outcome can be partitioned into two parts: the natural direct effect
(NDE) and the natural indirect effect (NIE); the latter is also known
as the mediation effect. The partition of total effect is formally
derived under the counterfactual framework [64,65,86–92]. Con-
ceptually, NDE quantifies how much the outcome will change on
average when the exposure changes from x0 to x1 but the mediator
is fixed at the level it would be in the absence of the exposure. NIE
measures howmuch the outcome will change on average when the
exposure is controlled at the level of x1, but the mediator changes
from the level it would be at the exposure level of x0 to the level it
would be at the exposure level of x1. TE quantifies how much the
outcome will change overall for a change of the exposure varying
from x0 to x1. In the univariate mediation model with the absence
of the interaction effect, NDE equals to c0 while NIE equals ab if
assuming x1 = 1 and x0 = 0, which are exactly the same direct and
indirect effects obtained through the classical Baron-Kenny medi-
ation analysis [68].

One advantage of partitioning the total effect within the coun-
terfactual framework is that the equation of TE = NDE + NIE holds
regardless whether the relationship among exposure, mediator
and outcome is linear or non-linear, and regardless whether there
is a presence or absence of exposure-mediator interactions. The
definition of NDE and NIE in non-linear mediation models for a
binary mediator/outcome is also well studied in the literature
[72,75,76,88,100,103]. There, the mediation effect is no longer in
a simple product form when the outcome is binary as the
exposure-outcome model and the mediator-outcome model are
both expressed as logistic regressions [93,123–125]. However, an
approximation exists. That is, in the mediation analysis with a bin-
ary outcome, in the absence of the interaction effect, one can adopt
the approximate log-scale formula to express the log transformed
NIE as log(NIE)�ab, which is an effective approximation when the
binary outcome is rare in the population [75,76,81].

During the partitioning of the total effect, one can also calculate
two ratio quantities: the ratio of the mediation effect to the total
effect, PM = h/c = ab/(ab + c0), which quantifies the proportion of
the exposure effect on the outcome mediated by the mediator;
and the ratio of the mediation effect to the direct effect, PD = h/
c0=ab/c0, which quantifies the relative strength of the direct and
indirect effects [101,126]. These ratio quantities are defined on
the latent variable scale when the outcome is binary [127–130].
A potential drawback of the two quantities is that they can only
be estimated accurately when the sample size is large (e.g.,
>5000 as demonstrated by simulations in [126]) and are only
meaningful when ab and c (or c0) have the same sign. When ab
and c (or c0) have the opposite signs, the two ratio quantities
may exceed 100% or become negative, making interpretation chal-
lenging [126]. Therefore, PM and PD are only recommended to be
reported in practical mediation analysis when the calculated val-
ues are reasonable [71,85,131].
5. Methods for testing mediation effect in univariate mediation
analysis

5.1. Testing for mediation effect and the composite nature of the null
hypothesis

The significance test of the mediation effect, commonly referred
to as the mediation test, is of great scientific interest in many appli-
cation areas. Baron and Kenny (1986) [68] initially advocated on
carrying out the mediation test in a four-step procedure, where
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the next test step is proceeded only when the test in the previous
step is significant. The four steps include: (i) test whether there is a
presence of a non-zero total effect (H0: c = 0) in the exposure-
outcome model; (ii) test whether the exposure is associated with
the mediator (H0: a = 0) in the exposure-mediator model; (iii) test
whether the mediator is associated with the outcome after control-
ling for the direct effect of the exposure (H0: b = 0) in the mediator-
outcome model; and (iv) test whether the mediator fully mediates
the exposure on outcome effect (H0: c0=0).

Because the four-step procedure requires a series of statistical
tests that each has a different statistical power, its results from dif-
ferent steps are not always consistent with each other [69,70]. For
example, when the direct effect c0 is in the opposite sign of the
indirect effect ab and both effects are comparable to each other
in magnitude, it is possible that the total effect c is not significantly
different from zero but the direct effect c0 is, resulting in suppres-
sion or inconsistent mediation [70,71,88,132,133]. To avoid results
inconsistency, most studies have recommended on testing the
mediation effect directly through the null hypothesis H0: ab = 0,
based on steps (ii) and (iii) [71,88]. The last step of testing c0 can
sometimes also be beneficial as it facilitates the further interpreta-
tion of the mediation test results: complete or perfect mediation
occurs when c0=0 [68] while partial mediation occurs when c0–0
[68,70,88].

Direct hypothesis test on the mediation effect based on H0:
ab = 0, however, turns out to be challenging [70,78,81,109,112].
In particular, such test is complicated by the composite nature of
the null hypothesis, which corresponds to three sub-null scenarios

H0 ¼
H01 : a ¼ 0 and b – 0
H10 : a – 0 and b ¼ 0
H00 : a ¼ 0 and b ¼ 0

8><
>:

where H01 represents an absence of the exposure on mediator effect
but a presence of the mediator on outcome effect; H10 represents a
presence of the exposure on mediator effect but an absence of the
mediator on outcome effect; and H00 represents an absence of both
the exposure on mediator effect and the mediator on outcome
effect. Ignoring the composite nature of the null hypothesis testing
can lead to uncalibrated test statistics [70,78,81,109,112].

5.2. Sobel test

Many methods have been previously developed to evaluate the
mediation effect based on H0: ab = 0 [70,81,126]. Among them, the
Sobel test and the joint significance test (JST) are two most com-
mon ones, though both yield conservative p-values (more details
in Section 5.4). The Sobel test, also known as the product method,
assesses the mediation effect ab directly as a product of the expo-
sure on mediator effect and the mediator on outcome effect
[68,134]. The Sobel test depends on the following statistic

z ¼ âb̂
Sâb̂

; Sâb̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂
2
S2â þ â2S2b̂

r

where â and b̂ are the estimates of a and b obtained in the exposure-
mediator model and mediator-outcome model, respectively; Sâ and

Sb̂ are the corresponding standard errors; âb̂ is the point estimate of
mediation effect ab; Sâb̂ is the corresponding standard error
obtained through the multivariate delta method [68,123,134]; and
z is the resulting Sobel test statistic. The Sobel test assumes that
the test statistics z follows a standard normal distribution and
obtains a p-value from the z statistics accordingly. However, the
standard normal distribution is invalid even under H00 as the mul-
tivariate delta method to arrive at equation does not hold, implying
that the Sobel test is not appropriate under all null scenarios listed



Fig. 5. Distribution of the JST statistic (top: A-C) and the Sobel test statistic (bottom: D-F) under three sub-null scenarios. Simulations were performed based on model under
H00: a = 0 and b = 0 (A and D); under H10: b = 0, with a relatively weak exposure-to-mediator effect a = 0.05 (B and E); or under H10: b = 0, with a relatively strong exposure-to-
mediator effect a = 0.10 (C and F). In all scenarios, we set c0=0.50 and draw the exposure X and the residuals for the exposure-mediator model and the mediator-outcome
model from independent standard normal distributions. The sample size was set to 103. For each dataset consisting of simulated exposure, mediator, and outcome, we
separately estimated and inferred a or b in the exposure-mediator model or in the mediator-outcome model using the ordinary least squares estimation procedure.
Afterwards, we obtained â, Sâ and Pa as well as b̂, Sb̂ and Pb, based on which we obtained the Sobel test statistic and the JST statistic. In each simulation scenario we ran 104

replicates. The red dashed line in each panel represents the asymptotic distribution: uniform for A-C and standard normal for D-F. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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in (more details in Section 5.4). Other alternative formulas for com-
puting Sâb̂ also exist [126] and these include the second-order exact
solution [68,134,135] as well as the Goodman estimator [136].

It assumes that the Sobel z-statistic in asymptotically follows a
standard normal distribution and thus can be further converted to
a P value [68,134,137]. Confidence intervals for the mediation

effect estimate âb̂ can also be constructed under the same asymp-

totic normality assumption in the form of (âb̂ - 1:96Sâb̂,

âb̂þ 1:96Sâb̂). Because of the composite nature of the null, how-
ever, the asymptotic normality of the Sobel z-statistic is not guar-

anteed even when both â and b̂ respectively follow a normal
distribution. Indeed, simulations have shown that the symmetric
confidence intervals often generate asymmetric error rates and
are generally conservative, especially when the sample size and
mediation effect are small, resulting in uncalibrated type I error
control and reduced power [70,71,123].

5.3. Joint significance test

JST, also known as the causal path method or the maximum P-
value method, is another popular traditional mediation test [138].
JST proceeds by performing two separate tests: one for a in the
exposure-mediator model and the other for b in the mediator-
outcome model. Through the two tests, JST obtains two z-

statistics (za ¼ â=Sâ and zb ¼ b̂=Sb̂) and converts them into two P
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values (Pa and Pb) based on an asymptotic standard normal null
distribution. Afterwards, JST obtains the maximum value among
the two P values, Pmax = max(Pa, Pb), to serve as the mediation effect
test statistic [70]; then it deems the mediation effect to be signifi-
cant at a level a if and only if Pmax is significant at the level a (i.e.,
Pmax < a) [70,139,140]. JST is essentially an intersection–union test
(IUT) and a level-a test with type I error guaranteed to be at most
a. Due to the composite nature of the null, however, type I error
generated from JST is also conservative and equals a only under
certain regularity conditions [141–143].
5.4. Conservativeness of the Sobel test and the joint significance test

Extensive simulations have been previously conducted to assess
the performance of the Sobel test and JST under different sub-null
scenarios [70,81]. For JST, it has been shown that it is extremely
conservative under H00 as the true null distribution for Pmax is no
longer a uniform distribution there but skewed towards to one
(Fig. 5A). Indeed, Pmax follows Beta(2,1) under H00 [109]. In addi-
tion, the uniform distribution of Pmax under H01 or H10 holds only
under some regularity conditions (Fig. 5B-C). For example, the uni-
form distribution of Pmax holds under H10 only when the null
hypothesis testing of a = 0 against a– 0 is dominantly more pow-
erful as compared to the test of b = 0, which guarantees a Pa consis-
tently smaller than Pb [81,109,112]. For the Sobel test, it has also
been demonstrated that it is underpowered under H00 because



Table 1
Summary of statistical methods for mediation analysis in the presence of multiple or high-dimensional mediators.

First category: Mediation methods based on dimension reduction or mediator screening
Methods Test Statistics Null Distribution References

correlation-based method Pmax permutation [120]
Huang-Pan method marginal and component-wise ME based on PCA Monte Carlo (normal-based or

bootstrapping)
[122]

causal inference test (CIT) Pmax permutation [157]
direction of mediation PCA-based bootstrapping [158]
MCP-subset Pmax screening followed by multiple

comparison procedure
[106]

MCP-subset based on Westfall-Young Pmax screening followed by multiple
comparison procedure

[106]

MCP-subset based on multivariate Pmax screening followed by multiple
comparison procedure

[106]

HDMA Pmax screening followed by debiased estimation [159]
gHMA# ACAT combining gHMA-L and gHMA-NL screening followed by multiple

comparison procedure
[160]

global test + ScreenMin# Pmin followed by Pmax screening followed by multiple
comparison procedure

[161]

Second category: Mediation methods accounting for the composite nature of the null
Methods Test Statistics Null Distribution References
JTV-comp# mixture of multiple-mediator based P value without

estimating the proportions
composite null [79]

JT-comp mixture of single-mediator based P value without
estimating the proportions

composite null [78]

DACT mixture of single-mediator based P value with estimated
proportion

composite null [109]

JS-mixture mixture of single-mediator based P value with estimated
proportion

composite null [112]

Third category: Penalization-based mediation regression methods and Bayesian mediation methods
Methods Prior Effects Assumptions Optimization Procedure References
pathway Lasso penalization based method ADMM [162]
HIMA Pmax screening followed by minimax concave

penalty estimation
[111]

BAMA spike-and-slab prior MCMC [163]
BAMA with joint priors Gaussian mixture prior and, product threshold Gaussian

prior
MCMC [164]

BAMA with joint priors considering correlation
among mediators

the Potts prior and logistic normal prior MCMC [165]

Note: we focus primarily on methodological papers and have not listed applied work that employs mediation methods similar to these listed above (e.g., Wu et al. (2018)
[166], Luo et al. (2020) [96]). In addition, we only focus on methods that aim to detect active mediators and have not listed mediation methods for effect estimation and
decomposition (e.g., VanderWeele and Vansteelandt (2014) [77], Daniel et al. (2015) [121], Huang and Yang (2017) [92], Steen et al. (2017) [167], Taguri et al. (2018) [168],
Zhou et al. (2020) [115], and Zhao et al. (2020) [114]. ADMM: alternating direction method of multipliers; MCMC: Markov chain Monte Carlo; BAMA: Bayesian medaition
analysis method; gHMA: gene based high-dimensional mediation analysis; PCA: principal component analysis; MCP: multiple comparison procedure; DACT: divide-
aggregate composite-null test; HDMA: high-dimensional mediation analysis; ACAT: aggregated Cauchy association test. Above, # denotes a gene-centric mediation method.
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the null distribution of the Sobel test statistic does not follow a
standard normal distribution even with large sample sizes
(Fig. 5D) [70,78,81,126]. In addition, the Sobel test statistic follows
a standard normal distribution under H01 or H10 only when the
exposure on mediator effect size or the mediator on outcome effect
size is far from zero, respectively (Fig. 5E-F).

Because the asymptotic distribution for the Sobel test statistic
or JST statistic is challenging to obtain accurately in an analytic
form, various bootstrap sampling approaches, including paramet-
ric, nonparametric, and bias-corrected versions, have been
proposed to obtain their empirical null distributions
[71,140,144–150]. Constructing an empirical null distribution
through sampling has been shown to lead to accurate confidence
intervals and P value in certain settings but not all settings [81].
In addition, constructing the empirical null distribution remains
difficult if one does not know the accurate proportions of the three
sub-null scenarios [78,109]. We will discuss these details in the
high-dimensional mediation analysis section.
6. Mediation analysis approaches in the presence of high-
dimensional mediators

The univariate and multivariate mediation methods described
in the previous sections, unfortunately, are not directly applicable
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for performing mediation effect test in the presence of high-
dimensional mediators collected from high-throughput genomics
studies. In particular, when the number of mediators exceeds the
sample size (i.e., m�n), the multivariate mediation model defined
in becomes unidentifiable, making it infeasible to detect active
mediators through joint mediator modeling. In addition, examin-
ing one mediator at a time using the traditional univariate media-
tion model is not feasible either, as the P values from the univariate
methods are not calibrated due to the composite nature of the null
hypothesis. Because of these drawbacks of univariate and multi-
variate methods, many high-dimensional mediation methods have
been recently developed to model high-dimensional mediators
(Table 1). These recent mediation methods can be generally classi-
fied into three methodological categories. The first category of
mediation methods performs dimension reduction or mediator
screening on the high-dimensional mediators to extract a set of
low-dimensional variables. Afterwards, they directly apply stan-
dard univariate or multivariate mediation methods to these
extracted low-dimensional variables to detect active ones that
are involved in mediation. The second category of mediation meth-
ods examines either one or a few mediators that are within a geno-
mic testing unit (e.g., a gene) one at a time. However, different
from standard testing approaches, these new methods explicitly
account for the composite nature of the null mediation effect
hypothesis to obtain calibrated test statistics. The third category
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of mediation methods models all potentially mediators jointly in
the mediation model by specifying additional modeling assump-
tions on the mediator on outcome effects as well as on the expo-
sure on mediator effects to ensure model identifiability. We
describe the three categories of high-dimensional mediation meth-
ods in the following sections.

Certainly, one common challenge for all high-dimensional
mediation analysis methods is on establishing the causal interpre-
tation of mediation effect. Mediation effects in high-dimensional
mediation analysis can be causally interpreted when the required
sequential ignorability assumptions hold [78,79]. However, these
sequential ignitability assumptions can be generally challenging
to establish in practice as they require additional biological knowl-
edge. For example, to investigate the role of DNA methylations in
mediating the effect of smoking behavior on gene expression
[79], one needs to assume a priori that smoking can lead to methy-
lation alterations, which in turn can regulate gene expression
[151–154]. Such assumption may be violated as the expression of
certain genes can sometimes influence methylation, thus poten-
tially reversing the order of mediator and outcome. In addition,
due to the consequence of global epigenetic remodeling mecha-
nism [155,156], altered DNA methylation may simply represent a
passenger event rather than a mediation event. In particular, the
expression of key genes may influence the outcome directly while
at the same time affects DNA methylation at multiple CpG sites as
a by-product. Therefore, when studying the role of gene expression
in mediating the impact of DNA methylation on an outcome, it is
important to distinguish passenger methylation events frommedi-
ation methylation events that likely exert a direct or indirect effect
on the outcome. Distinguishing between passenger events and
mediation events will also require additional domain knowledge.

6.1. High-dimensional mediation methods based on dimension
reduction or mediator screening

The first category of methods attempts to apply multivariate
mediation methods directly on a suitable set of potential mediators
or a transformed version of mediators that have a dimensionality
below the sample size (Table 1). This category primarily includes
gene-centric methods such as gene high-dimensional mediation
analysis (gHMA) [160], principal component analysis (PCA) based
methods [122] as well as several mediator-screening based meth-
ods [111]. In brief, gHMA examines one gene at a time and perform
mediation analysis on the potential mediators that reside within
the examined gene together. Such gene-centric analysis limits
the number of analyzed potential mediators to be those within
the gene, thus making the standard multivariate mediation meth-
ods applicable. Alternatively, the PCA-based mediation method
aims to transform the original set of high-dimensional mediators
into a low-dimensional space and then analyzes the resulting
low-dimensional components using standard multivariate media-
tion analysis. Finally, a group of mediation methods perform vari-
able screening on mediators to select a subset of potentially active
mediator candidates. These methods then apply multivariate
mediation methods to analyze these mediator candidates. We
describe all these methods in detail below.

6.1.1. Gene-centric mediation methods
The gHMA method adapts linear or non-linear kernels to char-

acterize the relationship between multiple mediators and the out-
come [160]. Specifically, the linear-version of gHMA (gHMA-L)
examines one gene at a time and focuses on potential mediators
that reside in the gene. For the gene of interest, gHMA tests the sig-
nificance of the exposure on mediator effect (i.e., a in Equation) for
each mediator using a univarate mediation model and obtain a cor-
responding P value; then it combines the P values aross all media-
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tors in that gene using a new Fisher’s combination method that
accounts for correlation among P values [169]. Afterwards, gHMA
evaluates the significance of multiple mediator on outcome effects
(i.e., b in Equation) through the likelihood ratio test, and further
integrates the evidience of testing a and b through the same prin-
ciple of JST. Besides the linear version gHMA-L, gHMA also provides
an alternative version gHMA-NL that accommodates non-linear
relationship between the mediators and the outcome using kernel
principal components (KPC) [160]. The P values from the linear and
non-linear versions of gHMA can be further combined through the
ACAT (aggregated Cauchy association test) procedur to achieve
robust power across various application scenarios while account-
ing for positive dependence among test statistics of gHMA-L and
gHMA-NL [170,171].

6.1.2. PCA-based mediation methods
Huang and Pan (2016) [122] proposed to first transform the

potentially correlated mediators into independent ones based on
PCA. Afterwards, Huang-Pan’s method performs multivariate
mediation analysis on the resulting principal components using
Monte-Carlo resampling. Huang-Pan’s method of testing for mar-
ginal mediation effects is equivalent to the integrative statistical
framework proposed in Zhao et al (2014) [172]. A similar PCA-
based dimension reduction strategy was also applied for mediation
analysis in neuroimaging datasets [66]. While the dimension
reduction-based mediation analysis effectively addresses the high
number of potential mediators and the correlation among them,
it is not always easy to interpret the results from the subsequent
mediation analysis — after all, the transformed variables are a lin-
ear combination of the original mediators and may not have direct
biological interpretation. Subsequently, the PCA-based mediation
analysis [114] is recently extended to rely on sparse PCA [173]
for dimension reduction, which improves the interpretability of
the obtained principle components and subsequent mediation
analysis results.

6.1.3. Screening-based mediation methods
Finally, several mediation methods perform mediator screening

and include only potentially active mediators to the multivariate
mediation model for final analysis (Table 1). For example, borrow-
ing ideas in replicability analysis [174], Sampson et al. (2018) first
selected mediators that had potential mediating effects based on
the marginal mediator-outcome model [106]. The selected media-
tors were then analyzed in a multiple comparison procedure to
ensure correct control of familywise error rate (FWER) or false dis-
covery rate (FDR). Similar screening strategy is also employed by
the penalization-based mediation analysis in the third category
of high dimensional mediation methods discussed below.

6.2. High-dimensional mediation methods accounting for the
composite nature of the null hypothesis

The second category of high-dimensional mediation methods
perform hypothesis testing by examining one potential mediator
at a time (or a set of potential mediators within a testing unit,
one unit at a time) (Table 1). Different from standard univariate
methods such as the Sobel test or JST, however, these methods bor-
row information across all potential mediators to infer key param-
eters of the three sub-null scenarios as shown in , thus allowing for
the computation of calibrated P values. Calibrated P values from
these methods lead to correct type I error control across all poten-
tial mediators and are essential for detecting promising mediators
at the genome-wide significance threshold. Four methods belong
to this category, including JT-comp [78], DACT (divide-aggregate
composite-null test) [109], JS-mixture [112], and JTV-comp [79].
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The first three examine potential mediators one at a time, while
the last one is a gene-centric method.

6.2.1. JT-comp
JT-comp is the first method that attempts to accomodate the

composite nature of the null hypothesis for testing mediation
effect in high-dimensional setting [78]. JT-comp examines one
mediator at a time. For each mediator in turn, JT-comp calculates

two z-statistics (za ¼ â=Sâ and zb ¼ b̂=Sb̂) by performing two sepa-
rate tests: one for a in the exposure-mediator model and the other
for b in the mediator-outcome model. Afterwards, it derives the
null distribution of the product of za and zb by carefully examining
the two z-statistics under the three sub-null scenarios. Specifically,
under H01, za follows a standard normal distribution while zb fol-
lows a normal distribution N(lb,1) with the mean parameter lb

characterized by the mediator on outcome effect b. Under H10, zb
follows a standard normal distribution while za follows a normal
distribution N(la,1) with the mean parameter la characterized
by the exposure on mediator effect a. Under H00, both za and zb
asymptotically follow the standard normal distribution. Therefore,
one can compute the P value for the product of za and zb under H00

directly, though computing the P value under either H01 or H10

would require knowing la and lb which rely on the true effects
a and b. JT-comp overcomes the difficulty of unknown la and lb

by making additional assumptions on how they distribute across
all potential mediators. In particular, it assumes that la follows a
normal distribution N(0,sa) and lb follows another normal distri-
bution N(0,sb). Consequently, if sa and sb are known, then
zazb=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ sb

p
becomes a product of two independent standard

normal distributions under H01 and zazb=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ sa

p
becomes a pro-

duct of two independent standard normal distributions under
H10. As a result, one can obtain a P value under each of the three
sub-null hypotheses if sa and sb are given. If one knows further
the probability of each sub-null hypothesis, then one can compute
a final P value for testing H0: ab = 0 as [78]

Pab ¼ p00F zazbð Þ þ p01F za
zbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ sb
p

� �
þ p10F

zaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ sa

p zb

� �

where p01, p10, and p00 represent the probabilities of H01, H10, and
H00, respectively; FðzÞ ¼

R1
jzj f ðxÞdx is the right-sided tail probability

of a normal product distribution evaluated at point z, with f(x)
= K0(x)/p (-1<x<1) being the probability density function of the
normal product distribution and K0(x) being the modified Bessel
function of the second kind with order 0. Note that, computing
the P value based on requires estimating the two variance parame-
ters (sa and sb) and the three probability parameters (p01, p10, and
p00). Estimating these parameters individually through, for example
mixture modeling, may not be accurate. To circumvent the diffi-
culty of estimating each of these parameters individually, JT-comp
makes further modeling assumptions. In particular, it assumes that
sa and sb are relatively small and that the mediation signals are
sparse [78], so that the sample variance of za and zb across media-
tors, var(za) and var(zb), are related to the individual parameters
through var(za) = 1 + p10sa and var(zb) = 1 + p01sb. With these addi-
tional assumptions, JT-comp can now approximately compute the
final P value for each mediator through

PJT - comp � F za
zbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðzbÞ
p

 !
þ F

zaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðzaÞ

p zb

 !
- F zazbð Þ

Extensive simulations have shown that the JT-comp testing pro-
cedure described above is more powerful than JST and maintains
calibrated type I error control when the JT-comp approximation
assumptions hold [78]. A drawback of JT-comp, however, is that
it may fail to control for type I error well when the sample size
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is large (e.g., n > 500) and var(za) or var(zb) is>1.5 [78,109]. A large
sample size makes the two assumptions of JT-comp — small effect
sizes of a and b characterized by small sa and sb as well as the
sparse mediation effects — harder to satisfy in practice.

6.2.2. DACt
DACT is another mediation method that attempts to borrow

information across mediators to produce calibrated P values
[109]. Different from JT-comp, DACT relies on a modified test
statistic and directly estimates the proportions of the three sub-
null hypotheses across whole genome mediators. Like JT-comp,
DACT examines one potential mediator at a time and performs
the same two tests explained before: one for a in the mediator-
exposure model and the other for b in the outcome-mediator
model. Afterwards, DACT calculates two P values, Pa and Pb, from
these two tests based on asymptotic normality. Intuitively, Under
H01, if the mediator-to-outcome effect is non-zero (i.e., b– 0), then
one only needs to test H01: a = 0 and uses Pa for assessing the sig-
nificance of meditation effect. Under H10, if the exposure-to-
mediator effect is non-zero (i.e., a– 0), then one only needs to
evaluate test H10: b = 0 and uses Pb for evaluating meditation effect.
Under H00, the maximum P value of the two, Pmax, follows Beta
(2,1); thus P2

max follows a uniform distribution [109]. Taking these
together, DACT generates the P value for testing H0: ab = 0 as a
weighted summation of P values under the three sub-null
hypotheses

PDACT ¼ w01Pa þ w10Pb þ w00P
2
max

where the weights are given as

w01 ¼ ð1 � pb0Þpa0=-
w10 ¼ ð1 � pa0Þpb0=-
w00 ¼ ð1 � pa0Þð1 � pb0Þ=-
- ¼ pa0ð1 � pb0Þ þ ð1 � pa0Þpb0 þ ð1 � pa0Þð1 � pb0Þ

with pa0 and pb0 being the probabilities of H01 and H10, respec-
tively. The equation makes an implicit assumption that the effects
of a and b are independent of each other, such that the probability
of a = 0 is not influenced by b, and vice versa. Such independence is
guaranteed by the sequential ignorability assumptions described
before. DACT estimates pa0 and pb0 using novel methods that have
been well-established in prior FDR work [111,122,175–182], such
as Efron’s approach [183] using either the central matching
method [177] or the empirical characteristic function and Fourier
analysis [175]. DACT has been shown to be comparable to or more
powerful than JT-comp across various simulation scenarios [109]
and, in contrast to JT-comp, is not sensitive to sample size.

6.2.3. JS-mixture
JS-mixture is also a recent mediation method that is designed to

produce calibrated P values and bares some conceptual similarity
with JT-comp and DACT. JS-mixture aims to directly construct
the null distribution for the JST statistic, Pmax, to correct for its con-
servative type I error control [112]. Specifically, JS-mixture applies
JST to examine one potential mediator at a time and obtains the
maximum P value for the jth mediator as Pmax, j (j = 1, . . ., m); then
it estimates the proportions of the three sub-null hypotheses and
constructs a null distribution for Pmax, j through

PrðPmax; j 6 ujH0jÞ ¼PrðPa; j 6 ujH01; jÞPrðPb; j 6 ujH01; jÞPrðH01; jÞ
þPrðPa; j 6 ujH10; jÞPrðPb; j 6 ujH10; jÞPrðH10; jÞ
þPrðPa; j 6 ujH00; jÞPrðPb; j 6 ujH00; jÞPrðH00; jÞ
¼p01u01p01 þ p10u10p10 þ p00u01u10

u01 ¼PrðPa; j 6 ujH01; jÞ ¼ u

u10 ¼PrðPb; j 6 ujH10; jÞ ¼ u
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where p01, p10 and p00 are the proportions of the three sub-null sce-
narios; u is a given cut-off value for significance evaluation; p01 is
the probability/power of rejecting b = 0 under H01, j; and p10 is the
probability/power of rejecting a = 0 under H10, j. Both p01 and p10
can be estimated via the Grenander method [184]. When sample
size is large, equation can be further approximated by

PrðPmax; j 6 ujH0Þ ¼ p01u þ p10u þ p00u2 ¼ ðp01 þ p10ÞF1 þ p00F2

p01 ¼ PrðPb; j 6 ujH01; jÞn ! 1 ¼ 1
p10 ¼ PrðPa; j 6 ujH10; jÞn ! 1 ¼ 1

where F1 is the standard uniform distribution U(0,1); and F2 is a
right skewed distribution for the maximum of two independent
random variables drawn from the standard uniform distribution,
with a cumulative distribution function Pr(Pmax � u) = u2. It is easy
to see that JS-mixture given in becomes very similar to DACT
shown in under the case of large sample sizes, with the only differ-
ence being that JS-mixture controls FWER or FDR based on a newly
estimated significance rule while DACT directly controls FWER or
FDR based on the final weighted P values. The additional estima-
tion of power functions p01 and p10 in JS-mixture might lead to
higher statistical power compared to DACT which instead fixes
them to be one. The proportion parameters required in JS-
mixture can be also estimated with the same methods as used in
DACT [111,122,175–182].

6.2.4. JTV-comp
Unlike the three methods discussed above, JTV-comp [79] per-

forms the gene-centric mediation analysis by examining one gene
at a time and analyizng the mutiple mediators located within a
Fig. 6. Overall workflow for HIMA with screening and penalization-based selection on
techniques for preliminary screening to reduce the high-dimensionality of mediators to
and estimation for the remaining mediators to reduce dimensionality further (from d1 to
procedure, k is a tuning parameter determined by users.
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gene together. JTV-comp accounts for the composite nature of
the null hypothesis by making additional assumptions. Specifically,
JTV-comp treats the mediator effects as random effects and
assumes the exposure on mediator effect (i.e., a) and mediator on
outcome effect (i.e., b) for the kth mediator in a given gene follow
arbitrary dsitributions with mean zero and a variance being either
ja and jb, respectively [79]. That is
ak � Fað0;jaÞ; bk � Fbð0;jbÞ; k ¼ 1; :::; p

Because ja = 0 implies a = 0 and jb = 0 implies b = 0, testing
a = 0 and b = 0 can be translated into testing ja and jb, respec-
tively. By this way, JTV-comp therefore translates testing H0:
a = 0 or b = 0 into two variance component tests: a multivariate
variance component test on ja and a univariate variance compo-
nent test on jb. JTV-comp performs the variance component tests
based on score statistics [185–189] within the framework of kernel
machine learning [79,187,189]. Alternatively, JTV-comp can also
perform the variance component test on ja = 0 based on the
inverse regression framework [161]. With the variance component
tests, JTV-comp obtains two P values on testing ja and jb and con-
verts them into two z-statistics (z0a and z0b) using the probit func-
tion. With the transformed statistics z0a and z0b, JTV-comp
proceeds with the same procedure of JT-comp to perform hypoth-
esis tests [79]. Because JTV-comp relies on the same procedure of
JT-comp to account for the composite nature of the null, it has sim-
ilar advantages and limitations of JT-comp as mentioned in the
previous subsection.
mediators. HIMA includes the three main processes: (i) applying variable selection
tractable level (from m to d1); (ii) conducting penalization-based variable selection
d2); (iii) performing the joint significance test for mediation effects. In the screening
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6.3. High-dimensional mediation methods jointly modeling exposure
on mediator effects and mediator on outcome effects

The last category of high-dimensional mediation methods
directly models all mediators jointly. To account for the large num-
ber of mediators, these methods either penalize mediation effects
or specify particular priors on them to make the mediation model
identifiable. Two types of methods belong to this category:
penalization-based regression methods such as HIMA (high-
dimensional mediation analysis) [190] and pathway Lasso [162];
and Bayesian methods such as BAMA (Bayesian variable selection
mediation method) [163] and its extensions (Table 1). Both types
of methods can also rely on an initial screening procedure in the
mediator-outcome model to reduce the number of mediators to a
reasonable size before analyzing them collectively.

6.3.1. Penalization-based high-dimensional mediation methods
HIMA is one of the first penalization-based regression methods

for high-dimensional mediation analysis [111] and includes the
following three steps (Fig. 6). First, HIMA applies the sure indepen-
dence screening (SIS) [191,192] in the mediator-outcome model to
reduce the dimensionality of mediators from ultra-high to high.
This first step of HIMA can reduce the number of mediators from
m to d1 = [kn/log(n)], where k is assigned by the user. Second, HIMA
applies the multivariate mediator-outcome model to model the
selected candidate mediators together and relies on the minimax
concave penalty (MCP) [190] to shrink the mediator on outcome
effects towards zero

QMCP ¼ 1
2nðY � Xc0 � Pd1

j ¼ 1
Mjbj � UXMÞ

T

ðY � Xc0 � Pd1
j ¼ 1

Mjbj � UXMÞ

þ Pd1
j ¼ 1

k jbjj � jb2j j
2dk

� �
Ið0 6 jbjj 6 dkÞ þ k2d

2 Iðjbjj > dkÞ
� �

where k > 0 is the tuning parameter that controls the shrinkage and
d > 0 determines the concavity of MCP. By optimizing , HIMA can
select mediators that have non-zero mediator on outcome effects.
In particular, the P values of testing for b for mediators with non-
zero effects can be calculated as

Pbs ¼ 2 1�Uð jb̂sg
seðb̂sÞ

Þ
( )

; s 2 S2 ¼ fs : b̂s – 0g

where b̂s is the MCP estimate of bs and seðb̂sÞ is the corresponding
standard error obtained based on the oracle property of MCP
[190]. Besides b, HIMA also examines the mediator on outcome
effects a in the exposure-mediator model and obtains the corre-
sponding P values, Pas (s = 1, . . ., S2), based on the linear regression.
Finally, HIMA evaluates the significance of the mediation effect
using Pmax, s = max(Pbs, Pas) and adjusts for multiple comparisons
through Bonferroni correction. HIMA has been recently extended
to survival outcomes [96] and to yield unbiased mediator on out-
come effects with debiased Lasso [159].

The pathway Lasso is another penalization-based mediation
method [162], which imposes a convex Lasso-type penalty on the
mediation effects. In particular, the pathway Lasso attempts to
minimize the following penalized likelihood function

QpL ¼
Pm
j¼ 1

ðMj� XajÞ2 þ ðY� Xc0 � Pm
j¼ 1

MjbjÞ
T

ðY� Xc0 � Pm
j¼ 1

MjbjÞ
( )

þk1
Pm
j¼ 1

jajbjj þ /ða2j þ b2
j Þ þ jajj þ jbjj

n o

where /, k1 and k2 are tunning parameters. In the pathway Lasso,
the first penalty aims to shrink the mediation effect as the product
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of aj and bj, while the second term penalizes individual aj and bj. The
pathway Lasso applies the alternating direction method of multipli-
ers (ADMM) for parameter estimation [193]. By optimizing , path-
way Lasso can select active mediators with non-zero ajbj.

6.3.2. Bayesian high-dimensional mediation methods
BAMA is a Bayesian mediation method for selecting active

mediators [163]. BAMA specifies a Bayesian sparse linear mixed
model (BSLMM) prior [194], also known as the two-component
spike-and-slab prior [195], on both the exposure on mediator
effects and the mediator on outcome effects. The BSLMM prior
assumes that each effect for the jth mediator, aj or bj, follows a mix-
ture of two normal distributrions, one with a large variance and the
other with a small variance

aj � paNð0; ja1Þ þ ð1 � paÞNð0; ja0Þ
bj � pbNð0; jb1Þ þ ð1 � pbÞNð0; jb0Þ

�
; j ¼ 1; :::; m

where ja1 > ja0 and jb1 > jb0, and pa (or pb) denote the probability
that the effect belongs to the normal distribution with a larger vari-
ance. BAMA applies a Markov chain Monte Carlo (MCMC) sampling
algorithm to obtain posterior samples [163] and uses the posterior
inclusion probability (PIP) to select active mediators with both a
and b belonging to the large normal components.

Song et al (2020) [164] extended the separate priors on aj and bj
in BAMA towards joint modeling of both sets of effects. In particu-
lar, the authors depended on the four-component Gaussian mix-
ture model (GMM) developed in genome-wide association
studies [196] to decompose the exposure on mediator and media-
tor on outcome effects into four components

aj; bj
	 
 � p00d0 þ p10N 0;

r2
a 0
0 0

" # !
þ p01N 0;

0 0
0 r2

b

� �� �

þ p11N 0;
r2
a qrarb

qrarb r2
b

" # !
; j ¼ 1; :::; m

where d0 is a point mass at zero; r2
a is the prior variance for the

exposure on mediator effect; r2
b is the prior variance for the medi-

ator on outcome effect; q is the correlation between the two sets of
effects; and p00, p10, p01, and p11 are the probabilities of the four
components, respectively. The components in capture all possible
relationship among the exposure, mediator and outcome: the first
three components directly correspond to the three sub-null
hypotheses while the last component representing the alternative.
The GMM-based mediation method has been shown to enjoy excel-
lent and robust performance for mediator selection and mediation
effect estimation [164]. A potential drawback of the GMM prior,
however, is that it does not directly impose sparsity on the media-
tion effects for mediator selection. Therefore, Song et al (2020)
[164] provided a second method, based on a product threshold
Gaussian (PTG) prior, to directly sparsity on the mediation effects.
Song et al (2020) [164] relied on a latent variable-based MCMC
algorithm for parameter estimation in both these two models.

Song et al. (2020) [165] further extended the above Bayesian
approaches towards direct modeling of the correlation structure
among active mediators. Intuitively, if the active mediators are cor-
related with each other, then accounting for such correlation
would improve power to detect them. Song et al (2020) [165]
developed two methods to account for such correlation among
active mediators under the GMM-based Bayesian joint mediation
model. The first is to use the Potts distribution [197], which is a
generalization of the Ising distribution and accounts for the com-
plex dependency structures among multiple groups. The second
is based on joint modeling of the mediator-specific mixing proba-
bilities via a logistic normal distribution [198] similar to that used
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in Zeng et al (2018) [196], where the group probabilities reflect the
underlying correlation structure. Therefore, this newly developed
joint mediatin method allows for identifying correlated active
mediators that could be missed by other methods [165].

7. Conclusions

We have presented a systematacial review of statistical meth-
ods for mediation analysis, with a special emphasis on recent
methods developed for high-dimensional mediators commonly
encountered in high-throughput genomics studies. In spite of cur-
rent successes of these newly developed high-dimensional media-
tion methods, many challenges remain. For example, accurately
estimating the proportion parameters of different sub-null
hypotheses is critical for generating calibrated P values from both
DACT [109] and JS-mixture [112], but accurate estimation of these
parameters may be hard to achieve. As another example, the
empirical null distribution of JS-mixture is currently constructed
in a nonparametric manner [112], and it remains important to
explore whether parametric mixture distributions such as Beta
mixture can help improve power further. For Bayesian mediation
methods [163–165], the current sampling-based algorithms are
not computationally efficent. Future algorithmic development is
needed to adapt them for truly genome-wide mediation studies
with large sample sizes. In addition, various extensions of these
high-dimensional mediation methods towards modeling non-
linear relationship between mediators and outcomes, accomodat-
ing missing data [199,200] and exposure-mediator interaction,
performing sensitivity analysis under model misspecifications
[72,117,119], accounting for multilevel or longitudinal outcomes
[201–203], could all yield fruitful results. Finally, a comprehensive
comparison among methods for high-dimensional mediation anal-
ysis is warrented for evaluating their relative performance and
understanding their practical advantages and drawbacks in high-
throughput genomics applications.
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