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 2 

Abstract  8 
 9 
Viral infections can have profound and durable functional impacts on the immune system. There is an urgent 10 

need to characterize the long-term immune effects of SARS-CoV-2 infection given the persistence of 11 

symptoms in some individuals and the continued threat of novel variants including the recent rapid 12 

acceleration in infections. As the majority of COVID-19 patients experienced mild disease, here we use 13 

systems immunology approaches to comparatively assess the post-infection immune status (mean: 151 [5th – 14 

95th percentile: 58 – 235] days after diagnosis) and subsequent innate and adaptive responses to seasonal 15 

influenza vaccination (as an “immune challenge”) in 33 previously healthy individuals after recovery from mild, 16 

non-hospitalized COVID-19, as compared to 40 age- and sex-matched healthy controls with no history of 17 

COVID-19. Sex-specific, temporally stable shifts in signatures of metabolism, T-cell activation, and innate 18 

immune/inflammatory processes suggest that mild COVID-19 can establish new post-infection immunological 19 

set-points. COVID-19-recovered males had an increase in CD71hi B-cells (including influenza-specific subsets) 20 

before vaccination and more robust innate, influenza-specific plasmablast, and antibody responses after 21 

vaccination compared to healthy males. Intriguingly, by day 1 post-vaccination in COVID-19-recovered 22 

subjects, the expression of numerous innate defense/immune receptor genes (e.g., Toll-like receptors) in 23 

monocytes increased and moved away from their post-COVID-19 repressed state toward the pre-vaccination 24 

baseline of healthy controls, and these changes tended to persist to day 28 in females, hinting that the acute 25 

inflammatory responses induced by vaccination could partly reset the immune states established by prior mild 26 

COVID-19. Our study reveals sex-dimorphic immune imprints and in vivo functional impacts of mild COVID-19 27 

in humans, suggesting that prior COVID-19 could change future responses to vaccination and in turn, vaccines 28 

could help reset the immune system after COVID-19, both in an antigen-agnostic manner. 29 

 30 
 31 
 32 
 33 
 34 
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 3 

Introduction 35 
 36 
Infection with SARS-CoV-2 can result in persistent clinical sequelae for months after initial infection, both in 37 

those requiring hospitalization and those with mild disease1. While the spectrum of clinical manifestations 38 

associated with post-acute COVID-19 syndrome (a.k.a “long COVID”) is expanding, understanding the 39 

molecular and cellular immunological changes associated with recovery from SARS-CoV-2 infection is lacking, 40 

particularly in those with less severe, non-hospitalized disease, the population that constitutes the majority of 41 

COVID-19 recoverees. Important questions include how “homeostatic”/baseline immune states may have 42 

been altered by the infection, and whether any alterations may affect responses to future challenges (such as 43 

infection or vaccination). Examples of long-term immunological effects of viral infection have previously been 44 

described, e.g., following natural measles infection there is marked reduction in humoral immunity and 45 

increased susceptibility to various non-measles infections for months to years2,3. A better understanding of 46 

whether even mild SARS-CoV-2 infection could result in persistent immunological changes that may affect 47 

future immune responses has important public health implications given the large number of infected 48 

individuals in the world (more than 370 million global cases as of February 2022; covid19.who.int)4,5. Thus, we 49 

enrolled and comparatively analyzed using systems immunology approaches healthy, non-obese individuals 50 

who: 1) recovered from non-hospitalized, mild cases of COVID-19, and 2) age- and sex-matched controls who 51 

never had COVID-19. In addition to assessing the post-COVID-19 immunological states, we utilized seasonal 52 

influenza vaccination to evaluate the immune responses of these two populations at the serological, 53 

transcriptional, proteomic, and cellular levels.   54 

 55 
Results 56 
 57 
Individuals with prior symptomatic SARS-CoV-2 infection (diagnosed by nasal PCR test) or asymptomatic 58 

infection (by antibody test; see Methods), and age- and sex-matched healthy controls with no history of 59 

COVID-19 were recruited from the community (Fig. 1a, see Methods). For those with a history of COVID-19 the 60 
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average time since diagnosis was 151 days (5th – 95th percentile: 58 – 235 days after diagnosis; Extended Data 61 

Table 1), including two individuals who had asymptomatic COVID-19 infection, defined as positive for 62 

antibodies against SARS-CoV-2 with no history of symptoms or positive nasal PCR test (and not enrolled in 63 

COVID-19 vaccine trials). All COVID-19-recovered individuals had clinically mild illness during acute disease 64 

that did not require hospitalization (self-reported average length of illness: 20.8 days), nor did they have any 65 

major medical comorbidities, to include infection at the time of enrollment, obesity (BMI > 30) or autoimmune 66 

disease. A small number of individuals continued to have mild sequelae from their illness at study enrollment 67 

(3 males and 8 females), the most common being loss of taste and/or smell (Fig. 1b, Extended Data Table 1). 68 

Females tended to be more likely to have sequelae (p = 0.09 for all subjects, p = 0.03 for those < 65 years of 69 

age), at a rate similar to that reported in other larger studies6.   70 

 71 

Prior mild COVID-19 is associated with stable sex-specific molecular and cellular differences 72 

Multi-omics profiling was performed using whole blood transcriptomics, serum protein profiling, antibody 73 

characterization, and peripheral blood immune cell frequencies with hematological parameters from a 74 

complete blood count (CBC) and clinical and research flow cytometry (Fig. 1c, Supplementary Information Fig. 75 

1, Supplementary Information Table 1; TBNK: CD4+ and CD8+ T-cells, B-cells, NK cells). Consistent with 76 

previous reports, SARS-CoV-2 neutralizing antibody titers negatively correlated with time since COVID-19 77 

diagnosis (TSD) in both COVID-19-recovered males (COVR-M) and females (COVR-F) (Fig. 1d)7. Because 78 

immunological resolution following infection may unfold over time after symptoms subsided, we first asked 79 

which parameters continued to evolve following mild SARS-CoV-2 infection. We focused on parameters that 80 

differed between COVID-19-recovered individuals and healthy controls (HCs) but were correlated with TSD 81 

(Extended Data Tables 2 and 3, see Methods). Among the hematological parameters, the red cell distribution 82 

width (RDW), a measure of the variation of erythrocyte volume, was negatively correlated with TSD in COVR-83 

M and trended similarly in COVR-F (Fig. 1e). As elevated RDW is observed in cases of hematological 84 
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dysregulation8,9, this suggests that even mild COVID-19 may disrupt hematopoiesis, resolution of which may 85 

take weeks to months, consistent with reports of persistently altered erythrocyte deformability 4-8 months 86 

after hospitalization for SARS-CoV-2 infection10. Several other TSD correlates among all COVID-19-recovered 87 

subjects were sex-specific (Extended Data Fig. 1a), consistent with earlier findings that the acute immune 88 

responses to COVID-19 are sex dependent11–19. For example, plasmablast-related gene transcription and 89 

frequency were negatively correlated with TSD, decreasing over time in females but not apparent in males 90 

(Extended Data Fig. 1b, c); thus, plasmablast transcriptional signatures were on average elevated in COVR-M 91 

compared to COVR-F (Extended Data Fig. 1a). Since antibody titers against SARS-CoV-2 were declining in both 92 

sexes, these circulating plasmablast-like cells probably no longer made or secreted antibodies. Similarly, there 93 

was higher expression of platelet activation and cell adhesion genes in COVR-M compared to COVR-F (after 94 

taking sex differences in healthy individuals into account; Extended Data Fig. 1a), partly because expression of 95 

these genes declined over time in the COVR-F but not in COVR-M, suggesting that these platelet and cell 96 

adhesion related gene expression changes following SARS-CoV-2 infection were progressively resolving in 97 

COVR-F but might represent an unresolved, temporally stable “immune state” in COVR-M (at least over the 98 

time scale of our examination).  99 

 To further examine sex-dependent immune states associated with prior mild COVID-19, we 100 

systematically evaluated differences in COVID-19-recovered males and females compared to their respective 101 

matched healthy controls that are not significantly associated with TSD: 1) COVR-F vs. HC females (HC-F); 2) 102 

COVR-M vs. HC males (HC-M); and 3) sex differences: differences between COVR-M and COVR-F after 103 

accounting for male-female differences in HCs (Fig. 1f, Extended Data Fig. 1d, Extended Data Tables 3 and 4). 104 

The sex differences include depressed T-cell-related but elevated innate immune cell activation transcriptional 105 

signatures (Fig. 1f), and increased frequencies of monocytes, conventional/myeloid dendritic cells (cDCs), and 106 

NK cells (Fig. 1g, h, Extended Data Fig. 1e). The frequencies of monocytes and cDCs in COVR-M were elevated 107 

to levels similar to those of healthy females and, in the case of cDCs, significantly higher than COVR-F and 108 
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healthy males (Fig. 1g, h). There were also sex differences in metabolic transcriptional signatures, including 109 

oxidative phosphorylation and the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling 110 

(Fig. 1f). Together, these data suggest that immune recovery from mild COVID-19 differed between males and 111 

females, with COVR-M exhibiting temporally stable elevations in myeloid cell frequencies, and innate immune 112 

activation and metabolic transcriptional signatures, while COVR-F had higher transcriptional signatures of T-113 

cell differentiation/activation and cell cycle, but lower monocyte frequency than their male and healthy 114 

counterparts. Supporting our finding that natural respiratory viral infections may lead to unresolved sex-115 

specific “immune states”, we found persistent changes following community influenza infection in males but 116 

not females by using a published blood transcriptomic dataset on pre- and post-natural influenza A 117 

[predominantly pandemic H1N1 (pH1N1)] infection in individuals followed longitudinally over the course of 118 

two influenza seasons20 (Extended Data Fig. 2a-c, Extended Data Table 5); the genes with increased expression 119 

in males were also enriched for genes more highly expressed in COVR-M compared to COVR-F in our cohort 120 

(after accounting for the expected sex differences present in healthy subjects), although in general such 121 

imprints are likely pathogen dependent. This observation provides additional support that exposure to a 122 

respiratory viral pathogen can potentially lead to persistent immunological imprints detectable in blood, even 123 

in healthy individuals with mild disease. In contrast to the numerous sex-specific differences observed in our 124 

data, we detected far fewer sex-independent differences (i.e., comparing COVID-19-recovered vs. healthy 125 

alone with both sexes combined) in our cohort. Among the few were depression of plasmacytoid dendritic 126 

cells (pDCs) in both COVR-M and COVR-F (Extended Data Fig. 1f), which is consistent with a previous report21 127 

and perhaps a remnant of the apoptotic/stress state and lower frequencies of peripheral pDCs found during 128 

acute COVID-1922,23. Together, our findings suggest that even mild, non-hospitalized SARS-CoV-2 infections 129 

may establish new, temporally stable, sex-dependent immunological imprints.  130 

 131 

Prior mild COVID-19 is associated with both innate and adaptive responses to influenza vaccination 132 
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We next asked whether these post-COVID-19 immune state differences may affect an individual’s ability to 133 

respond to future, non-SARS-CoV-2 immunological challenges. The seasonal influenza quadrivalent vaccine 134 

was administered to study participants, who were subsequently followed longitudinally for up to 100 days to 135 

evaluate the immune response to the vaccine at the serological, molecular, and cellular levels (Fig. 1a, 2a). The 136 

cellular and molecular responses to seasonal influenza vaccination have been well characterized in healthy 137 

adults, including transcriptional and cellular changes in blood that reflect the activation and interaction of 138 

distinct cell populations and pathways in innate and adaptive immune cells. These include early 139 

innate/inflammatory and interferon (IFN) responses on day 1 after vaccination and a strong but transient 140 

plasmablast peak around day 7 culminating in the generation of influenza-specific antibodies and memory 141 

cells24–27. Thus, influenza vaccination provides an excellent model of coordinated immune activity to probe the 142 

functional impacts of prior mild SARS-CoV-2 infections. 143 

Among subjects ages 18-64, COVID-19-recovered individuals with persistent symptoms were more 144 

likely to experience vaccine adverse events (AEs; p = 0.02), including pain at the injection site and myalgia (no 145 

serious AEs were reported). Serological responses to vaccination were broadly intact in COVID-19-recovered 146 

subjects, with robust titer responses at Day 28, but sex-specific differences were again observed. COVR-M 147 

were more likely to be “high” responders compared to healthy males (Fig. 2b, c, Extended Data Fig. 3a), 148 

defined as responding to 2 or more of the 4 vaccine strains with a day 28/day 0 fold-change of 4 or greater 149 

[“seroconversion”28]. There was no relationship between prior COVID-19 infection and day 7 or 28 influenza 150 

antibody avidity (as measured by surface plasmon resonance29,30; Extended Data Fig. 3b) or between the TSD 151 

and day 28 titer responses in either males or females (Extended Data Fig. 3c).  152 

Consistent with their more robust antibody responses, COVR-M had a higher increase of influenza-153 

specific plasmablasts (as evaluated by the maximum change) than healthy males at day 7 (Fig. 2d, Extended 154 

Data Fig. 3d, Supplementary Information Fig. 2a). Intriguingly, we detected higher proportions of CD71hi 155 

memory B-cells (CD38lowCD71hiCD19+CD20+IgD-), including the influenza-specific memory B-cells contained 156 
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within this subpopulation, at baseline (prior to vaccination) in COVR-M compared to HC-M (Fig. 2e, 157 

Supplementary Information Fig. 2b). A population of CD71hi B-cells (termed “activated B-cells”) has been noted 158 

to emerge early after both vaccination and natural viral infection, can originate from the memory or naïve B-159 

cell pools, and persists longer than antibody-secreting cells after a natural viral infection31. Our finding of 160 

elevated frequencies of CD71hi B-cells prior to vaccination can perhaps be attributed to broad, antigen non-161 

specific B-cell activation (including the influenza-specific subsets and likely other specificities) by prior SARS-162 

CoV-2 infection; similar phenomena have been reported in vaccination and natural viral infection with measles 163 

and varicella32,33. Curiously, the proportion of these H3+ pre-vaccination CD71hi memory B-cells was correlated 164 

with expression of several metabolic genes from the mTORC1 signaling pathway34 in COVR-M only (Extended 165 

Data Fig. 3e). This suggests that the increases in these B-cells could reflect a more activated metabolic state in 166 

COVR-M prior to vaccination. Together, these observations reveal that mild infection with SARS-CoV-2 can 167 

result in sex-specific phenotypic and functional immunological changes detectable months after disease, as 168 

exemplified by serological and influenza-specific B cell response alterations following immunization with non-169 

SARS-CoV-2 antigens.  170 

We next assessed the day 1 and 7 blood transcriptomic, circulating protein, and cell frequency 171 

responses relative to baseline (days -7 and 0 prior to vaccination), separately in males and females (Fig. 3a, 172 

Extended Data Fig. 4a, Extended Data Table 6). At day 1 after vaccination, COVR-M had significantly stronger 173 

IFN transcriptional responses compared to both COVR-F and HC-M (Fig. 3b, c). Consistent with this, circulating 174 

IFNg levels in serum were elevated in COVR-M on day 1 (Fig. 3d). The day 1 increase in the IFN gene signature 175 

and IFNg protein level was more strongly correlated with the pre-vaccination (day 0) frequency of early 176 

effector-like CD8+ T-cells in COVR-M compared to COVR-F (Extended Data Fig. 4b, c), suggesting that some of 177 

the IFNg might have emerged from this population potentially in response, in an antigen-agnostic manner, to 178 

the inflammation induced by the influenza vaccine35. Furthermore, in agreement with the higher level of 179 

influenza-specific plasmablasts observed at day 7 in the COVR-M (Fig. 2d), the plasmablast transcriptional 180 
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signature was also elevated in this group compared to COVR-F, and conversely, several B-cell related gene sets 181 

had lower expression in COVR-F than males on day 7 (Fig. 3b, Extended Data Table 7). In contrast to males, 182 

COVR-F displayed stronger NK cell and neutrophil transcriptional response signatures on day 1 (Fig. 3b), but 183 

without apparent increases in monocyte frequencies like in males (COVR-M or HC-M) or healthy females (Fig. 184 

3e) as typically observed in healthy influenza vaccinees [e.g., see24,27]. Even though myeloid cell frequencies, 185 

including monocytes, were already elevated in COVR-M before vaccination at baseline (Fig. 1f, 1g, 3e), a 186 

robust increase in monocytes on day 1 that subsequently reverted to baseline levels by day 7 and onwards 187 

was evident in the COVR-M (Fig. 3e). Thus, consistent with the sex-specific immune set points associated with 188 

prior mild COVID-19, the early innate and adaptive responses to the influenza vaccine, which is antigenically 189 

distinct from SARS-CoV-2, were also markedly different between COVID-19-recovered and healthy controls in 190 

a sex-dependent manner.  191 

 192 
Partial “reset” of gene expression imprints following influenza vaccination 193 

Given the potential for longer lasting vaccine “training” effects36,37 and that the blood transcriptional 194 

responses to the influenza vaccine (Fig. 3b) overlapped with those associated with prior mild COVID-19 (Fig. 195 

1f), we next asked whether influenza vaccination may help “reset” the post-COVID-19 immune states back 196 

towards that of healthy controls (pre-vaccination) who never had COVID-19 (“the healthy baseline”, Fig. 4a). 197 

As a screen, we first examined genes differentially expressed between the COVID-19-recovered individuals 198 

and the matched healthy controls prior to vaccination (Fig. 4b), including the “leading edge” genes from the 199 

gene sets associated with prior COVID-19 (Fig. 1f, see Methods). We noted a global “return” towards the 200 

healthy baseline in both COVR-F and COVR-M at day 1 after vaccination (Fig. 4b, Extended Data Table 8). 201 

Although some of the genes in COVR-M and COVR-F, on average, reverted to their own respective pre-202 

vaccination states by day 28, there were day 1 changes toward the healthy baseline that persisted through day 203 

28, especially in COVR-F (Extended Data Fig. 5a). These more persistently altered genes in the COVR-F were 204 

enriched for cell cycle, oxidative phosphorylation, and monocyte related genes (Fig. 4b). Thus, the early 205 
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 10 

inflammatory response to the influenza vaccine might have led to the resolution of some of the previously 206 

stable differences between COVR-F and HC-F; while similar changes were also detectable in COVID-19 207 

recovered males by day 1, on average they returned to their own (COVR-M) pre-vaccination baseline state by 208 

day 28 following vaccination.  209 

Given that whole blood transcriptomic changes can result from a mix of cell composition and cell 210 

intrinsic transcriptional changes, we next used CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by 211 

Sequencing;38) to assess the cellular source of the day 1 transcriptional changes. CITE-seq simultaneously 212 

profiled surface proteins and transcriptomes of single PBMCs from COVID-19-recovered subjects and matching 213 

healthy controls (Fig. 4a). We clustered single cells and annotated the resulting clusters/subsets using surface 214 

protein expression profiles (see Methods). Separately in males and females we assessed the cell subsets in 215 

which the gene sets with whole blood transcriptomic changes (bottom of Fig. 4b; see Methods) tend to be 216 

differentially expressed between COVID-19-recovered subjects and healthy controls prior to vaccination and 217 

then, in the recovered subjects, moved towards the baseline (day 0) state of the healthy controls on day 1 218 

after vaccination. This revealed that the two monocyte-related gene sets [blood transcriptomic modules M4.0 219 

and M11.0;39] were indeed altered (i.e., less depressed compared to healthy on day 1) in monocytes by 220 

vaccination in both COVR-M and COVR-F, especially in classical monocytes and monocyte-T cell doublets 221 

(Extended Data Fig. 5b). Thus, monocytes were a major source of the reset signal we detected using bulk gene 222 

expression data above (Fig. 4b).  223 

By using the single cell data separately in females and males, we further pinpointed the genes (the 224 

“reset genes”) from the two gene sets (M4.0 and M11.0) that drove the reversal towards the healthy state 225 

within classical monocytes by day 1 following vaccination (see Methods, Supplementary Information Fig. 3). 226 

UMAP and heatmap visualizations confirmed that the female and male reset genes (or their union or 227 

intersection) had lower expression in the monocytes of COVID-19-recovered subjects before vaccination, but 228 

their expression was then elevated by day 1 and moved towards the healthy baseline following influenza 229 
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vaccination (Fig. 4c-e, Extended Data Fig. 5c, d); these trends were similar across the major monocyte subsets, 230 

including non-classical monocytes (Extended Data Fig. 5e) and subclusters of single monocytes defined by 231 

mRNA profiles (data not shown). Thus, these vaccine-induced changes by day 1 after vaccination in COVID-19-232 

recovered subjects were unlikely driven by changes in monocyte composition alone (e.g., new monocytes 233 

emerging from the bone marrow) but intrinsic to most if not all circulating monocytes.  234 

The reset genes are enriched for pattern recognition/immune receptor and innate defense genes, 235 

including those encoding Toll-like receptors (TLR2, TLR5, and TLR8), the peptidoglycan recognizing receptor 236 

NOD2, the high affinity IgE FC receptor FCER1G, and formyl peptide receptors (Fig. 4d). We next wondered 237 

whether these monocyte alterations seen in the COVID-19-recovered (but otherwise healthy) subjects months 238 

after mild COVID-19 could be linked to gene expression changes seen in acute disease. Using a previously 239 

published CITE-seq dataset we generated from a hospitalized, predominantly older and male-biased COVID-19 240 

cohort from Italy23, we noted that within the classical monocytes, the average expression of the reset genes 241 

was significantly lower in COVID-19 patients than healthy controls and negatively associated with disease 242 

severity [Extended Data Fig. 5f, g; similar for union or intersection of the male and female reset genes (data 243 

not shown)]. Thus, the gene expression changes in the monocytes of COVID-19-recovered subjects could have 244 

originated from and persisted since the early response to the infection. Several studies have reported the 245 

increase of several (potentially overlapping) types of altered monocytes in acute COVID-19, including those 246 

with lower antigen presentation, depressed NF-kB/inflammation, or myeloid-derived suppressor cell (MDSC)-247 

like phenotypes23,40–44. However, none of them were significantly different in the pre-vaccination monocytes 248 

of COVID-19-recovered subjects compared to HCs in our cohort (Extended Data Fig. 6a-f), suggesting that our 249 

reset gene signature is distinct from these monocyte phenotypes found in acute disease. Consistent with the 250 

observations above (Fig. 3b-e), these single cell data also revealed that COVR-M had more robust antigen 251 

presentation transcriptional responses than COVR-F and HCs on day 1 following influenza vaccination 252 

(Extended Data Fig. 6a, b). Together, CITE-seq analysis revealed that the early (day 1) response to influenza 253 
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vaccination elevated a set of previously (i.e., before vaccination) depressed innate immune receptor/defense 254 

genes in the monocytes of COVID-19-recovered subjects.     255 

We further evaluated whether the female and male monocyte reset genes might have persisted to day 256 

28 using the bulk, whole blood expression data in females and males, respectively (Fig. 4f, Extended Data 257 

Table 8). We first noticed that a larger fraction of the female reset genes demonstrated reversal in average 258 

expression towards the healthy baseline state by day 28 compared to the male reset genes in the bulk 259 

expression data (Fig. 4f). Interestingly, in COVR-F the day 1 changes (mostly increases in gene expression, as 260 

expected, given the depressed state of these genes in monocytes) for most genes tended to be temporally 261 

stable and persisted to day 28 – i.e., the fold changes between day 1 and day 0 are positively correlated with 262 

those between day 28 and day 0; this was less evident in HC-F and in COVR-M or HC-M (Fig. 4g, h, Extended 263 

Data Fig. 5h, Extended Data Table 8). This result is consistent with our earlier observation above (Fig. 4b) that 264 

some of the early reversal genes, determined using bulk expression data, persisted to day 28 more in COVR-F. 265 

Thus, while the reset genes were impacted in monocytes by day 1 following influenza vaccination in both 266 

COVID-19-recovered males and females, persistence to day 28 was more evident in females. Together, these 267 

results identified a depressed innate defense gene expression signature in monocytes associated with prior 268 

mild COVID-19 in both sexes and suggest that the early inflammatory responses to influenza vaccination could 269 

help revert this immune status back towards the healthy state, particularly in COVID-19-recovered females.  270 

 271 

Discussion 272 

While both acute and long-term immune perturbations in hospitalized COVID-19 patients have been 273 

reported21,44–49, less is known regarding healthy recovered individuals with prior mild, non-hospitalized SARS-274 

CoV-2 infection months after acute illness. Furthermore, most studies of post-COVID-19 have focused on 275 

adaptive and antigen-specific immunity. Here we reveal that prior mild, non-hospitalized COVID-19 in 276 

otherwise healthy individuals is associated with sex-specific immune imprints beyond SARS-CoV-2 specific 277 
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immunity, some of which only become apparent after heterologous challenge via influenza vaccination (i.e., a 278 

vaccine that is antigenically distinct from SARS-CoV-2). Thus, COVID-19 has the potential to impact the 279 

response to future immunological perturbations long after acute disease and convalescence. This is of public 280 

health importance given that the majority of the more than 370 million global SARS-CoV-2 infections have 281 

been mild and not required hospitalization50. The few studies of convalescent, mild COVID-19 have included 282 

patients with multiple medical co-morbidities, relatively small sample sizes, and did not evaluate sex-specific 283 

effects51–53. To our knowledge, ours is the first study to reveal sex-specific molecular and cellular immune 284 

imprints and future immune response differences associated with prior mild COVID-19 in otherwise healthy 285 

individuals, particularly those without confounding comorbidities such as autoimmunity or immunodeficiency. 286 

Given the heightened innate responses, increased interferon production, and elevated antibody generation 287 

following influenza vaccination in COVID-19-recovered males, our study demonstrates that an in vivo 288 

heterologous vaccine challenge together with systems biology analyses can help elucidate molecular and 289 

cellular immunological differences in post-COVID-19 patients.  290 

Our findings are consistent with the sex dimorphic nature of acute responses to SARS-CoV-2 and other 291 

immune challenges11–16,18,19,54. Females are generally more susceptible to autoimmunity and tend to mount 292 

heightened inflammatory responses to infections and vaccines55; it was therefore surprising to find the 293 

qualitative opposite here in which COVID-19-recovered males were found to have a more “activated” immune 294 

status at baseline and stronger innate and adaptive responses to influenza vaccination. While some of these 295 

might be attributable to differences in acute disease severity (e.g., males tended to have more severe disease 296 

than females), it is not clear how that might have manifested in our mild, non-hospitalized patients as neither 297 

the self-reported duration of acute illness nor antibody titers against SARS-CoV-2 were different between 298 

COVR-M and COVR-F (data not shown), which together suggest that our observations are independent of 299 

severity or immune response quality during acute disease. Persistent immune state changes (over months) in 300 

patients with “long COVID” have recently been reported45,56, but most of the individuals in our study reported 301 
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no or at worst minor post-COVID-19 sequelae. Thus, immunological modifications with functional 302 

consequences can still be present after clinically resolved, mild COVID-19. Although our study found 303 

heterologous vaccine response benefit in COVR-M (e.g., elevated influenza vaccine titers), the impact of prior 304 

mild COVID-19 on other perturbations such as non-SARS-CoV-2 respiratory infections remains to be 305 

determined. For example, airway neutrophil inflammation before respiratory syncytial virus exposure is 306 

associated with symptomatic outcomes57. As future work it could also be informative to assess whether some 307 

of the sex-specific imprints, including the differences in heterologous vaccination responses identified here, 308 

are associated with clinical sequelae present in those with “long COVID”1.  309 

The sex-specific post-vaccination cellular and molecular dynamics observed in this study (Fig. 3) 310 

suggest that the more “primed” baseline immune states in COVR-M (Fig. 1f-h) could have helped establish the 311 

more robust IFN, plasmablast, and antibody responses on days 1, 7, and 28, respectively, following influenza 312 

vaccination, which is antigenically distinct from SARS-CoV-2. These observations are consistent with findings 313 

that the heterologous (non-antigen-specific) effects of vaccination (e.g., BCG) can be sex-specific58. 314 

Interestingly, a qualitatively similar innate “priming” effect has also been observed in repeated homologous 315 

vaccination, such as increased innate responses following the second dose of the Pfizer-BioNTech COVID-19 316 

vaccine or the AS01-adjuvanted hepatitis B vaccine compared to the first dose59,60. Although these particular 317 

homologous (repeated dosing) vaccine-induced responses were not sex-specific and the second dose was 318 

given only 3-4 weeks after the first (compared to the months between mild COVID-19 and influenza 319 

vaccination in our study), these data support the hypothesis that similar to a first vaccine/inflammatory 320 

exposure, prior mild SARS-CoV-2 infection might have acted through certain immune pathways to prime a 321 

stronger early IFN and subsequent plasmablast responses in COVR-M after influenza vaccination. 322 

Changes in the transcriptional and epigenetic profiles of peripheral monocytes have been described in 323 

both acute and convalescent COVID-19 patients with moderate-to-severe disease, but few included patients 324 

months out from infection41,43,47,49,61. These previously described changes during acute disease include the 325 
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depressed inflammation/antigen-presentation transcriptional phenotypes that are, as shown above, distinct 326 

from our reset signature detected months post COVID-19 (Extended Data Fig. 6). This monocyte imprint 327 

involving transcriptionally depressed innate defense/receptor genes is consistent with the notion of trained 328 

immunity36. However, our signature likely reflects different biology than the “poised”, trained monocytes 329 

(based on epigenetic and in vitro stimulation studies) found in an earlier study of seven COVID-19-recovered 330 

patients, probably because those were hospitalized patients with more severe acute disease (e.g., most had 331 

pneumonia) and the time since discharge was relatively short (~4-12 weeks)49. The finding that the monocyte 332 

imprint we detected was partially reversible by seasonal influenza vaccination suggests that in addition to 333 

providing antigen-specific protection, vaccines could help reset certain immune cell states in an antigen-334 

agnostic manner. Whether that was achieved through reprogramming of certain myeloid progenitor cells in 335 

the bone marrow remains to be dissected, as do mechanisms on how COVID-19 can train immune cell 336 

statuses, and how training and vaccine-induced reversal depend on parameters such as sex, clinical factors 337 

such as acute disease severity, and age. 338 

Limitations of this study include most study subjects were younger than 65 and thus these findings 339 

may not apply to the elderly, an important population of COVID-19 recoverees. Additionally, our findings are 340 

largely associative in nature and the study design does not allow the linking of acute response phenotypes to 341 

the long-term imprints in the same individuals. Some of the imprints we considered as stable given lack of 342 

association with TSD may still be evolving slowly (or could be limited by statistical power for detecting 343 

association with TSD). And while there was no clear difference in disease severity or duration between the 344 

COVID-19-recovered males and females in our study (and no subjects were hospitalized), it is possible that our 345 

sex-specific findings reflect unappreciated clinical factors. It is possible that some of the post-vaccination 346 

reversal towards the healthy, pre-vaccination state by day 28 may also in part be due to ongoing disease 347 

resolution. However, this is unlikely the case for the vaccine-induced elevation in the expression of the reset 348 

genes towards the healthy state because those changes were clearly detectable on day 1 after vaccination and 349 
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persisted through day 28, especially in females, indicating that this reversal was driven (or at least accelerated) 350 

by vaccination and could not be attributed to the “natural” resolution process alone. While it would be 351 

informative to further assess our findings in follow up cohorts, given our observation that vaccination could 352 

perturb some of the immune imprints associated with prior mild COVID-19, identification and recruitment of a 353 

sufficient number of individuals who have not had the influenza or COVID-19 vaccines since their COVID-19 354 

disease would be impractical. The functional and clinical implications of the vaccine-induced reversal of the 355 

reset gene signature in monocytes remain to be determined. Despite these limitations, our work provides 356 

conceptual advances regarding how even mild viral infections can stably shape human immune statuses and 357 

functions long-term after acute illness, thus establishing new antigen agnostic baseline set point with potential 358 

impacts on future responses62, and in turn, how heterologous vaccination can reveal such imprints and 359 

potentially help reset the immune system back towards the state before SARS-CoV-2 infection.  360 

 361 

Data Availability 362 

Raw and processed data from the whole blood bulk RNAseq are available from the NCBI Gene Expression 363 

Omnibus, accession number GEO: GSE194378 364 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194378; will be released to public at the time of 365 

publication). Additional datasets, including clinical, proteomics, flow cytometry, CITE-seq, and influenza 366 

antibody measurements, are available at: https://doi.org/10.5281/zenodo.5935845 (will be released to public 367 

at time of publication). The influenza infection dataset we utilized was downloaded directly from GEO: 368 

GSE68310 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68310).  369 

 370 

Code Availability 371 

Analysis code, extended patient and sample metadata are available at: https://github.com/niaid/covid-flu (will 372 

be released to public at time of publication). 373 
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Figure 1. Study overview and evaluation of baseline (before influenza vaccination) molecular and cellular 

differences in COVID-19-recovered subjects. 

a, Schematic showing the study design. 

b, Bar plot showing the proportion of COVID-19-recovered (COVR) subjects with residual symptoms (see 

Extended Data Table 1) at the time of study enrollment following recovery from non-hospitalized COVID-19. 

OR = odds ratio of the likelihood of having residual symptoms between female (F) and male (M). P-value 

determined by two-tailed Fisher’s exact test. 

c, Data generated at each timepoint in the study. CBC with diff & TBNK = Complete Blood Count with 

Differential and T- and B-Lymphocyte and Natural Killer Cell Profile; SPR = Surface plasmon resonance 

d, Scatterplot showing the correlation between the time since diagnosis in days (TSD; x-axis) and the SARS-

CoV-2 neutralization titer for COVR subjects (y-axis) at day 0 (D0) prior to influenza vaccination. Spearman’s 

rank correlation and p values are shown. 

e, Similar to (d), but showing the correlation between the TSD (x-axis) and the red blood cell distribution width 

(RDW) at D0 (y-axis).  

f, Blood transcriptomic analysis of the stable baseline (before influenza vaccination) differences among COVR 

and healthy control (HC) groups. Enrichment plot showing the normalized enrichment scores (GSEA NES) of 

selected gene sets of the different comparisons (GSEA FDR < 0.05; see Methods; see Extended Data Table 4 for 

all significant gene sets with FDR < 0.05). The NES are plotted separately for COVID-19-recovered females 

(COVR-F) versus healthy control females (HC-F), COVID-19-reocovered males (COVR-M) versus healthy control 

males (HC-M), or the difference between the two sets of comparisons (COVR-M versus COVR-F taking healthy 

sex differences into account). Positive NES (upward arrow) indicates that gene set scores are higher in the first 

group than the second group listed in the comparison; negative NES (downward arrow) indicates that gene set 

scores are higher in the second group than the first group listed in the comparison. Only gene sets not 

correlated with time since diagnosis across COVR subjects at baseline are considered as stable.  

g, Box plots comparing the percentage of monocytes in peripheral blood (y-axis) between COVR-F (n = 17), 

COVR-M (n = 16), HC-F (n = 21), and HC-M (n = 19) at baseline (average of day -7 and D0). Significance of 

differences is determined by two-tailed Wilcoxon test. ∗ p ≤ 0.05 and ∗∗ p ≤ 0.01; ns = not significant 

h, Similar to (g) but for the proportion of CD11c+ dendritic cells (as the fraction of live cells; y-axis) between 

COVR-F (n = 15), HC-F (n = 16), COVR-M (n = 12), and HC-M (n = 11) at D0. Significance of differences is 

determined by two-tailed Wilcoxon test. ∗∗ p ≤ 0.01 and ∗∗∗ p ≤ 0.001; ns = not significant.  
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Figure 2. Serological and B-cell responses to the influenza vaccine.  

a, Schematic of data generation. 

b, Bar plots showing the number of subjects, under 65 years of age, who responded to two or more influenza 

strains in the quadrivalent seasonal influenza vaccine with a fold change (FC) of 4 or more from day 0 (D0) 

value at day 28 (D28) after influenza vaccination (“responder”,see Extended Data Fig. 3a). Results are shown 

separately for COVID-19-recovered females (COVR-F) and healthy control females (HC-F) (left) and COVID-19-

recovered males (COVR-M) and healthy control males (HC-M) (right). OR = odds ratio of sex-specific 

association between being a responder and COVID status. P-value determined by two-tailed Fisher’s exact 

test. 

c, Maximum normalized influenza vaccine titer (among the four strains in the vaccine) at D0 (prior to 

vaccination) and D28 after vaccination, shown separately for COVR-F and HC-F (left) and COVR-M and HC-M 

(right) under 65 years of age. The top shows the D0 and D28 values for individual subjects in the study. The 

bottom shows the average value for each group at the two timepoints. Shaded area represents standard error. 

Statistical significance of COVID-recovered (COVR) vs. healthy control (HC) difference at each timepoint was 

determined by linear regression models accounting for age, race, and influenza vaccination history (see 

Extended Data Table 6). ns=not significant (p > 0.05). 

d, Box plots comparing day 7 (D7) and D0 (baseline) difference of influenza-specific plasmablast (PB; 

CD27+CD38+CD20lowCD21low) frequency as percentage of lymphocytes (maximum value among B+ H3-, H1+ 

H3-, H3+ B-, and H3+ H1- PBs), plotted separately for COVR-F (n = 14), HC-F (n = 15), COVR-M (n = 11), and HC-

M (n = 9). Significance of group difference is determined by two-tailed Wilcoxon test. ∗ p ≤ 0.05; ns = not 

significant. 

e, Bar plots showing the fold change in D0 (prior to influenza vaccination) frequency of CD71hi memory 

(CD71hiIgD-) B-cells (as fraction of lymphocytes) as well as influenza-specific cells (with green label) between 

COVR and HC subjects, separately for females (left) and males (right). Significance was determined by linear 

regression models accounting for age, race, and vaccination history (see Extended Data Table 3). * p ≤ 0.05. 
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Figure 3. Sex-specific molecular and cellular response differences to influenza vaccination in COVID-19-

recovered individuals and matching controls.  

a, Schematic showing the sex-specific comparisons of influenza-vaccine induced changes from baseline (pre-

vaccination) at early timepoints post vaccination [day 1 (D1) or day 7 (D7)] between COVID-19-recovered 

(COVR) subjects (in grey at top) and healthy control (HC) subjects (orange at bottom). These comparisons 

(difference of the within-group vaccine-induced differences) for blood transcriptomic data are plotted in (b).  

b, Similar to Fig. 1e but here showing the GSEA analysis comparing the early (D1 and D7) influenza vaccination 

responses in COVR vs. HC subjects for females (1), males (2), and sex differences [2 vs. 1; i.e., COVR males 

(COVR-M) versus COVR females (COVR-F) taking healthy sex differences into account] (see Methods). Plotted 

are the gene sets that show significant changes from the baseline [day-7 (D-7) and day 0 (D0)] within each 

comparison group [e.g., COVR-F and healthy control females (HC-F) for 1] and significant differences between 

the two groups at the indicated timepoints (FDR < 0.05; see Extended Data Table 7). Positive NES (upward 

arrow) indicates that gene set scores are higher in the first group than the second group listed in the 

comparison; negative NES (downward arrow) indicates that gene set scores are lower in the first group than 

the second group listed in the comparison.  

c, (top) Average module scores of the “Hallmark Interferon Gamma Response” gene set at various timepoints 

before (D-7 and D0) and after influenza vaccination (D1, D7 and day 28) separately for COVR (grey line) and HC 

(orange line) males (left) and females (right). The module scores were generated from the full gene set (gene 

count = 187).  Shaded areas indicate standard error. (bottom) Box plots showing the (D1 – baseline) difference 

in the Hallmark Interferon Gamma Response module score for the subjects shown on the top, including COVR-

F (n=15), COVR-M (n=14), and HC-F (n=16), and HC-M (n=14). Average of D-7 and D0 samples was used to 

represent baseline for each subject. Significance of group difference is determined by two-tailed Wilcoxon 

test. ∗ p ≤ 0.05 and ∗∗ p ≤ 0.01; ns – not significant 

d, Box plots of the D1 response (D1 – D0) of serum IFNγ protein level from the OLINK platform for COVR-F 

(n=15), COVR-M (n=14), HC-F (n=16), and HC-M (n=14). Significance of group difference is determined by two-

tailed Wilcoxon test. ∗ p ≤ 0.05 and ∗∗∗ p ≤ 0.001; ns – not significant 

e, Changes in mean absolute monocyte count across timepoints for COVR (grey line) and HC (orange line) 

subjects separately for females (left) and males (right). Shaded areas indicate standard error.  
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Figure 4. Partial reset of post COVID-19 gene expression imprints by influenza vaccination. 

a, Schematic showing the data types analyzed in this figure (left) and study questions explored (right). D-7 = 

day -7, D0 = day 0, D1 = day 1, D7 = day 7, D28 = day 28. 

b, (top) Distributions of gene-level absolute difference (measured as model z-scores; see Methods) between 

COVID-19-recovered (COVR) subjects at each of the indicated timepoints [top to bottom: D28, D1, and the 

pre-vaccination baseline (baseline includes D-7 and D0)] and the healthy control (HC) baseline for females (HC-

F) and males (HC-M), respectively (see Extended Data Table 8). Genes shown are the leading-edge genes 

(LEGs) from the gene sets listed in Fig. 1e that are also nominally differential expressed (DE) on their own (p-

value < 0.05; see Extended Data Table 3). Dashed red vertical lines represent the median of the distribution. 

(bottom) Enriched gene sets (with more than 5 genes represented in hypergeometric tests) from genes that 

moved towards healthy baseline at both D1 and D28. 

c, Transcript-based UMAP visualization of single monocytes (identified by surface proteins) from HC (D0 

before vaccination), COVR (D0 and D1), both M and F. Cells are colored by the single cell gene module score of 

the union of the M and F “reset” genes (corresponding to the COVR.MonoSig.F.M.Mono_Classical gene set as 

illustrated in Supplemental Information Fig. 3). See Extended Data Fig. 5c for a similar version that uses the 

intersection instead of the union of the M and F reset genes. The reset genes were determined using CITE-seq 

data, essentially correspond to the LEGs of BTM M4.0 and M11.0 that differed between COVR and HC before 

vaccination and moved towards the healthy baseline by D1 in classical monocytes following influenza 

vaccination (see also Extended Data Fig. 5b).   

d, Heatmap showing the pseudobulk expression of the reset genes, separately for M and F, in classical 

monocytes from CITE-seq data (see Supplemental Information Fig. 3). The reset genes are enriched for the 

selected Gene Ontology (GO) gene sets shown below (p values from the hypergeometric test). Genes from the 

GO gene sets are labeled on the right. Samples (columns) are grouped by sex and sample groups (HC at D0, 

COVR at D0 and COVR at D1), as indicated by the bars above the heatmap.  

e, Box plots showing the pseudobulk module scores of the reset genes in classical monocytes shown 

separately for F and M for the indicated sample groups (see Supplemental Information Fig. 3 and Methods). 

Each dot represents a sample and the D0 and D1 samples from the same individual are connected by a line. P 

values shown are from t tests of the indicated two group comparisons. See also Extended Data Fig. 5b and 

Extended Data Table 9. 

f, Separately for COVR females (COVR-F) and males (COVR-M), a bar plot showing the proportion of the reset 

genes (derived from CITE-seq data as detailed in Supplemental Information Fig. 3) whose whole-blood gene 

expression moved towards the heathy state (defined as the baseline of the HC group) at both D1 and D28 
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post-vaccination (“reverted”). OR=odds ratio of the likelihood of a gene being reverted between F and M. P-

value determined by two-tailed Fisher’s exact test. 

g, Spearman’s correlation between D1 and D28 changes relative to baseline in whole-blood gene expression 

data (Extended Data Table 8) across subjects for the reset genes (rows), separately for F and M (as indicated 

on the right), in different subject groups (columns). Genes that reverted towards healthy baseline at both D1 

and D28 post-vaccination in the COVR subjects are marked (in green) on the left. The D1 vs. D28 correlation 

for TLR8 is illustrated in (h).  

h, Scatterplot showing the correlation of D1 (x-axis) and D28 (y-axis) changes (relative to the pre-vaccination 

baseline) in whole-blood gene expression of the TLR8 gene within the four indicated groups (COVR-F, COVR-M, 

HC-F, and HC-M). Spearman’s rank correlation and p values are shown. 
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Extended Data Figure 1. Baseline (pre-vaccination) molecular and cellular differences between COVID-19-

recovered subjects and healthy controls. 

a, Blood transcriptomic analysis of the baseline (before influenza vaccination) differences between COVID-19-

recovered (COVR) and healthy control (HC) groups that are associated with the time since diagnosis (TSD) in 

COVR subjects (see Methods). (left) Enrichment plot showing the baseline normalized enrichment scores 

(GSEA NES) of selected gene sets of the different comparisons (GSEA FDR < 0.05; see Methods; see Extended 

Data Table 4 for all significant gene sets with FDR < 0.05). The NES are plotted separately for COVR females 

(COVR-F) versus HC females (HC-F), COVR males (COVR-M) versus HC males (HC-M), or the difference between 

the two sets of comparisons (COVR-M versus COVR-F taking healthy sex differences into account). Positive NES 

(upward arrow) indicates that gene set scores are higher in the first group than the second group listed in the 

comparison; negative NES (downward arrow) indicates that gene set scores are higher in the second group 

than the first group listed in the comparison. (right) Spearman’s correlation of gene set module scores [using 

leading edge genes (LEGs)] with the TSD separately in COVR-F, COVR-M, and both groups combined. * p < 0.05 

in linear models accounting for age and race (see Extended Data Table 2).  

b, Scatterplot showing the correlation between the TSD (x-axis) and the plasmablast gene signature LEG 

module score (see Methods; y-axis) at day 0 (D0). Spearman’s rank correlation and p values are shown. 

c, Similar to (b), but for the plasmablast (CD27+CD38+) frequency from flow cytometry.  

d, Bubble plot showing significant (p < 0.05) cell frequency and circulating protein baseline differences of the 

indicated comparisons. The complete blood count (CBC) and lymphocyte phenotyping (TBNK) are shown in the 

top two boxes [including day -7 (D-7) and D0], followed by D0 Cytek spectral 36-color flow cytometry panel 

(middle box), and D0 OLINK proteomic platform (bottom box). Only those with an unadjusted p-value of < 0.01 

in at least one of the comparisons are shown (see Methods; Extended Data Table 3 for full results). * FDR < 

0.05 (adjusted within each panel and comparison).  

e, Box plots comparing the percentage of natural killer (NK) cells in peripheral blood as measured in 

lymphocyte phenotyping panel (TBNK; y-axis) between COVR-F (n = 17), COVR-M (n = 16), HC-F (n = 21), and 

HC-M (n = 19) at baseline (average of D-7 and D0). Significance of group difference is determined by two-tailed 

Wilcoxon test. ∗∗ p ≤ 0.01; ns = not significant 

f, Similar to (e) but comparing the proportion of pDCs (as percentage of live cells; y-axis) between COVR-F (n = 

15), HC-F (n = 16), COVR-M (n = 12), and HC-M (n = 11) at D0. Significance of COVR vs. HC difference is 

determined by two-tailed Wilcoxon test. 
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Extended Data Figure 2. Persistent post-infection gene expression changes following natural influenza 

infection. 

a, Schematic showing the approach used to evaluate changes in blood gene expression before and after 

natural influenza infection published in Zhai et al (2015), and how those gene changes may relate to sex-

specific differences resulted from prior COVID-19 in this study.  

b, Density plot showing the correlation between the gene expression changes (see Extended Data Table 5) 

before (fall) and after (spring) natural influenza A infection in 2009 (x-axis) and 2010 (y-axis) for females (left), 

males (center), and male vs female contrast (right). Shown are Spearman’s rank correlation and p values. 

c, Gene set enrichment plot of the genes that are upregulated in men between fall (pre-infection) and spring 

(post-infection) in both 2009 – 2010 and 2010 – 2011 seasons. Genes were ranked by the signed log10(p-

value) in the COVID-19-recovered male vs COVID-19-recovered female contrast at baseline using only subjects 

under 65 years of age. The tick marks denote the location of the genes in the influenza gene set.  
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Extended Data Figure 3. Serological and B-cell responses to the influenza vaccine. 

a, Violin plot of the [day 28 (D28) /day 0 (D0)] influenza strain-specific log fold change (FC) for each of the four 

strains in the seasonal influenza vaccine. Each column shows the response for a separate group of subjects, 

under 65 years of age, in the study: blue dots = males (M), red dots = females (F). Gray outline = COVID-19-

recovered (COVR) subjects. Orange outlines = healthy control (HC) subjects. Dark circle indicates a strong 

responder to the vaccine, defined as responding to 2 or more of the 4 vaccine strains with a (D28/D0) fold 

change of 4 or greater.  

b, Similar to (a), but showing the log fold change for [day 7 (D7)/D0] (top) and [D28/D0] (bottom) surface 

plasmon resonance (SPR) measurements for the H1 HA2 stem (left) or H1N1-HA1 (A/Hawaii/70/2019). 

c, Scatterplot showing the correlation between the time since diagnosis in days (TSD; x-axis) and the (D28/D0) 

log fold change of influenza antibody titer (maximum of all four strains in the vaccine shown; y-axis). 

Spearman’s rank correlation and p values are shown. 

d, Bubble plot showing differential levels of the plasmablast frequencies at D7. A population is included if the 

difference is significant (p < 0.05) in at least one of the comparisons shown (see Methods).  

e, Scatterplots showing the correlation between the D0 frequency of H3+ FluB- CD71hi memory 

(CD38lowCD71hiIgD-) B-cells (as fraction of lymphocytes; y-axis) and D0 Hallmark MTORC1 Signaling gene set 

module score (x-axis) for COVR females (COVR-F; top left, n = 14), HC females (HC-F; top right, n = 15), COVR 

males (COVR-M; bottom left; n = 11), and healthy control males (HC-M; bottom right, n = 9). Spearman’s rank 

correlation and p values are shown. 
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Extended Data Figure 4. Changes in molecular and cellular parameters after influenza vaccination.  

a, Bubble plot showing vaccine-induced response in different comparison groups (shown on the top) at the 

days post vaccination (x-axis) relative to the pre-vaccination baseline. The parameters include complete blood 

count (CBC) and lymphocyte phenotyping (TBNK) parameters [top two rows; relative to day -7 and day 0 (D0)]; 

cell populations from the Cytek 36-color flow cytometry panel (middle row; relative to D0), and proteins from 

the OLINK platform (bottom row; relative to D0). A parameter is shown if the difference is significant at 

unadjusted p-value of < 0.01 in at least one of the comparisons shown at the top (see Methods; see Extended 

Data Table 6 for full results). D1 = day 1, D7 = day 7, D14 = day 14, D28 = day 28, D70 = day 70, D100 = day 

100. 

b, Scatterplots showing the correlation between the D0 log2 frequency of early effector-like CD8+ T-cells (as 

fraction of live lymphocytes; x-axis) and (D1 - D0) Hallmark Interferon Gamma Response gene set module 

score (y-axis) for COVID-19-recovered females (COVR-F; top left, n = 14), healthy control females (HC-F; top 

right, n = 15), COVID-19-recovered males (COVR-M; bottom left; n = 11), and healthy control males (HC-M; 

bottom right, n = 9).  Spearman’s rank correlation and p values are shown. 

c, Similar to (b) but showing the (D1-D0) serum IFNγ protein level from the OLINK platform (y-axis). 
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Extended Data Figure 5. Changes in immune states in COVID-19-recovered individuals following influenza 

vaccination. 

a, Scatterplots showing the correlation of day 1 (D1; x-axis) and day 28 (D28; y-axis) changes (relative to the 

pre-vaccination baseline) in whole-blood gene expression for the genes shown in Fig. 4b whose whole-blood 

expression in COVID-recovered (COVR) moved towards those of healthy (HC) baseline at D1 (see Extended 

Data Table 8). Genes in the upper right and lower left corners of each scatterplot represent genes whose 

vaccine-induced shift from baseline are consistent between D1 and D28. Spearman’s rank correlation and p 

values are shown. 

b, Cell type specific gene expression enrichment plot (derived from CITE-seq data) showing the normalized 

enrichment scores (GSEA NES) of four selected gene sets (from Fig. 4b) for the indicated group comparisons 

shown on the left. Positive NES (upward arrow) indicates that gene set scores are higher in the first group than 

the second group listed in the comparison; negative NES (downward arrow) indicates that gene set scores are 

higher in the second group than the first group listed in the comparison. The purple boxes highlight the two 

gene sets (BTM M4.0 and M11.0) enriched for monocyte-related genes.  

c, Similar to Fig. 4c. Transcript-based UMAP visualization of single monocytes (identified by surface proteins) 

from healthy [day 0 (D0) before vaccination] and COVR males and females at D0 and D1. Cells are colored by 

the single cell gene module score of the intersection of the male and female “reset” genes (corresponding to 

the intersection of COVR.MonoSig.F.Mono_Classical and COVR.MonoSig.M.Mono_Classical gene sets as 

illustrated in Supplemental Information Fig. 3). See Fig. 4c for a similar version that uses the union instead of 

the intersection of the male and female reset genes. The reset genes were determined using CITE-seq data, 

essentially correspond to the leading-edge genes (LEGs) of BTM M4.0 and M11.0 that moved towards the 

healthy baseline by D1 in classical monocytes following influenza vaccination (see also Extended Data Fig. 5b).   

d, Similar to Fig. 4e. Box plots showing the pseudobulk module scores for the same genes as in (c) shown 

separately for females and males for the indicated sample groups (see Supplemental Information Fig. 3 and 

Methods). Each dot represents a sample and the D0 and D1 samples from the same individual are connected 

by a line. P values shown are from t tests of the indicated two group comparisons. Adjusted p-values from the 

original gene set enrichment tests (GSEA) for the two gene sets (BTM M4.0 and M11.0) are indicated in 

Extended Data Fig. 5b and Extended Data Table 9B-E.  

e, Similar to (d) but comparing the gene module scores for the reset genes in non-classical monocytes (top) 

and monocyte-T-cell doublets (bottom) shown separately for females and males for the indicated sample 

groups (see Supplemental Information Fig. 3 and Methods).  

f, Similar to Fig. 4c. Transcript-based UMAP visualization of single monocytes (identified by surface proteins) 

from the acute COVID-19 CITE-seq dataset in Liu et al (2021). Cells are colored by the single cell gene module 
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score for the LEGs of both BTM M4.0 and M11.0 from males and females (See Supplemental Information Fig. 

3a). LEGs are identified from the GSEA analysis comparing COVR samples vs. healthy control at D0 of classical 

monocytes. Left to right: HC=healthy controls; DSM_low: hospitalized Italian patients with less severe 

COVID-19 (disease severity metric [DSM] score computed from the earliest timepoint of each subject); 

DSM_high: those with severe COVID-19. 

g, Box plot comparing the classical monocytes pseudobulk gene module scores using the same LEGs and 

subject groups as in (f). Both males and females are included in all three groups. Each dot represents an acute 

COVID-19 patient. P values shown are t tests from the indicated two-group comparisons. (GSEA on the acute 

dataset also indicates significant enrichment of both BTM M4.0 and M11.0 gene sets of COVID-19 vs. HC and 

DSM-high vs. DSM-low patient comparisons – see Table S4 in Liu et al23). 

h, Scatterplots showing the correlation between D1(x-axis) and D28 (y-axis) changes (relative to pre-

vaccination baseline) in whole-blood gene expression for genes comprising the classical monocyte reset 

genes derived by CITE-seq, separately for females (COVR.MonoSig.F.Mono_Classical) and males 

(COVR.MonoSig.M.Mono_Classical). Genes are included in the scatter plots if their D1 whole-blood expression 

levels in the COVR group moved towards those of the healthy baseline. Genes/dots in the right upper corner 

of each scatterplot represent stably resolved genes between D1 and D28. Spearman’s rank correlation and p 

values are shown. 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.17.22271138doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.17.22271138


Extended Data Fig. 6
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Extended Data Figure 6. Gene expression profile of antigen presentation, NF-κB/inflammatory, and 

monocytic myeloid-derived suppressor cell (MDSC) related signatures in classical monocytes 

a, Heatmap showing the pseudobulk expression of the leading-edge genes (LEGs) from antigen presentation 

related gene sets, separately for male (M) and female (F), in classical monocytes from CITE-seq data. The LEGs 

are from the acute COVID-19 vs. healthy control (HC) GSEA analysis in 23, which showed that genes in the 

antigen presentation gene sets – KEGG_Antigen processing and presentation, Reactome_Antigen processing-

Cross presentation, Reactome_MHC class II antigen presentation – tend to be lower in COVID-19. Samples 

(columns) are grouped by sex and sample groups HC at day 0 (D0), COVID-19-recovered (COVR) at D0 and 

COVR at day 1 (D1), as indicated by the bars above the heatmap. Gene names are shown on the right; those in 

purple correspond to genes also in the “reset” signature. 

b, Box plots showing the pseudobulk module scores of the LEGs as in (a) in classical monocytes shown 

separately for F and M for the indicated sample groups. Each dot represents a sample and the D0 and D1 

samples from the same individual are connected by a line. P values shown are from t tests of the indicated two 

group comparisons. 

c, Similar to (a), but showing the LEGs of HALLMARK Inflammatory response (top) and HALLMARK TNF-α 

signaling via NF-κB (bottom) gene sets; LEGs derived from the acute COVID-19 vs. HC GSEA analysis in Liu et 

al23. 

d, Similar to (b), but showing the pseudobulk module scores calculated from the LEGs of HALLMARK 

Inflammatory response (top) and HALLMARK TNF-α signaling via NF-κB (bottom) as in (c). 

e, Similar to (a), but showing the genes of MSDC/MS1 monocyte signature from Reyes et al42. 

f, Similar to (b), but showing the pseudobulk module scores calculated from the genes of MSDC/MS1 

monocyte signature as in (e). 
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Supplementary Information Fig. 1 
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Supplementary Information Figure 1: Gating strategy for the Cytek 36-color panel.
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Supplementary Information Figure 2: Gating strategies for the influenza-specific (a) plasmablast, and 
(b) memory B-cell populations. 
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Supplementary Information Fig. 3
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Supplementary Information Figure 3: Schematic showing the creation of the datasets and gene sets used in 

the analyses shown in Fig. 4 and Extended Data Fig. 5.  
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Methods 
 
Patient population and sample collection 
Subjects at least 18 years of age were recruited from the local area (Maryland, Virginia, and the 
District of Columbia) and enrolled on National Institutes of Health (NIH) protocol 19-I-0126 
(Systems analyses of the immune response to the seasonal influenza vaccine). Exclusion criteria 
included obesity (BMI ³ 30); history of any autoimmune, autoinflammatory or 
immunodeficiency disease; history of any vaccine within the past 30 days (live attenuated) or 
14 days (non-live attenuated); history of any experimental vaccine; history of a parasitic, 
amebic, fungal, or mycobacterial infection in the past year; or current infection.  
 
Samples were collected on subjects from three groups: 1) those with a prior history of 
symptomatic SARS-CoV-2 infection (defined as a history positive nasal PCR test and positive 
Food and Drug Administration (FDA) Emergency Use Authorization (EUA) SARS-CoV-2 antibody 
test at the time of protocol screening), 2) those with a history of asymptomatic SARS-CoV-2 
infection (defined as a positive FDA EUA SARS-CoV-2 antibody test at the time of protocol exam 
but no history of COVID-like symptoms), and 3) individuals with no history of SARS-CoV-2 
infection (defined as a negative FDA EUA SARS-CoV-2 antibody test at the time of the protocol 
screening).  
 
Blood for PBMCs, serum, whole blood RNA [Tempus™ Blood RNA Tube (Thermo Fisher 
Scientific, Waltham, MA)], complete blood count with differential (CBC) and lymphocyte 
phenotyping was collected at each of the following timepoints relative to seasonal influenza 
vaccination (day 0): days -7, 0, 1, 7, 14, 28, 70, 100. Optional stool was collected at days 0, 28 
and 100. Subjects were provided with Cardinal Health Stool Collection kits (Cardinal Health, 
Dublin, OH) and Styrofoam storage containers with ice packs to collect stool samples at home 
and return in person to the NIH. Following day 100, subjects had the option to continue to 
provide monthly blood samples for PBMCs, serum, whole blood RNA, CBC with differential and 
lymphocyte phenotyping through August 2021.  
 
Study data were collected and managed using REDCap electronic data capture tools hosted at 
the NIH1,2. REDCap (Research Electronic Data Capture) is a secure, web-based software 
platform designed to support data capture for research studies, providing 1) an intuitive 
interface for validated data capture; 2) audit trails for tracking data manipulation and export 
procedures; 3) automated export procedures for seamless data downloads to common 
statistical packages; and 4) procedures for data integration and interoperability with external 
sources. REDCap electronic questionnaires were utilized to collect information from 
participants via two separate IRB-approved surveys. A survey to evaluate vaccine-related 
adverse events or symptoms was administered on study days 1 and 7 and a separate survey to 
evaluate for any health changes or new medications was administered at every visit starting on 
Day 0. Surveys were sent via email to the participants and responses were transferred from the 
REDCap system to the NIH Clinical Research Information Management System (CRIMSON) 
system by the study team. 
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Influenza vaccination 
Subjects between ages 18 – 64 years were administered the Flucelvax Quadrivalent seasonal 
influenza vaccine (2020-2021; Seqirus Inc, Summit, NJ). Subjects 65 years of age and older were 
administered the high-dose Fluzone Quadrivalent seasonal influenza vaccine (2020-2021; Sanofi 
Pasteur Inc, Swiftwater, PA).  
 
Influenza microneutralization titers 
Virus-neutralizing titers of pre- and post-vaccination sera were determined in a 
microneutralization assay based on the methods of the pandemic influenza reference 
laboratories of the Centers for Disease Control and Prevention (CDC) using low pathogenicity 
vaccine viruses and MDCK cells. The X-179A virus is a 5:3 reassortant vaccine containing the HA, 
NA, and PB1 genes from A/California/07/2009 (H1N1pdm09) and the 5 other genes from 
A/PR/8/34 were donated by the high growth virus NYMC X-157. Immune sera were also tested 
for neutralization titers of the seasonal vaccine strains H1N1 A/Brisbane/59/07, H3N2 
A/Uruguay/716/07, and B/Brisbane/60/2001. Internal controls in all assays were sheep sera 
generated against the corresponding strains at the Center for Biologics Evaluation and 
Research, FDA, Bethesda, MD. All individual sera were serially diluted (2-fold dilutions starting 
at 1:10) and were assayed against 100 TCID50 of each strain in duplicates in 96-well plates (1:1 
mixtures). The titers represent the highest dilution that completely suppressed virus 
replication. 
 
SARS-CoV-2 pseudovirus production and neutralization assay3–5 
Human codon-optimized cDNA encoding SARS-CoV-2 S glycoprotein (NC_045512) was cloned 
into eukaryotic cell expression vector pcDNA 3.1 between the BamHI and XhoI sites. 
Pseudovirions were produced by co-transfection of Lenti-X 293T cells with psPAX2(gag/pol), 
pTrip-luc lentiviral vector and pcDNA 3.1 SARS-CoV-2-spike-deltaC19, using Lipofectamine 3000. 
The supernatants were harvested at 48h post transfection and filtered through 0.45-µm 
membranes and titrated using 293T-ACE2 cells (HEK293T cells that express ACE2 protein). The 
following reagent was obtained through BEI Resources, NIAID, NIH: Human Embryonic Kidney 
Cells (HEK-293T) Expressing Human Angiotensin-Converting Enzyme 2, HEK-293T-hACE2 Cell 
Line, NR-52511. 
 
For the neutralization assay, 50 µL of SARS-CoV-2 S pseudovirions were pre-incubated with an 
equal volume of varying dilutions of serum at room temperature for 1 h, then virus-antibody 
mixtures were added to 293T-ACE2 cells in a 96-well plate. After 3 h incubation, the inoculum 
was replaced with fresh medium. After 24 hours, cells were lysed and luciferase activity was 
measured. Controls included cell only control, virus without any antibody control and positive 
control sera. 
 
SPR based antibody binding kinetics of human serum6–8 
Steady-state equilibrium binding of serum was monitored at 25°C using a ProteOn surface 
plasmon resonance (BioRad). The purified recombinant SARS-CoV-2 or other proteins were 
captured to a Ni-NTA sensor chip (BioRad, Catalog number: 176-5031) with 200 resonance units 
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(RU) in the test flow channels. The protein density on the chip was optimized such as to 
measure monovalent interactions independent of the antibody isotype. Serial dilutions (10-, 30- 
and 90-fold) of freshly prepared sample in BSA-PBST buffer (PBS pH 7.4 buffer with Tween-20 
and BSA) were injected at a flow rate of 50 µL/min (120 sec contact duration) for association, 
and disassociation was performed over a 600-second interval. Responses from the protein 
surface were corrected for the response from a mock surface and for responses from a buffer-
only injection. Total antibody binding was calculated with BioRad ProteOn manager software 
(version 3.1). All SPR experiments were performed twice, and the researchers performing the 
assay were blinded to sample identity. In these optimized SPR conditions, the variation for each 
sample in duplicate SPR runs was <5%. The maximum resonance units (Max RU) data shown in 
the figures were the RU signal for the 10-fold diluted serum sample. 
 
 
PBMC isolation 
PBMC samples were isolated from blood collected in Vacutainer EDTA tubes (generic lab 
supplier) using the SepMate™-50 tubes (STEMCELL Technologies, Cambridge, 
MA) with following modifications to the manufacturer’s protocol: The blood samples were 
diluted 1:1 with room temperate PBS and mixed by pipetting. The diluted blood was layered on 
top of 15ml Cytiva™ Ficoll™ PAQUE-Plus (Cytiva Life Sciences, Marlborough, MA) layer in 
SepMate. The SepMate tubes were spun at 1200 g for 10 mins with brake set to 5 at room 
temperature. Following the spin, the top plasma layer was removed as much as possible 
without disturbing the PBMC layer. If there were any cells stuck on the wall of the tube, then 
they were gently scraped from the wall with pipette, so they can be resuspended with rest of 
the cells. The cells were poured from SepMate in to a 50ml conical tube. The tubes containing 
cells were filled up to 50ml with cold wash buffer (PBS with 2% FBS) and mixed by inverting. The 
tubes were spun at 300 g for 10 mins with brake set to 5 at room temperature. After the spin, 
the supernatant was removed without disturbing the cell pellet. After resuspending the pellet 
with cold wash buffer, the cells were counted using the Guava® Muse® Cell Analyzer (Luminex 
Corporation, Austin, TX). The tubes were again spun at 300 g for 10 mins with brake set to 5 at 
room temperature. The supernatant was removed without disturbing the cell pellet.  
 
Based on the cell count, 6 – 10 million PBMC were frozen per vial for each sample. Since the 
cells were counted prior to the last spin, a 50% cell loss was assumed and accounted for in the 
calculations from cell count. The cell pellet was resuspended with n*600µl (n = number of 
PBMC vials to be frozen) freezing media (RPMI with 10% FBS) by gentle pipetting. After freezing 
media, n*600µl DMSO freeze (FBS with 15% DMSO) was added drop-by-drop while gently 
shaking the tube. In other words, for each vial of PBMC that was to be frozen, 600µl of freezing 
media and 600µl of DMSO freeze was added, bringing the total volume for each vial to 1.2ml. 
The solution was gently mixed by pipetting before transferring 1.2ml cell solution to each 1.8ml 
cryovial (general lab supplier). The cell vials were placed in CoolCell Containers (Thomas 
Scientific, Swedesboro, NJ) and the container was placed in a -80°C freezer. After at least 4 
hours, the PBMC vials were transferred to liquid nitrogen.  
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RNA isolation 
Blood was drawn directly into the Tempus™ Blood RNA Tube (Thermo Fisher Scientific, 
Waltham, MA) according to manufacturer’s protocol. Two Tempus tubes were collected at each 
study timepoint. The blood sample from each Tempus tube was aliquoted in to two 4.5mL 
cryovials (General lab supplier). These cryovials were directly stored at -80°C.  
The RNA samples were isolated in groups of 12-22 samples per batch based on careful batching 
prior to isolation to reduce confounding factors due to age, gender, and patient group.  
 
RNA was isolated from tempus blood using the QIAsymphony RNA Kit (Qiagen, Gaithersburg, 
MD) on QIAsymphony SP instrument (Qiagen, Gaithersburg, MD). Blood samples were thawed 
on ice before each sample was transferred to a 50ml conical tube. The total volume of the 
sample was brought to 12ml by adding 1x PBS. The tubes were vortexed at full speed for 30 
seconds, followed by centrifugation at 3500 g for 1 hour at 4°C. After centrifugation, the 
supernatant from the tubes was decanted and tubes were placed upside down on clean paper 
towels for 2 minutes to allow residual liquid to drain. To resuspend the pellet, 800µl of RLT+ 
buffer was added to the bottom of each tube and vortexed for few seconds. All 800µl of each 
sample was transferred to 2ml screw cap tubes (Sarstedt, Nümbrecht, Germany). The tubes 
were placed into #3b adapters (Qiagen, Gaithersburg, MD) to be loaded on to the 
QIAsymphony.  
 
On the QIAsymphony, RNA CT 800 protocol was selected and used for RNA isolation. The 
instrument was set up according to the manufacturer’s protocol and the elution volume for 
RNA samples was set to 100µl. The final volume of the eluted RNA samples ranged from 65 – 95 
µl.  
 
RNA yields were determined using Qubit RNA BR kit or Qubit RNA HS kit (Thermo Fisher 
Scientific, Waltham, MA) based on the yield. RNA RIN numbers were measured using RNA 
ScreenTape (Agilent Technologies, Santa Clara, CA). The average RIN was 8.3 and average yield 
was 81.3 ng/µl for the RNA samples. 
 
RNA-seq 
RNA-seq libraries were prepared manually using Universal Plus mRNA-Seq with NuQuant, 
Human Globin AnyDeplete (Tecan Genomics, Redwood City, CA) according to manufacturer’s 
protocol. For each sample, 500ng of total RNA was used to isolate mRNA via poly(A) selection. 
Captured mRNA was washed, fragmented, and primed with the mix of random and oligo(dT) 
primers. After cDNA synthesis, ends were repaired and ligated with Unique Dual Index (UDI) 
adaptor pairs. Unwanted abundant transcripts from rRNA, mtRNA and globin were removed 
using AnyDeplete module. Remaining library was amplified by 14 cycles of PCR and purified 
with AMPure XP reagent (Beckman Coulter, Indianapolis, IN).  
 
Library concentration was determined by Quant-iT™ PicoGreen™ dsDNA Assay kit (Thermo 
Fisher Scientific, Waltham, MA) on BioTek Synergy H1 plate reader (BioTek Instruments, 
Winooski, VT) using 2 ul sample. Library size distribution was determined using D1000 
ScreenTape (Agilent Technologies, Santa Clara, CA) on 4200 TapeStation System (Agilent 
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Technologies, Santa Clara, CA). Thirty-two samples were randomly selected from each plate to 
measure the library size distribution. To determine fragment size, the region on the 
electropherogram was set from 200 bp to 700 bp. An average of the fragment sizes was used 
for the rest of libraries to calculate molarity.  
 
To create a balanced pool for sequencing, all libraries from one plate were diluted to the same 
molar concentration by the QIAgility liquid handling robot (Qiagen, Gaithersburg, MD) and 
equal volumes of normalized samples were pooled. Ninety-six samples were pooled from each 
plate on Plates 1-4 and 35 samples were pooled from Plate 5. For an accurate quantification of 
the pooled libraries, a qPCR was performed using KAPA Library Quantification Kit (Roche, 
Wilmington, MA). 
 
All libraries were sequenced on the NovaSeq 6000 instrument (Illumina, San Diego, CA) at 
Center for Cancer Research Sequencing Facility, National Cancer Institute. The libraries pooled 
from Plates 1-4 were sequenced using one NovaSeq 6000 S4 Reagent Kit (200 cycles) and 
NovaSeq XP 4-Lane Kit (Illumina, San Diego, CA) with sequencing parameter as 100 bp paired-
end reads. The library pool from Plate 5 was sequenced using a NovaSeq 6000 SP Reagent Kit 
(300 cycles; Illumina, San Diego, CA) with 150 bp paired-end reads as sequencing parameter. 
 
Additionally, after quality control, 11 samples were re-sequenced as Plate 6 on a NextSeq 500 
instrument using a NovaSeq 6000 S4 Reagent Kit (200 cycles) with sequencing parameter as 100 
bp paired-end reads. Technical replicates were placed on each plate to control for plate 
variability. 
 
Serum isolation 
Serum was collected directly in Serum Separator Tubes, and allowed to clot at room 
temperature for a minimum of 30 minutes. Within two hours of blood collection, the tubes 
were spun at 1800 g for 10 minutes at room temperature. The top (serum) layer was removed 
via pipette and stored in individual vials at -80°C.  
 
Complete Blood Counts and lymphocyte phenotyping 
Subjects had standard complete blood counts with differential (CBCs) performed at the NIH 
Clinical Center in the Department of Laboratory Medicine. Lymphocyte (T cell, B cell, NK cell) 
flow cytometry quantification was performed using the BD FACSCanto™ II flow cytometer (BD 
Biosciences, Franklin Lakes, NJ).  
 
Flow cytometry 
a) B cell panel including influenza HA probes 
Thawed PBMC were washed in RPMI culture medium containing 50U/ml benzonase nuclease 
and then washed by PBS. Cells were incubated with LIVE/DEAD Fixable Blue Dye (Life 
Technologies, Carlsbad, CA), which was used to exclude dead cells from analysis. Cells were 
incubated with fluorochrome-conjugated HAs for influenza B (B/Washington/02/2019 and 
B/Phuket/3073/2013 combined on the same fluorochrome), and Influenza A H1 
(A/Hawaii/70/2019) and H3 (A/Hongkong/2671/2019) and fluorochrome-conjugated antibodies 
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against IgM, IgA, CD21, CD85J, FCRL5, CD20, IgG, CD38, CD14, CD56, CD3, CD27, CD71, CD19, 
IgD for 30 min at 4 C in the dark. The dyes and detailed information of antibodies in the panel 
(Sarah Andrews, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 
National Institutes of Health) are summarized in Table 1. After incubation with antibodies for 30 
minutes, cells were washed two times with FACS buffer (0.1%BSA/PBS (pH7.4)) and fixed in 1% 
paraformaldehyde. Five million cells were acquired on Cytek Aurora spectral cytometer (Cytek 
Biosciences, Fremont, CA). Data were analyzed with FlowJo software version 10 (BD 
Biosciences).  
 
b) Phenotyping panel 
Thawed PBMC were washed in RPMI culture medium containing 50U/ml benzonase nuclease 
and then washed by PBS. Cells were incubated with LIVE/DEAD Fixable Blue Dye (Life 
Technologies, Carlsbad, CA), which was used to exclude dead cells from analysis. Cells were 
washed in FACS staining buffer (1 X phosphate-buffered saline, 0.5% fetal calf serum, 0.5% 
normal mouse serum, and 0.02% NaN3) and incubated with Human Fc block reagent (BD 
bioscience #564220) at room temperature for 5 min. Cells stained at room temperature for 10 
minutes in the dark with fluorochrome-conjugated antibodies against CCR7, CCR6, CXCR5, 
CXCR3 and TCRgd. Then, stained with fluorochrome-conjugated antibodies against CD45RA, 
CD16, CD11c, CD56, CD8, CD123, CD161, IgD, CD3, CD20, IgM, IgG, CD28, PD-1, CD141, CD57, 
CD45, CD25, CD4, CD24, CD95, CD27, CD1c, CD127, HLA-DR, CD38, ICOS, CD21, CD19, CD14 at 
room temperature for 30 minutes in the dark. Cells were washed two times with FACS staining 
buffer (1 X phosphate-buffered saline, 0.5% fetal calf serum, 0.5% normal mouse serum, and 
0.02% NaN3) and fixed in 1% paraformaldehyde. Table 2 shows all the clones and information of 
antibodies used in the phenotyping panel. A million PBMC were acquired by using Cytek Aurora 
spectral cytometer (Cytek Biosciences, Fremont, CA). The frequency of major populations was 
analyzed using with FlowJo™ software version 10 (BD Biosciences) based on previously 
described manual gating strategies9–11. 
 
 
Table 1. 

Specificity Fluorochrome Ab clone vendor cat# 

H3 Probe Alexa Fluor488   
 

IgM BB700 G20-127 BD Custom 
IgA PE IS11-8E10 Miltenyi 130-113-476 

CD21 PE-CF594 B-Ly6 BD 563474 
CD85J PE-Cy7 GHI/75 Biolegend 333712 

B Probe AlexaFluor 647   
 

FCRL5 R718 509F6 BD 751885 
CD20 APC-Fire 750 2H7 Biolegend 302358 
IgG BUV395 G18-145 BD 564229 

Dead cells Live/Dead Blue  ThermoFisher L23105 
CD38 BUV661 HIT2 BD 612969 

H1 Probe BV421 
 

 
 

CD14 BV510 M5E2 Biolegend 301842 
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CD56 BV510 HCD56 Biolegend 318340 
CD3  BV510 OKT3 Biolegend 317332 

CD27 BV605 O323 Biolegend 302830 
CD71 BV650 CY1G4  Biolegend 334116 
CD19  BV750 SJ25C1 BD 747161 
IgD BV785 IA6-2 BD 740997 

 
 
 
 
Table 2 

Specificity Fluorochrome Ab clone vendor cat# 

CD45RA BUV395 5H9 BD 740315 
CD16 BUV496 3G8 BD 612944 
ICOS BUV563 DX29 BD 741421 

CD11c BUV661 B-Ly6 BD 612967 
CD56 BUV737 NCAM16.2 BD 612766 
CD8 BUV805 SK1 BD 612889 

Viability LIVE/DEAD BLUE  Thermo L34962 
CD197 (CCR7) BV421 G043H7 Biolegend 353208 

CD123 Super Bright 436 6H6 Thermo 62-1239-42 
CD161 eFluor450  HP-3G10 Thermo 48-1619-42 

IgD BV480 IA6-2 BD 566138 
CD3 BV510 SK7 BioLegend 344828 

CD20 Pacific Organge HI47 Thermo MHCD2030 
IgM BV570 MHM-88 Biolegend 314517 
IgG BV605 G18-145 BD 563246 

CD28 BV650 CD28.2 Biolegend 302946 
CD196 (CCR6) BV711 G034E3 Biolegend 353436 

CD185 (CXCR5) BV750 RF8B2 BD 747111 
CD279 (PD-1) BV785 EH12.2H7 Biolegend 329929 

CD141 BB515 1A4 BD 566017 
CD57 FITC HNK-1 Biolegend 359604 
CD14  Spark Blue 550 63D3 Biolegend 367148 
CD45 PerCP  H130 Thermo MHCD4531 
CD21 PerCP-Cy5.5 Bu32 Biolegend 354908 
TCRgd PerCP-eFluor710 B1.1 Thermo 46-9959-42 
CD25 PE BC96 Thermo 12-0259-42 
CD4 CF568 SK3 Biolegend Custom 

CD24 PE/Dazzle594 ML5 Biolegend 311134 
CD95 (Fas) PE-Cy5 DX2 Thermo 15-0959-42 

CD183 (CXCR3) PE-Cy7 CEW33D Thermo 25-1839-42 
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CD27 APC O323 Thermo 17-0279-42 
CD1c Alexa Fluor 647 L161 Biolegend 331510 
CD19  Spark NIR 685 HIB19 Biolegend 302270 

CD127 APC-R700 HIL-7R-M21 BD 565185 
HLA-DR APC/Fire750 L243 Thermo 47-9952-42 

CD38 APC/Fire810 HIT2 Biolegend 303550 
 
 
Data processing and transformation 
Bulk RNA-seq data processing 
Sequencing reads from Plate 5 were adaptor- and quality-trimmed to 100 bp using 
Trimmomatic12 to match the read length of the other plates (resulting reads with less than 100 
bp were discarded). Reads were then aligned to the human genome hg38 using the STAR 
aligner. Duplicate reads from PCR amplification were removed based on Unique Molecular 
Identifiers (UMI). Gene expression quantification was performed using the featureCounts13 
function from Subread package. Samples with less than 5 million assigned reads were re-
sequenced and replaced. Reads were normalized and log transformed using limma voom14. 
Lowly expressed genes, defined as having fewer than five samples with > 0.5 counts per million 
reads, were removed. Pre-vaccination (days -7 and 0) samples from the same healthy control 
(HC) subjects were considered as replicates and were used to estimate latent technical factors 
by the RUVs function from the SeqRUV15 R package. Four latent variables were included to 
derive normalized gene expression values used for visualization and when specifically noted. 
Variable genes based on intra-subject variability of pre-vaccination samples in the HCs and 
across technical replicates were filtered out, resulting in a total of 10017 remaining genes for 
downstream analyses. 
 
OLINK serum proteomics 
Missing values were imputed using k-nearest neighbors approach with k=10. For each sample, 
probes targeting the same protein were averaged. 
 
Cytek flow cytometry 
Cell frequencies were generated by converting cell counts as fraction of live cells or 
lymphocytes as specified. The frequency data were log2 transformed for linear modeling. For 
populations with zero counts in any of the samples, an offset equaling to half of the smallest 
non-zero value was added across samples. 
 
CBC with diff and TBNK 
Both absolute and relative counts were log2 transformed for linear modeling. For parameters 
with zero values in any of the samples, an offset equaling to half of the smallest non-zero value 
was added across samples. 
 
Serology 
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Influenza antibody titer and surface plasmon resonance (SPR)-based antibody affinity data were 
log2 transformed for linear modeling. Maximum titer (shown in Fig. 2c) was calculated by 
normalizing titer levels across all samples from both day 0 and day 28 individually for each of 
the four strains followed by taking the maximum standardized titer for each sample. Maximum 
fold change (MFC; shown in Extended Data Fig. 3c) was defined in16 and as the maximum of the 
day 28 over day 0 fold change across all titers, based on normalized values. 
 
Baseline differential expression analysis 
Using the dream17 function in the variancePartition R package, mixed-effects models were 
applied to determine differential levels of analytes (i.e. whole-blood gene expression, serum 
proteins, cell frequencies, flu titer and SPR, and hematological parameters) between COVID-
recovered and HC subjects in a sex-specific manner as follows: 
 
 ~ 0 + group:sex + age + race + batch.effects +  (1|subject.id) 
 
Batch effect-related covariates were added to specific models depending on the assay type. For 
bulk RNA-seq, these include the four latent technical factors (see Bulk RNA-seq data 
processing) and the timepoint-matched % neutrophils parameter from the CBC panel. For the 
Cytek and Olink platforms, sampling batch/plate was included as covariates. In addition to day 
0, available samples from day -7 (in RNA-seq and CBC panel), were included as baseline 
replicates in the modeling.   
 
Sex-specific group differences were computed from the contrasts covid.Female – 
healthy.Female and covid.Male – healthy.Male. Overall COVID vs. HC difference was 
determined by combining the two contrasts, i.e. (covid.Female – healthy.Female)/2 + 
(covid.Male – healthy.Male)/2. Sex difference linked to SARS-CoV2 infection was derived from 
the contrast (covid.male – covid.female) – (healthy.male – healthy.female) to account for 
normal differences between males and females. P values were adjusted for multiple testing 
within each assay type and contrast combination using the Benjamini-Hochberg (BH) method 
(Benjamini and Hochberg, 1995). 
 
Association with time since COVID-19 diagnosis 
To evaluate whether any of the differences detected at baseline had stabilized or might still be 
resolving, a linear model was used to test the association of relevant parameters with the time 
since COVID-19 diagnosis (TSD) among COVID-recovered subjects: 
 
~ 0 + sex + sex:scale(TSD) + age + race + (1|subject.id) 
 
Two asymptomatic subjects without known TSD were excluded from the model.  Association 
was assessed separately for females and males, and jointly by the combined contrast 
(Female:TSD + Male:TSD)/2. Dependent variables were converted to ranks in the model to 
reduce the effect of potential outliers.  
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Using a conservative approach, genes were classified as TSD-associated if they had an 
unadjusted p value < 0.05 and were excluded from subsequent analyses as specified. To 
determine whether the any of the baseline differential gene sets were associated with TSD 
(Extended Data Fig. 1a), leading edge gene (LEG) modules were derived from the union of all 
LEGs of the same gene set from different contrasts (see Gene set module scores). A gene set 
was considered stable if none of three contrasts tested in the association model were 
significant (using unadjusted p value threshold of 0.05). 
 
Post-vaccination differential expression analysis 
Similar to the workflow employed in baseline differential expression analysis, mixed-effects 
models were created to evaluate changes and group differences at each available timepoint 
after vaccination. Subjects aged 65 and above were excluded as they received a different type 
of vaccine. In addition to the baseline covariates, the model also accounts for the participants’ 
flu vaccination history within last 10 years as follows:  
 
~ 0 + visit:group:sex + age + race + flu.vax.count.10yr + batch.effects + (1|subject.id) 
 
Three types of comparisons were examined using this model: 

1. Timepoint-specific group differences 
Similar to the contrasts in the baseline model, but for individual timepoints post 
vaccination (day 1 to day 100).   

2. Vaccine-induced changes in group difference  
Similar to the timepoint-specific contrasts above, but additionally subtracting off the 
corresponding baseline contrast to assess changes relative to the baseline. For 
example, vaccine-induced changes for female COVID vs. HC differences at D1 is 
evaluated with the contrast: (D1.covid.Female – D1.healthy.Female) – 
(Baseline.covid.Female – Baseline.healthy.Female).  

3. Reversal of COVID vs. HC difference  
Instead of using the HC subjects at the same corresponding timepoints as reference, 
post-vaccination samples from the COVID-recovered subjects were compared to 
baseline HC with the contrasts [timepoint].covid.Female – baseline.healthy.Female 
and [timepoint].covid.Male – baseline.healthy.Male. These contrasts can inform 
whether any pre-vaccination differences observed in the COVID-recovered subjects 
were reverted towards healthy baseline levels after vaccination. Reversal is defined as 
having smaller absolute effect size (using the z.std value from the dream function) at 
D1 and D28 after vaccination compared to the baseline absolute effect size.  

 
P values were adjusted for multiple testing per each timepoint, assay type and contrast 
combination using the BH method. 
 
Gene set enrichment of differentially expressed (DE) genes 
Enriched gene sets were identified using the pre-ranked gene-set enrichment analysis (GSEA) 
algorithm implemented in the clusterProfiler R package18. Genes were ranked using signed -
log10 p values from differential expression models. Enrichment was assessed with gene set lists 
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from MSigDB’s Hallmark collection19, Blood Transcriptomic Modules20, and cell type gene 
signatures21. Only gene sets with 10 to 300 genes were considered. P values were adjusted per 
gene set list for each contrast using the BH method and gene sets with FDR < 0.05 were 
considered significant. Baseline enriched gene sets were derived by intersecting significant gene 
sets extracted from DE models using samples independently from day -7, day 0, and both days 
combined.  Genes associated with time since diagnosis (TSD) at baseline (see Association with 
time since COVID-19 diagnosis; Extended Data Table 3) were excluded from the post-
vaccination enrichment analyses to help segregate the effect of vaccination from natural 
temporal resolution of the SARS-CoV-2 infection. 
 
Gene set module scores 
Gene set module scores were generated from SeqRUV normalized gene expression values (see 
Bulk RNA-seq data processing and transformation) using gene set variation analysis (GSVA) 
method in GSVA R package22. LEG module scores representing enriched pathway activities were 
calculated for relevant samples using LEGs identified by GSEA to enhance signal-to-noise ratio. 
The average scores between days -7 and 0 were used for calculating post-vaccination changes 
relative to baseline. 
 
Endpoint association 
To evaluate the association of relevant parameters, including gene set module scores and cell 
frequencies, with interferon (IFN) or antibody titer fold change endpoints, the following model 
was applied:  
 
endpoint ~ group:sex + scale(parameter):group:sex + age + race + flu.vax.count.10yr 
 
The endpoint values were converted to rank to reduce the effects of potential outliers. 
Replicates from the same subjects were averaged. 
 
Concordance in natural influenza infection cohort 
A prospective cohort study with subjects profiled prior to and at least 21 days after natural 
influenza infection in two seasons23 was utilized to assess residual effects of the infection 
separately in males and females. Gene expression data were downloaded from GEO using the 
accession GSE68310. Subjects with only influenza A virus infection (n=51 females and 35 males) 
were identified and included for this analysis. Lowly expressed probes were removed, and the 
remaining data were converted to gene-based expressions. No additional processing steps were 
performed as the data were already normalized. 
 
Separately for each season, differential expression analysis between baseline (pre-infection) 
and spring (long term post-infection) samples from the same individuals were performed using 
the dream function in the variancePartition R package. A mixed-effects model accounting for flu 
vaccination history and disease severity (based on fever grade: none, low, and high) was 
constructed as follows: 
 
~ 0 + timepoint:sex + age + num.flu.vaccination + fever.grade + (1|subject.id) 
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Differentially expressed (DE) genes were identified using the contrasts Spring.F - Baseline.F and 
Spring.M – Baseline.M for females and males, respectively.  Sex difference was evaluated by 
the contrast (Spring.M – Baseline.M) – (Spring.F - Baseline.F). Concordance of DE results 
between the two seasons were evaluated based on correlation of effect size across genes (z.std 
values generated by dream). 
 
Enrichment analysis was performed to determine whether the same set of genes were 
differentially expressed between pre- and post-influenza infection from this independent 
cohort and in COVID-recovered subjects compared to healthy controls prior to vaccination. To 
better match the age range of subjects between the two studies, baseline differential gene 
analysis was performed again with subjects under 65 years of age in the COVID cohort (see 
Baseline differential expression analysis). Given that the males showed stronger concordance 
between the two flu seasons (Extended Data Fig. 2b), COVID DE genes were ranked by signed -
log10 p values and tested against a gene set formed by the intersect of DE (p < 0.05) genes in 
males from the flu infection cohort.    
 
CITE-seq  
a) Single cell CITE-seq processing 
Frozen PBMC samples were thawed, recovered and washed using RPMI media with 10% FBS 
and 10mg/mL DNase I (STEMCELL) and then processed as previously described24 for CITE-seq 
staining. In brief, samples from different donors were pooled and different timepoints from the 
same donor were pooled separately so that each pool contains only one timepoint from one 
donor. PBMC pools were Fc blocked (Human TruStain FcX, BioLegend) and stained with 
Totalseq-C human ‘hashtag’ antibodies (BioLegend), washed with CITE-seq staining buffer (2% 
BSA in PBS). Then hashtagged PBMC pools were combined and cells were stained with a 
cocktail of TotalSeq-C human lyophilized panel (BioLegend) of 137 surface proteins (including 7 
isotype controls, refer to repository table) and SARS-CoV-2 S1 protein probe. Then, cells were 
washed, resuspended in PBS, and counted before proceeding immediately to the single cell 
partition step. 
  
b) Single cell CITE-seq library construction and sequencing 
PBMC samples were partitioned into single cell Gel-Bead in Emulsion (GEM) mixed together 
with the reverse transcription (RT) mix using 10x 5’ Chromium Single Cell Immune Profiling Next 
GEM v2 chemistry (10x Genomics, Pleasanton, CA), as previously described24. The RT step was 
conducted in the Veriti™ Thermal Cycler (ThermoFisher Scientific, Waltham, MA). Single cell 
gene expression, cell surface protein, T cell receptor (TCR) and B cell receptor (BCR) libraries 
were prepared as instructed by 10x Genomics user guides 
(https://www.10xgenomics.com/resources/user-guides/). All libraries were quality controlled 
using Bioanalyzer (Agilent, Santa Clara, CA) and quantified using Qubit Fluorometric 
(ThermoFisher). 10x Genomics 5’ Single cell gene expression, cell surface protein tag, TCR and 
BCR libraries were pooled and sequenced on Illumina NovaSeq platform (Illumina, San Diego, 
CA) using the following sequencing parameters: read1-100-cycle, i7-10-, i5-10, read2-100. 
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CITE-seq data processing and statistical analyses 
a) Single cell sample demultiplexing and preprocessing 
Single cell sequencing data was demultiplexed, converted to FASTQ format, mapped to human 
hg19 reference genome and counted using CellRanger (10x Genomics) pipeline. The sample 
level demultiplex was done based on two levels as previously described24: 1) Hashtag antibody 
staining to distinguish different timepoint samples from a same subject; 2) single nucleotide 
polymorphisms (SNPs) called from the whole blood RNA-seq data to identify different subjects. 
Specifically, CellRanger version 6.0.1 was used for generating count matrix and the software 
package demuxlet (v2, from the ‘popscle’ software suite)25 was used to match single cell gene 
expression data to each donor and identify empty droplets and doublets. 
 
b) Single-cell data clustering and cell annotation 
Single-cell data were further processed using Seurat (v4.0.3) running in R v4.1.1. We removed 
cells with less than 200 and greater than 5,000 detected genes, greater than 15% mitochondrial 
reads, cell surface protein tag greater than 60,000, and hashtag antibody counts greater than 
20,000. The protein data was normalized and denoised using the DSB method26. The following 
parameters were used in the dsb normalization function: define.pseudocount = TRUE, 
pseudocount.use = 10, denoise_counts = TRUE, use.isotype.control = TRUE. The DSB-
normalized protein data were used to generate the top variable features (n = 100) and principal 
components (PCs). Then the shared nearest neighbor (SNN) graph followed by k-nearest 
neighbors clustering were built using the FindNeighbors and FindClusters functions using first 
15 PCs in Seurat (v4.0.3), respectively. Cell clusters were quality controlled based on their 
nearest neighbors and cell surface proteins. Cells were then further clustered within each major 
cell population using “weighted-nearest neighbor” (WNN) analysis in Seurat (v4.0.3) by 
integrating both cell surface protein and gene expression modalities. The WNN clusters were 
manually annotated using the surface protein together with gene expression. 
 
c) Pseudobulk differential expression and gene set enrichment analysis 
Pseudobulk gene differential expression analysis and gene set enrichment analysis (GSEA) were 
performed as described before24. Briefly, cells from a given sample were computationally 
“pooled” according to their cluster assignment by summing all reads for a given gene. 
Pseudobulk libraries made up by few cells and therefore likely not modeled properly by bulk 
differential expression methods were removed from analysis for each cell-type to remove 
samples that contained fewer than 4 cells and less than 35000 library size after pooling. Lowly 
expressed genes were removed for each cell type individually using the filterByExpr function 
from edgeR27. Differentially expressed genes were identified using the limma voom workflow 
which models the log of the counts per million (cpm) of each gene14. Scaling factors for library 
size normalization were calculated with the calcNormFactors function with “RLE” method. 
Genes were ranked using the (sign of fold change)*-log10(p-value) for the relevant coefficient 
from the limma voom model. Enriched gene sets were identified using the pre-ranked GSEA 
algorithm implemented in the FGSEA R package28. 
 
To further digest the differences between baseline groups, the gene set list used for single-cell 
enrichment analysis was derived from the significance of GSEA results of whole blood RNA-seq 
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data above (see Gene set enrichment of differentially expressed (DE) genes). The significantly 
enriched gene sets are from day 0 female COVID vs. healthy and day 0 male COVID vs. healthy 
test models (without neutrophil number correction). The Monaco gene sets were then excluded 
for the single-cell analysis given the cell clusters were annotated and no further cell type 
demultiplex needed. 
 
Models used for differential expression: 
Using the pseudobulk limma voom workflow as described above, differentially expressed genes 
between patient groups were identified with a model using all samples with the following 
formula in R: "~0 + Timepoint.sex.group + age", where Timepoint.sex.group is a factor variable 
with eight levels including all timepoints (D0, D1), sex (Female, Male) and COVID-19 or healthy 
groups: 1) D0.Female.COVID; 2) D0.Female.healthy; 3) D0.Male.COVID; 4) D0.Male.healthy; 5) 
D1.Female.COVID; 6) D1.Female.healthy; 7) D1.Male.COVID; 8) D1.Male.healthy. The 
contrasts.fit function in limma was then used to compare the estimated means between 
different groups. 
 
d) Within monocyte clustering using leading-edge genes from gene set enrichment analysis 
Single monocytes were separately clustered using mRNA expression profiles of the leading-
edge (LE) genes in the BTM modules “btm_M4.0_cell cycle and transcription” and 
“btm_M11.0_enriched in monocytes (II)” which are significantly associated with D0 COVID vs. 
D0 healthy in both males and females from the above GSEA analyses for the classical 
monocytes. Specifically, the union of the LEGs from D0.Female.COVID vs. D0.Female.healthy 
and D0.Male.COVID vs. D0.Male.healthy in classical monocytes were used. Clustering was 
performed on the scaled RNA data after regressing out subject variation using ScaleData 
function in Seurat. PCA was performed using those LEGs, and the shared nearest neighbors 
graph was constructed using the top 15 PCs and clustering was performed on the graph using a 
resolution of 1 using FindNeighbors and FindClusters functions in Seurat, respectively. 
 
e) Single-cell module score calculation and Visualization 
To visualize the differences between D0.healthy, D0.COVID and D1.COVID gene expression 
change in single monocytes of the BTM M4.0 and M11.0 monocyte signatures, the resolving 
LEGs from the two modules were used to calculate the module scores of each cell. The 
resolving genes were defined by genes with lower moderated T statistics for the relevant 
coefficient from the limma voom model at D1.COVID vs. D0.healthy compared to D0.COVD vs. 
D0.healthy. Module scores were calculated using AddModuleScore function in Seurat. Then the 
module score for each cell in a certain cluster was scaled across cells within the cluster. Cells 
from D0.healthy, D0.COVID and D1.COVID groups were down-sampled to the same number of 
cells. The UMAP embeddings of cells colored with scaled module scores were shown. 
 
f) Gene set module score calculation 
Module scores (gene set signature score) representing enriched pathway activities were 
calculated for each pseudobulk sample of certain cell types. Specifically, LEG of BTM modules 
M4.0 and M11.0 were identified by GSEA from 1) D0.Female.COVID vs. D0.Female.healthy and 
2) D0.Male.COVID vs. D0.Male.healthy models. The genes which are also resolving at D1 (see 
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definition above in “e) Single-cell module score calculation and Visualization”) from each model 
were used for the score calculation for female and male samples, respectively. The pseudobulk 
gene counts were normalized with the varianceStabilizingTransformation function from DEseq2 
R package29. The scores were then generated using gene set variation analysis (GSVA) method 
from the GSVA R package22. 
 
g) Within monocyte clustering and single-cell module score calculation of external acute COVID-
19 single-cell CITE-seq data 
Single-cell data from the Brescia cohort of Liu et al.24 was downloaded from GEO. Single 
monocytes data was extracted and separately clustered using mRNA expression profiles of the 
same union LEGs in “d) Within monocyte clustering using leading-edge genes from gene set 
enrichment analysis”. The module score of each single cell was generated and visualized using 
those LEGs as described in “e) Single-cell module score calculation and Visualization”. 
 
h) Gene set module score calculation of external acute COVID-19 single-cell CITE-seq data 
Single-cell data from the Brescia cohort were pooled as described in “c) Pseudobulk differential 
expression and gene set enrichment analysis”. The gene set module scores of BTM modules 
M4.0 and M11.0 for all samples were generated using the union LEGs in “d) Within monocyte 
clustering using leading-edge genes from gene set enrichment analysis”. The pseudobulk gene 
counts were normalized with the varianceStabilizingTransformation function from DEseq2 R 
package29. The scores were then generated using gene set variation analysis (GSVA) method 
from the GSVA R package22. 
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