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The short chain fatty acid propionate stimulates GLP-1 and
PYY secretion via free fatty acid receptor 2 in rodents
A Psichas1, ML Sleeth1, KG Murphy2, L Brooks2, GA Bewick2,3, AC Hanyaloglu4, MA Ghatei2, SR Bloom2 and G Frost1

BACKGROUND AND OBJECTIVES: The gut hormones peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) acutely suppress
appetite. The short chain fatty acid (SCFA) receptor, free fatty acid receptor 2 (FFA2) is present on colonic enteroendocrine L cells,
and a role has been suggested for SCFAs in appetite regulation. Here, we characterise the in vitro and in vivo effects of colonic
propionate on PYY and GLP-1 release in rodents, and investigate the role of FFA2 in mediating these effects using FFA2
knockout mice.
METHODS: We used Wistar rats, C57BL6 mice and free fatty acid receptor 2 knockout (FFA− /−) mice on a C57BL6 background to
explore the impact of the SCFA propionate on PYY and GLP-1 release. Isolated colonic crypt cultures were used to assess the effects
of propionate on gut hormone release in vitro. We subsequently developed an in vivo technique to assess gut hormone release into
the portal vein following colonic infusion of propionate.
RESULTS: Propionate stimulated the secretion of both PYY and GLP-1 from wild-type primary murine colonic crypt cultures. This
effect was significantly attenuated in cultures from FFA2− /− mice. Intra-colonic infusion of propionate elevated PYY and GLP-1
levels in jugular vein plasma in rats and in portal vein plasma in both rats and mice. However, propionate did not significantly
stimulate gut hormone release in FFA2− /− mice.
CONCLUSIONS: Intra-colonic administration of propionate stimulates the concurrent release of both GLP-1 and PYY in rats and
mice. These data demonstrate that FFA2 deficiency impairs SCFA-induced gut hormone secretion both in vitro and in vivo.
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INTRODUCTION
The anorexigenic gut hormone peptide YY (PYY) and the
incretin glucagon-like peptide 1 (GLP-1) acutely suppress appetite
following their co-release from enteroendocrine L cells.1 Evidence
suggests that the displacement of nutrients in the gut caused by
procedures such as the RYGB (roux-en-Y gastric bypass) may
mediate the dramatic effects on weight loss and type 2 diabetes
of these surgeries, at least in part through the release of PYY and
GLP-1.2,3 An understanding of how nutrients stimulate PYY and
GLP-1 secretion could lead to more effective nutritional manage-
ment and/or prevention of obesity.
Nutrient-stimulated gut hormone release from L cells is well

documented.4 However, the majority of ingested nutrients are
absorbed in the small intestine, before reaching the large intestine
which harbours the highest density of L cells.5 Interestingly, the
colon is a major site of gut bacterial fermentation, yielding high
levels of short chain fatty acids (SCFAs, 70–130 mmol l− 1).6 The
main substrates for the production of SCFAs by the colonic
microbiota are dietary carbohydrates that have escaped digestion
in the small intestine, collectively referred to as dietary fibre. It is of
interest that over man’s evolution the amount of plant material
consumed has decreased tremendously; the daily dietary fibre
intake in hominins (who mainly consumed grasses and sedges) is
estimated to have been over 100 g, while the modern western diet
often results in daily intake below 15 g. Therefore, the amount of
material being fermented in the colon has reduced markedly.

SCFAs mediate some of their biological effects via the G protein-
coupled receptors FFA2 and FFA3, and there has been increased
interest recently in the beneficial role of FFA2 in gastrointestinal
physiology and immune function, as well as in energy and glucose
homeostasis.7–10 It was recently demonstrated that FFA2 protects
mice from hyperphagia, obesity and insulin resistance on a high-
fat diet.7 Furthermore, FFA2-deficient mice have been reported to
demonstrate impaired glucose tolerance on a normal chow diet.10

These effects may be accounted for, at least in part, by SCFA- and
FFA2-mediated stimulation of gut hormone release. Indeed,
Tolhurst et al.10 recently demonstrated that active GLP-1 secretion
in response to SCFAs is attenuated from primary FFA2− /− murine
L cells in vitro. However, the effect of SCFAs on PYY secretion from
primary colonic cultures has not previously been investigated, and
it is unknown whether FFA2-dependent effects on gut hormone
release in vitro are relevant in vivo. Recent evidence suggests that
the SCFA propionate, which has a high affinity for FFA2,11 may
have a role in the enhanced gut hormone release observed
following RYGB for the treatment of obesity.12 In addition,
propionate is an end-product of fermentation and thus is not
cross-metabolised by the microbiota unlike acetate and
butyrate.13

We therefore aimed to characterise in rodents (1) the effect of
colonic propionate on PYY and GLP-1 release, and (2) the role of
FFA2 in mediating these effects, both in vitro and in vivo.
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MATERIALS AND METHODS
In vitro
Colonic culture preparation. The colons of male C57BL6 mice (⩾8 weeks of
age; Harlan Laboratories, Bicester, UK) were removed, cleaned and placed
into ice-cold L-15 (Leibowitz) medium (PAA, Yeovil, UK). The intestinal
tissue was thoroughly cleaned with L-15 medium and digested with 0.4
mgml− 1 collagenase XI (Sigma, Poole, UK) in high-glucose DMEM at 37 oC,
as described previously.14 Resulting cell suspensions were centrifuged
(5min, 300 g) and the pellets were resuspended in DMEM (supplemented
with 10% fetal calf serum and 1% antibiotics, 100 Uml− 1 penicillin and
0.1 mgml− 1 streptomycin). Combined cell suspensions were filtered
through a nylon mesh (pore size ~ 250 μm) and plated onto 24-well, 1%
Matrigel-coated plates. The plates were incubated overnight at 37 oC in an
atmosphere of 95% O2 and 5% CO2.

Gut hormone secretion experiments. Secretion experiments were carried
out within 24 h of plating. The cells were washed three times with
secretion buffer (4.5 mM KCl, 138 mM NaCl, 4.2 mM NaHCO3, 1.2 mM

NaH2PO4, 2.6 mM CaCl2, 1.2 mM MgCl2, and 10mM HEPES, which was
adjusted to pH 7.4 with NaOH) supplemented with 0.1% fatty acid-free
bovine albumin serum (BSA; Sigma). The cells were then incubated in
secretion buffer containing test reagents for 2 h at 37 oC in an atmosphere
of 95% O2 and 5% CO2. The adenylyl cyclase activator forskolin (Sigma) and
the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX;
Sigma) were prepared as 10mmol l− 1 stock solutions in dimethyl sulfoxide
and used at a final concentration of 10 μmol l− 1 each. Test solutions were
prepared on the day of the secretion experiment. Test reagents were not
cytotoxic as determined by a lactate dehydrogenase cytotoxicity assay
(G-Biosciences, Maryland Heights, MO, USA).
Following incubation, cell supernatants were collected and centrifuged

(3min, 100 g). The resulting supernatants were then stored at − 20 oC
pending analysis. The plated cells were treated with cell lysis buffer and
scraped, and following centrifugation the lysates were stored at − 20 oC
pending analysis.
Gut hormone secretion was calculated as a fraction of the total hormone

(secreted+extracted) measured from each well and expressed relative to
basal secretion measured during the same experiment.

In vivo
Animals and housing. All animal procedures undertaken were approved by
the local ethics committee and conformed to Home Office regulations. On
arrival, male Wistar rats (Charles River, Margate, UK) or male C57BL6 mice
(Harlan Laboratories) were housed in pairs and maintained at 21–23 oC on a
12-h light, 12-h dark cycle (light period 0700–1900 h). During the 72-h
acclimatisation period, all rodents were given ad libitum access to water and
RM1 standard chow (RM1 diet; Special Diet Services Ltd., Witham, Essex, UK).
FFA2 knockout mice were obtained from Professor McKay at the Garven
Institute. FFA2 was knocked out by homologous recombination which
substitutes 55 bp of FFA2 exon 1 with the β-gal-neo cassette, shifting the
downstream amino-acid sequence out of the reading frame.15

Intra-colonic administration of propionate in rats. Male Wistar rats
(200–250 g) were fasted overnight (with ad libitum access to water) and
anaesthetised under isoflurane (1.5–4%; 2 L per minute O2 flow). A jugular
vein cannulation and laparatomy were performed. Two baseline jugular vein
blood samples were collected at t=− 15 and t=0min. Propionic acid (180
mmol l−1, 2.5 ml (~0.45mmol) pH 5.5 using NaOH) or saline control
(matched for pH and sodium content) was injected into the rat proximal
colon distal to the caecum. At t=15min a portal vein sample and a jugular
vein sample were collected. Further jugular vein samples were collected at
t=30 and t=60min. Blood samples were collected into eppendorfs
containing DPPIV inhibitor (Millipore, Abingdon, Oxfordshire, UK; 1 μl per
100 μl blood, 100 μmol l− 1 final concentration) and protease inhibitor
cocktail (Sigma; 1 μl per 100 μl blood). Blood samples were centrifuged for
10min for separation of plasma. Separated plasma was placed immediately
on dry ice. Samples were stored at − 20 oC pending gut hormone analysis.

Intra-colonic administration of propionate in wild-type and FFA2− /−

mice. Male C57BL6 or FFA2− /− mice were anaesthetised under isoflurane
(1.5–4%; 2 L per minute O2 flow) and a laparotomy was performed. The
mice received an intra-colonic injection (300 μl) of saline or propionic acid
(180mmol l− 1, matched for pH and sodium content). Portal vein blood was

collected 5min post injection, using an established sampling
technique.16,17 Plasma was separated and stored as above.

Gut hormone analysis. Total GLP-1 and PYY levels in cell supernatants and
lysates, and in plasma, were measured using sensitive and specific
in-house radioimmunoassays as previously described.18,19

Statistical analysis. Normality was determined using the D'Agostino-
Pearson omnibus test where n⩾ 8 per group. Statistical significance was
calculated by unpaired t-test, one-way ANOVA or two-way ANOVA, as
appropriate. Pairwise comparisons were carried out using a Bonferroni
multiple comparison post hoc test. Statistical significance was accepted at
Po0.05 throughout. Data are presented as mean± s.e.m. Analysis was
carried out using Graph Pad Prism software, version 5.0 (La Jolla, CA, USA).

RESULTS
Propionate stimulates the release of PYY and GLP-1 from primary
murine L cells
In primary murine colonic cultures, physiological concentrations of
propionate (1–50mmol l− 1)20 significantly stimulated GLP-1 and
PYY secretion over a 2-h incubation (Figures 1a and c). The higher
concentration of propionate induced a 1.8- and 2.2-fold increase
in PYY and GLP-1 release, respectively. Furthermore, the effect of
50mmol l− 1 propionate on gut hormone release remained highly
significant when compared with an iso-osmotic NaCl control
(Figures 1b and d).

Intra-colonic administration of propionate increases circulating
and portal vein plasma PYY and GLP-1 concentrations in rats
An in vivo model was developed to enable the assessment of
plasma gut hormone profiles, induced by a single intra-colonic
injection of propionate. Propionate was injected into the colon,
jugular vein blood samples collected over the following 60-min
time period, and a single blood sample taken from the portal vein
at 15min. An intra-colonic injection of 180 mmol l− 1 propionate
(a total dose of ~ 0.45mmol) vs saline control (matched for sodium
content and pH) in anaesthetised rats resulted in a significant rise
in circulating plasma PYY and GLP-1 levels (two-way ANOVA,
effect of treatment P= 0.024 and P= 0.023, respectively). Circulat-
ing plasma GLP-1 levels peaked at 30 min, whereas plasma PYY
levels rose steadily and remained elevated at 60 min (Figures 2a
and c). Furthermore, portal vein PYY and GLP-1 levels at 15 min
were elevated compared with saline (PYY, 76.5 ± 9.4 vs 53.8 ± 9.6
pmol l− 1 and GLP-1, 13.8 ± 4.1 vs 8.7 ± 1.9 pmol l− 1), but these
differences were not statistically significant (Figures 2b and d).

Propionate-induced gut hormone release is attenuated in FFA2− /−

primary murine L cells
To evaluate the role of FFA2 in mediating propionate-induced PYY
and GLP-1 secretion, we examined the effect of propionate on gut
hormone secretion from primary colonic cultures from FFA2-
deficient mice (FFA2− /−). Incubation of wild-type (WT) murine
colonic cultures with 50 mmol l− 1 propionate robustly stimulated
PYY and GLP-1 secretion from primary L cells (~2-fold, Figures 3a
and b). However, the response to propionate (relative to basal)
was markedly attenuated in FFA2− /− colonic cultures compared
with WT (PYY, 1.2- vs 2.1-fold and GLP-1, 1.3- vs 2.0-fold) (Figures
3a and b).

Intra-colonic propionate increases plasma gut hormone levels via
an FFA2-dependent mechanism in mice
To determine whether the reduced PYY and GLP-1 secretory
responses to propionate observed in primary colonic cultures from
FFA2− /− mice in vitro translated into impaired gut hormone
secretion from these mice in vivo, portal vein plasma PYY and
GLP-1 responses to a single intra-colonic injection of propionic
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acid (180mmol l− 1) or saline control were investigated in FFA2− /−

mice compared with their WT littermates. In the WT animals,
propionate led to a significant 1.3- and 1.6-fold increase in portal
vein PYY and GLP-1 levels above saline, respectively (both
Po0.05) (Figure 4). No change was observed in the FFA2− /−

group. There was no difference between the two genotypes in
portal vein plasma GLP-1 and PYY levels 5 min after an intra-
colonic administration of saline (Figure 4).

DISCUSSION
Our studies demonstrate that intra-colonic administration of
propionate stimulates the concurrent release of both GLP-1 and
PYY in rodents, and demonstrate in vitro, and for the first time
in vivo, that FFA2 deficiency impairs SCFA-induced gut hormone
secretion.
It has been hypothesised for some time that SCFAs acting via

their receptors FFA2 and FFA3, which are enriched in colonic
enteroendocrine L cells, stimulate the release of anorexigenic and
incretin gut hormones.10,21,22 In support of this hypothesis, recent
work by Tolhurst et al.10 demonstrated that FFA2− /− primary
colonic cultures have an attenuated GLP-1 response to SCFAs. Our
work confirms this effect, and also demonstrates that SCFA-
stimulated PYY release is attenuated in the same model.
Even at the low concentration of 1 mmol l− 1, propionate was

able to significantly induce both GLP-1 and PYY release from

murine primary L cells. These results are in accordance with
previous findings for GLP-1.8,10 In contrast to the high physio-
logical concentrations of SCFAs reported in the gut lumen, 1
mmol l− 1 is more in line with the EC50 of FFA2 for SCFAs.11,23

Several hypotheses have been put forward to account for this
discrepancy. Firstly, it is possible that L cells in vivo are exposed to
lower SCFA concentrations due to absorption of SCFAs by
surrounding colonocytes and/or due to the presence of the
mucous layer.10 Therefore, the luminal concentration may not
reflect the concentration at the level of the L cell surface.
Secondly, Nøhr et al.8 proposed that colonic enteroendocrine cells
may sense the considerably lower concentration of SCFAs found
at the basolateral surface.8 Alternatively, Tolhurst et al.10 also
speculated that colonic SCFAs may have a role in providing a
chronic stimulatory tone on L cells via apical or basolateral SCFA
receptors, which could account for the presence of circulating gut
hormones in the fasted state. In our studies, we were unable to
detect a difference in fasting levels of GLP-1 (following saline
injection), but this may be due to a difference in fasting duration
(4 h vs overnight). The longer fasting period would be expected to
reduce colonic SCFA levels and thus reduce stimulatory tone at
the receptor.
It is critical to demonstrate that findings in vitro also translate

into the in vivo setting. In this context, it was important to
demonstrate that luminal propionate was able to stimulate gut
hormone release. Furthermore, in light of the differential release of

Figure 1. The effect of propionate on GLP-1 and PYY secretion from primary murine L cells. Mixed primary colonic cultures were incubated
with propionate (1–50mmol l− 1) (a, c). At a concentration of 50mmol l− 1, NaCl had no effect on gut hormone release (b, d). GLP-1 and PYY
secretion in each well was expressed as a percentage of total GLP-1 or PYY contained within the well and normalised to the basal secretion
measured in parallel within the same experiment. Data represent means± s.e.m. (n= 6–24 wells). Significance is shown relative to basal
secretion (0 mmol l− 1) (a, c) or to the iso-osmotic NaCl control (b, d) using one-way ANOVA (a, F= 11.73, Po0.0001; b, F= 7.931, P= 0.0022;
c, F= 24.75, Po0.0001; d, F= 25.99, Po0.0001) with a Bonferroni post hoc test (*Po0.05, **Po0.01, ***Po0.001).
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GLP-1 and PYY observed under certain conditions in response to
SCFAs in rats,24,25 measurement of both gut hormones in parallel
was necessary. Intra-colonic administration of propionate signifi-
cantly increased plasma levels of both gut hormones in rats
and mice.
A model was developed to enable the simultaneous measure-

ment of gut hormone levels in both the portal and peripheral
circulation following intra-colonic administration of propionate in
anaesthetised rats. The observed 18.6- and 20.9 pmol/l rise in
circulating plasma PYY levels at 30 and 60min is in line with
previous studies which administered a mixture of SCFAs.26,27 In
contrast to previous studies that failed to show an effect of SCFAs
on GLP-1,24,25 the data presented here suggest that both PYY and
GLP-1 were elevated in parallel following intra-colonic adminis-
tration of propionate. However, the GLP-1 response was more
transient in nature; GLP-1 peaked at 30 min but the levels were
not maintained and were reduced at 60 min.
Portal vein GLP-1 concentrations recorded in this study

(8.7 ± 1.9 pmol l− 1) were similar to those reported in the literature
(7.8 ± 0.7 pmol l− 1 (ref. 16) and 9.0 ± 0.7 pmol l− 1 (ref. 28)). Portal
vein plasma levels of both PYY and GLP-1 were elevated 15 min
following the administration of propionate compared with saline
(1.4- and 1.6-fold, respectively), though these differences were not

statistically significant. However, it is possible that the time point
chosen was too delayed to detect the peak in portal vein gut
hormone levels; significantly increased portal vein gut hormone
levels were detected at 5 min in the mouse study.
In this paper, we have chosen to focus on the SCFA propionate.

Propionate-induced PYY and GLP-1 release was significantly lower
from primary colonic cultures derived from FFA2− /− mice
compared with WT cultures. However, the FFA2− /− colonic
cultures maintained a robust gut hormone response to elevated
intracellular cAMP concentrations (Supplementary Figure 1),
suggesting that the intracellular machinery required for gut
hormone release is intact.
Despite the fact that the majority of in vitro work has been

carried out in primary murine L cells and mouse-derived cell lines,
the effect of colonic administration of SCFAs on plasma gut
hormone levels in mice has not previously been investigated. The
rat portal vein sampling procedure described above was adapted
for use in mice, to enable the measurement of portal vein plasma
gut hormone levels following intra-colonic administration of
propionate. Basal GLP-1 values (13.1 ± 8.5 pmol l− 1) were similar
to those reported in the literature (~16 pmol l− 1, ref. 17). Notably,
both basal and stimulated mouse portal vein gut hormone levels
were higher than those in rats (basal PYY, ~ 2-fold and GLP-1,

Figure 2. Intra-colonic administration of propionate increases jugular and portal vein plasma gut hormone concentrations in male Wistar rats.
Blood samples were collected over a 60-min period, via a jugular vein cannula (a, c), and at t= 15 min from the portal vein (b, d), following an
intra-colonic injection (2.5 ml) of 180mmol l− 1 propionate or saline (matched for pH and sodium content) in isoflurane-anaesthetised rats.
Data represent means± s.e.m. (n= 10–14 per group). Significance was determined using two-way ANOVA (a, c) or unpaired t-test (b, d)
(*Po0.05).
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~ 1.7-fold). Nevertheless, our results demonstrate that colonic
propionate increases the portal vein levels of both PYY and GLP-1
by a similar magnitude in both mice and rats.
Intriguingly, levels of the SCFA propionate, a potent endogen-

ous agonist of FFA2, are elevated following RYGB in rodents.12,29

Furthermore, a significant negative correlation between adiposity
and caecal butyrate and propionate concentrations has also been
reported in germ-free mice receiving faecal transplants from
human twin donors discordant for obesity.30 While the two
published studies that have investigated energy homeostasis in
FFA2− /− mice to date led to different conclusions, both reported
hyperphagia on an high fat diet compared with WT.7,31 In both
cases, the high fat diet also contained fibre; 6.5%7 and 3.9%.31 Our
findings suggest that reduced levels of anorexigenic gut
hormones may account, at least in part, for this observation.
In our studies, we have used the SCFA propionate to investigate

the role of FFA2 activation in PYY and GLP-1 release. A wide range
of nutrients are known to stimulate gut hormone secretion from
L cells. However, these nutrients do not reach colonic L cells in
significant amounts. Therefore, SCFAs are likely to be an important
source of colonic L cell stimulation. However, it is also likely that
SCFAs take on a more major role when animals are fed a diet high
in fermentable fibre. Fermentable fibre and SCFAs have also been
demonstrated to increase L cell numbers.32,33

We have shown that the SCFA propionate stimulates the release
of both GLP-1 and PYY from primary murine colonic cultures and
in vivo following intra-colonic administration in rodents. The work
presented here demonstrates for the first time that propionate-
stimulated PYY release from primary FFA2− /− colonic cultures is
also significantly attenuated and that, unlike WT animals, FFA2− /−

mice do not respond to propionate. Targeting nutrient sensing
pathways, such as those activated by SCFAs, may have transla-
tional potential by mimicking the elevated gut hormone profiles
observed following nutrient displacement procedures thus
beneficially modulating appetite.
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Figure 4. Intra-colonic administration of propionate increases portal vein plasma PYY and GLP-1 levels in vivo in mice via an FFA2-dependent
mechanism. Blood samples were collected from the portal vein 5 min after an intra-colonic injection (300 μl) of propionate (180mmol l− 1) or
saline (matched for pH and sodium content) in isoflurane-anaesthetised FFA2 knockout (− /−) mice or WT littermates (+/+). Data represent
means± s.e.m. (n= 5–7 per group). Significance was determined using one-way ANOVA (a, F= 2.457, P= 0.094; b, F= 2.660, P= 0.076) with a
Bonferroni post hoc test (*Po0.05).

Figure 3. Propionate-induced PYY and GLP-1 secretion is attenuated in FFA2− /− primary murine L cells. Primary colonic cultures from FFA2
knockout (− /−) or WT (+/+) littermates were incubated with or without propionate (50mmol l− 1). PYY (a) and GLP-1 (b) secretion in each well
was expressed as a percentage of total PYYor GLP-1 contained within the well and normalised to the basal secretion (0mmol l− 1) measured in
parallel within the same experiment. Data represent means± s.e.m. (n= 22–38 wells). Significance is shown relative to basal secretion using
one-way ANOVA (a, F= 19.31, Po0.0001; b, F= 8.816, Po0.0001) with a Bonferroni post hoc test (**Po0.01; ***Po0.001).
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