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Abstract

Background: To determine the value of a continuous repetitive task to detect and quantify fatigability as additional
dimension of impaired motor function in patients with hereditary proximal spinal muscular atrophy (SMA).

Results: In this repeated measure case-control study 52 patients with SMA types 2–4, 17 healthy and 29 disease
controls performed five consecutive rounds of the Nine-Hole Peg test to determine the presence of fatigability. We
analysed differences in test performance and associations with disease characteristics. Five patients with SMA type 2
(22%) and 1 disease control (3%) could not finish five rounds due to fatigue (p = 0.01). Patients with SMA
type 2 performed the test significantly more slowly than all other groups (p < 0.005) and disease controls
were slower than healthy controls (p < 0.05). Patients with SMA type 2 performed round five 27% slower than
round one, while healthy controls performed round five 14% faster than round one (p = 0.005). There was no
difference between SMA type 3a, type 3b/4 or disease controls and healthy controls (p > 0.4). Time needed to
complete each round during the five-round task increased in 15 patients with SMA type 2 (65%), 4 with type
3a (36%), 4 with type 3b/4 (22%), 9 disease controls (31%) and 1 healthy control (6%). There was no effect of
age at disease onset or disease duration in SMA type 2 (p = 0.39). Test-retest reliability was high.

Conclusion: Fatigability of remaining arm function is a feature of SMA type 2 and can be determined with
continuous repetitive tasks.

Keywords: Neuromuscular disease, Spinal muscular atrophy, SMA, Clinical neurology, Fatigability, Outcome
measure, Repeated nine-hole peg test, r9HPT

Background
Spinal muscular atrophy (SMA), caused by homozygous
deletion or disabling mutations of the survival motor
neuron (SMN) 1 gene, [1] is one of the most common her-
editary neuromuscular diseases [2]. Deficiency of SMN
protein primarily, but not exclusively, [3, 4] affects lower
motor neurons leading to muscle atrophy and weakness,
with considerable variability in severity between patients
[5, 6]. In addition to weakness, patients with SMA often
mention a lack of stamina during daily activities. Patients
experience fatigability during tasks of daily life such as pro-
longed (power)wheelchair driving, during eating when lift-
ing cutlery repeatedly and when chewing food. Patients

also report severe limitations in daily living, including
social events, work and sports due to fatigue and fatigabil-
ity, with a potential negative effect on quality of life. Obser-
vations during isometric muscle contraction endurance
tests [7] and the six-minute walk test (6MWT) [8, 9]
suggest that abnormal muscle fatigability (i.e. a decrease in
performance over a given time or sustained measure of
mechanical output [10]) represents an additional dimen-
sion of attenuated motor function in SMA. Causes of fatig-
ability in SMA may be multiple, including altered muscle
metabolism [4, 11] or abnormal neuromuscular junction
(NMJ) anatomy and function [12–14]. With recent
advances in therapy development, the need for relevant
outcome measures has become more urgent [15]. Motor
scales that are currently used in SMA research do not spe-
cifically measure muscle fatigability [16–18] and the assess-
ment of fatigability using other tests has been inconsistent,
[8, 9, 19, 20] underlining the fact that we need additional
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tools to determine the presence, extent and causes of fatig-
ability. Tests that require repetitive muscle contractions
may be most sensitive for determining fatigability in condi-
tions characterized by NMJ disorders, possibly including
SMA [12]. We, therefore, investigated the repeated
nine-hole peg test (r9HPT) to determine fatigability in a
repeated measure case-control study design.

Methods
Participants
Patients with SMA types 2, 3 and 4 were recruited from
the Dutch SMA register (www.treat-nmd.eu/patientregis-
tries) (i.e. symptom onset at age > 6 months, < 18 months;
> 18 months, < 30 years; and > 30 years, respectively and
highest acquired motor milestones: the ability to sit for
SMA type 2 and the ability to walk independently for SMA
types 3 and 4) [6]. An additional subdivision was made:
type 3a with symptom onset > 18 months, but < 3 years
and type 3b with symptom onset > 3 years and < 30 years
[5]. In case of discrepancy between age at symptom onset
and highest acquired motor milestone, the latter was used
to define SMA type. To minimize selection bias, all eligible
patients enrolled in this register were offered the possibility
to participate. All patients had a homozygous deletion of
the SMN1 gene or a heterozygous SMN1 deletion in com-
bination with a point mutation on the second SMN1 allele.
Disease controls were patients with other neuromuscular

disorders who visited the pediatric and adult neuromuscu-
lar outpatient clinic of the University Medical Center
Utrecht, the Netherlands. Healthy controls were recruited
by participating SMA patients. All participants had to be
over the age of 5 years. Additional exclusion criteria were a
history of myasthenia gravis or other myasthenic
syndromes or any other neuromuscular disorder known to
affect NMJ function, or the use of pyridostigmine.

The repeated nine-hole peg test (r9HPT)
Participants were asked to perform five rounds of
the Nine-Hole Peg test [21–23] (r9HPT) with the
Rolyan® 9HPT (Patterson Medical, Homecraft Rolyan;
Sutton-in-Ashfield, United Kingdom). All patients were
instructed to take 9 lightweight plastic pegs one by one
from a container and place them in 9 holes on the board as
fast as possible, then remove them one at a time and re-
place them in the container. They had to perform 5 con-
secutive rounds without a break, using the same, preferred
hand. Participants were encouraged to complete the task as
fast as possible. The time required to complete each round
was recorded with a stopwatch. If participants dropped a
peg, they continued with the task while we placed the peg
back in the container. We also recorded all other events
that might slow down test performance. The r9HPT was
conducted at the outpatient clinic or at the patient’s home
using a height-adjusted table and chair, with both feet

positioned on the floor, or on the table attached to the pa-
tient’s wheelchair. The participant supported the test board,
using the non-performing hand. The container on the
board could be positioned at the side of the participant’s
choice. The r9HPT was conducted twice to assess test re-
producibility. If it was performed twice on the same day,
there was a resting period of at least 15 min between trials.

Statistical analyses
We used a random intercept, random slope linear mixed
model (LMM) to assess r9HPT performance between
groups while accounting for inter-subject variance. Age and
gender were added to the model as covariates. Subsequently
we used the LMM to calculate the effects of age at symp-
tom onset and disease duration on test performance in
patients with SMA type 2. To evaluate incomplete test
performance due to fatigue, we performed a Kaplan Meyer
survival analysis, using the log-rank test to compare survival
curves between groups. We evaluated incidents that might
have slowed down test performance (e.g. dropping a peg). If
the round time in which the incident occurred was (equal
to) the slowest test measurement, the value was removed
and treated as missing. We calculated the slope of the linear
regression line through the five data points (i.e. seconds to
perform each round) for each participant to identify partici-
pant characteristics in relation to test performance.
We assessed test reproducibility by computing two-way

mixed intra-class correlation coefficients (ICC), type
consistency, for each round and corresponding round of
the first and second r9HPT trial. p values < 0.05 were
significant. We used SPSS (IBM SPSS Statistics version
20;IBM Inc., Chicago, IL) and R (R version 3.2.0 (Full of
ingredients); R Foundation for statistical computing,
Vienna, Austria) for statistical analysis.
The sample size was not calculated prospectively,

because of the exploratory nature of this study and un-
predictable effect size. Sample size was determined by
the number of eligible patients willing to participate.

Results
Patients
Ninety-eight participants performed the r9HPT, including
fifty-two SMA patients (23 SMA type 2; 11 type 3a; 16
type 3b; 2 type 4), 17 healthy controls and 29 disease
controls (11 Duchenne muscular dystrophy; 6 hereditary
motor and sensory neuropathy (HMSN); 5 limb girdle
muscular dystrophy (LGMD); 2 Becker congenital myo-
tonia; 1 Becker muscular dystrophy; 1 Bethlem myopathy;
1 chronic inflammatory demyelinating polyneuropathy
(CIDP); 1 progressive muscular atrophy (PMA); 1
suspected muscular dystrophy). Patient characteristics are
summarized in Table 1.
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Repeated nine-hole peg test
Results are summarized in Fig. 1. Six participants (2
patients with SMA type 3b, 1 healthy control and 3
disease controls) dropped a peg during one of the five
rounds, which resulted in a slower time for that round.
As described, these values were treated as missing in the
analyses. Mean speed at which the test was performed
(seconds per round (sec/round)) was 45.6 s/round (95%
CI 37.5–53.7 s/round) for SMA type 2 patients, 22.1 s/
round (95% CI 10.4–33.7 s/round) for SMA type 3a
patients, 18.8 s/round (95% CI 9.6–28.0 s/round) for
SMA type 3b/4 patients, 29.2 s/round (95% CI 21.7–35.6 s/
round) for disease controls and 16.8 s/round (95% CI 7.4–
26.2 s/round) for healthy controls. Mean speed was

significantly slower in SMA type 2 patients (p < 0.001) and
disease controls than in healthy controls (p < 0.05). There
was no difference in mean speed between healthy controls
and SMA type 3a patients (p = 0.3) or SMA type 3b/4
patients (p = 0.6). Compared to disease controls, SMA type
2 patients were significantly slower (p < 0.005) (Fig. 2).
When looking at the interaction effect of participant
groups and round number to evaluate test performance
during 5 subsequent rounds, there was a significant differ-
ence between patients with SMA type 2 and healthy con-
trols (p = 0.005), but not between other patient groups
(SMA type 3a, SMA type 3b/4, disease controls) and
healthy controls (p > 0.4): SMA type 2 patients performed
round five (51.3 s, 95% CI: 40.3–62.2 s) 27.4% slower than

Table 1 Baseline Characteristics

SMA SMA
type 2

SMA
type 3a

SMA
type 3b/4

Healthy controls Disease controls

(N = 52) (N = 23) (N = 11) (N = 18) (N = 17) (N = 29)

Gender, male 17 (33%) 5 (22%) 3 (27%) 9 (50%) 3 (18%) 23 (79%)

Age, y, median (range)a 28 (7–72) 18 (6–70) 29 (9–52) 41 (14–72) 33 (6–73) 13 (8–76)

Age symptom onset, m, median (range) 18 (4–456) 10 (4–30) 18 (8–24) 138 (42–456) NA 21 (10–672)

Disease duration, y, median (range)a 22 (1–69) 17 (5–69) 29 (7–51) 24 (1–66) NA 8 (1–20)

Ambulant, N (%) 16 (31%) 0 3 (27%) 13 (72%) 17 (100%) 23 (79%)

SMN2 copy number 3 30 21 7 2 – –

4 20 1 3 16 – –

U 2 1 1 – – –

No. of r9HPT completed 1× 9 5 2 2 1 3

2× 43 18 9 16 16 26

Time between 1st and 2nd
r9HPT, d, median (range)

97 (0–696) 158 (0–696) 69 (0–249) 69 (0–407) 0 (0–253) 254 (0–469)

Mean speed, s/round, (range)a 45.6 (20–156) 22.1 (17–41) 18.8 (18–35) 16.8 (14–26) 29.2 (18–113)

Abbreviations: SMN survival motor neuron, U unknown, N number, NA not applicable, y years, m months, d days, s seconds, r9HPT repeated nine hole peg test,
no. number
avalues at first performed r9HPT

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5

%

SMA type 2

SMA type 3a

SMA type 3b/4

Disease controls

Healthy controls

Round number 

Fig. 1 Results of the repeated 9HPT in patients with SMA and (disease) controls. The time needed to complete the first round was set as 100%;
subsequent rounds are expressed as percentages compared to baseline

Stam et al. Orphanet Journal of Rare Diseases  (2018) 13:160 Page 3 of 7



round one (40.2 s, 95% CI: 34.6–45.8 s), SMA type 3a
patients performed round five (21.7 s, 95% CI: 6–37.5 s)
2.8% faster than round one (22.4 s, 95% CI: 14.4–30.3 s),
SMA type 3b/4 patients performed round five (17.7 s, 95%
CI: 5.3–30.1 s) 11.6% faster than round one (19.8 s, 95%
CI: 13.4–26.2 s), disease controls performed round five
(29.9 s, 20.0–39.8 s) 5.2% slower than round one (28.4 s,
95% CI: 23.2–33.7 s) and healthy controls performed round
five (15.7 s, 95% CI: 3.0–28.4 s) 13.5% faster than round
one (17.9 s, 95% CI: 11.3–24.4 s) (Fig. 2). Neither age at
disease onset nor disease duration influenced test perform-
ance in patients with SMA type 2 (p = 0.4 and p = 0.7).
Based on the slope of their individual linear regression
lines, the time needed to complete each round during the
five-round task increased in 15 patients with SMA type 2
(65%), 4 patients with SMA type 3a (36%), 4 patients with
SMA type 3b/4 (22%), 9 disease controls (31%) and 1
healthy control (6%). Characteristics of these participants
are summarized in Table 2, sorted by the magnitude of the
slope during five rounds. These include five patients with
SMA type 2 (22%) and one disease control (3%) who could
not complete the test due to fatigue (p = 0.01) (Fig. 3).
ICCs showed a high degree of test-retest reliability.

The single measure ICCs for rounds 1–5 were (95%CI)
0.91 (0.86–0.94); 0.71 (0.58–0.73); 0.79 (0.68–0.86); 0.82
(0.72–0.88) and 0.88 (0.81–0.92), respectively.

Discussion
Fatigability during activities of daily life may further incap-
acitate SMA patients who already experience disability
due to muscle weakness. Time needed to complete rounds
2–5 of the r9HPT increased each round in patients with
SMA type 2, indicating a reduced capacity to sustain a
simple activity that mimics hand function in daily life.
Fatigability was previously suggested in ambulant

SMA patients in a study that compared results of the

first and sixth minute of the six-minute walk test
(6MWT) [8, 9]. Additionally, the presence of fatigability
in the upper limbs was implicated by an abnormal dec-
remental response to repetitive nerve stimulation in 49%
of patients with SMA types 2 and 3 [12]. Assessment of
maximal isometric muscle contraction of both upper
and lower limbs has failed to detect fatigability in SMA
[20]. However, repetitive muscle contraction may be
more sensitive than sustained isometric muscle contrac-
tion in assessing fatigability in disorders characterized by
neuromuscular junction dysfunction, [24] including
patients with SMA types 2 and 3 [12]. In this study we
were able to document fatigability in the upper limbs,
utilizing this concept, with a simple clinical test. The
nine-hole peg test, originally designed to assess finger
dexterity, [21–23] is cheap and we could reproduce the
previously reported high test-retest reliability [25] in
patients with SMA. Furthermore, severely affected SMA
patients with minimal arm function can lift the light-
weight pegs, but a possible disadvantage of the r9HPT is
the clear ceiling effect that would limit its use to patients
with SMA type 2, as reflected by the fact that most
patients with SMA types 3 and 4 performed subsequent
rounds at a similar or higher speed (Fig. 2), with group
results that were comparable to healthy controls. Never-
theless, even ambulant patients with SMA type 3 often
mention fatigability in connection with activities such as
walking up/down stairs, and the results of this study
provide proof of concept for the development of
additional repetitive tests that could be tailored to the
individual’s remaining motor function. The r9HPT
could be improved by individually standardized test
speed and although we do not consider it likely that fat-
igability in SMA type 2 is the result of a lack of motiv-
ation, since all patients visibly performed to the
maximum of their abilities, we think that future studies
should include questionnaires to determine motivation
and pain during tests. Monitoring of heart rate and
muscle recruitment by means of surface electromyog-
raphy would be additional improvements to the current
study protocol. Moreover, it is likely that slight modifi-
cation of other existing tests that mimic arm and hand
function in daily life activities, such as the Functional
dexterity test [26] or the Box and Block test, [27] or of
selected items of the Jebsen-Taylor hand function test,
[28, 29] Motor Function Measure (MFM) [18] and
Upper Limb Module [30] would be sufficient to yield a
series of repeated-measure tests. Outcome measures for
upper limb function that already employ repetitive
flexion/extension movements of wrist and fingers
(MoviPlate) and that have been validated in patients
with Duchenne and used preliminary in SMA patients,
[31, 32] could probably be adapted even more easily to
measure fatigability.

Fig. 2 Mean repeated 9HPT results for each participant group. Mean
time needed (seconds) to complete each round for each participant
group and 95% confidence intervals
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Muscle weakness may play an important role in fa-
tigue and fatigability. A previous study showed physio-
logical fatigability in both healthy controls and patients
with neuromuscular disorders during sustained max-
imal voluntary muscle contraction, [33] which indicates
that fatigability is not only secondary to weakness.
Since we did not document muscle strength of disease
controls, we cannot exclude baseline differences be-
tween disease controls and patients with SMA type 2.

There was, however, no effect of age at disease onset
and disease duration, both surrogate markers for
disease severity, on test performance in SMA type 2 pa-
tients. Moreover, we did not observe slowing of 9HPT
performance in the majority of patients with SMA type
3a, despite the fact that many had significantly reduced
muscle strength. These observations imply that fatig-
ability in SMA type 2 is, at least partially, a separate di-
mension next to muscle weakness in SMA.

Table 2 Characteristics of participants with increased time needed to complete one round during the 5-round task

Gender Age (y) Disease Disease duration (y) ambulation Slopea

Male 16.92 Duchenne 15.42 non-ambulant 34.5

Female 30.25 SMA type 2 29.50 non-ambulant 21.8

Male 23.75 SMA type 2 22.83 non-ambulant 21.6

Male 7.68 SMA type 2 7.39 non-ambulant 9.9

Female 7.69 SMA type 2 7.19 non-ambulant 6.0

Male 13.49 SMA type 2 12.66 non-ambulant 5.0

Female 70.28 SMA type 2 69.37 non-ambulant 3.2

Female 21.40 SMA type 2 21.06 non-ambulant 2.2

Male 9.54 SMA type 2 8.74 non-ambulant 1.6

Male 48.59 SMA type 3b/4 44.09 non-ambulant 1.5

Female 25.94 SMA type 2 25.52 non-ambulant 1.4

Female 38.77 SMA type 3a 37.61 non-ambulant 1.4

Female 24.41 SMA type 2 22.91 non-ambulant 1.2

Female 5.69 SMA type 2 4.61 non-ambulant 1.1

Male 75.70 PMA 19.70 ambulant 0.8

Male 9.56 Becker myotonia 8.14 ambulant 0.7

Female 37.98 SMA type 2 37.44 non-ambulant 0.6

Female 9.95 SMA type 3a 8.29 non-ambulant 0.6

Female 5.69 SMA type 2 4.69 non-ambulant 0.5

Female 29.51 Healthy control na ambulant 0.5

Male 38.00 SMA type 3b/4 13.50 ambulant 0.4

Male 13.33 Duchenne u non-ambulant 0.4

Female 13.64 SMA type 2 12.93 non-ambulant 0.4

Male 8.92 SMA type 3a 7.33 ambulant 0.2

Male 21.98 SMA type 3b/4 u ambulant 0.2

Female 12.08 SMA type 2 11.33 non-ambulant 0.2

Female 21.83 SMA type 3a 20.42 non-ambulant 0.2

Female 7.73 HMSN 6.40 ambulant 0.2

Male 13.34 Duchenne 11.84 non-ambulant 0.1

Male 34.86 SMA type 3b/4 31.36 ambulant 0.1

Male 8.41 Duchenne u ambulant 0.1

Male 14.62 Duchenne u ambulant 0.1

Female 15.25 HMSN 13.92 ambulant 0.1

Abbreviations: SMA spinal muscular atrophy, HMSN hereditary motor and sensory neuropathy, PMA progressive muscular atrophy, y years, u unknown, na
not applicable
aSlope: seconds increase per round
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Conclusion
We show that a simple continuous repetitive hand task
provokes fatigability in patients with SMA type 2. Our re-
sults indicate that fatigability may represent an important
dimension of reduced motor function, in addition to weak-
ness, and that outcome measures of repetitive tasks could
be used to document its presence. Developing tailored mea-
sures to quantify fatigability, implementable in clinical trials,
could be an important step towards the development of
(add-on) medication to treat fatigability in SMA, improving
quality of life. Simple tests of repetitive muscle contractions
that mimic important functions of daily life are a promising
addition to existing outcome measures.
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6MWT: Six-Minute Walk Test; CIDP: Chronic inflammatory demyelinating
polyneuropathy; HMSN: Hereditary motor and sensory neuropathy; ICC: Intra-
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LMM: Linear mixed model; MFM: Motor function measure;
NMJ: Neuromuscular junction; PMA: Progressive muscular atrophy;
r9HPT: Repeated Nine-Hole Peg Test; SMA: Spinal muscular atrophy;
SMN: Survival motor neuron
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