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Neurite orientation dispersion and density imaging (NODDI) is a diffusion model
specifically designed for brain magnetic resonance imaging. Despite recent studies
suggesting that NODDI modeling might be more sensitive to brain development than
diffusion tensor imaging (DTI), these studies were limited to a relatively small age range
and mainly based on the manually operated region of interest analysis. Therefore, this
study applied NODDI to investigate brain development in a large sample size of 214
subjects ranging in ages from 0 to 14. The whole brain was automatically segmented
into 122 regions. The maturation trajectory of each region was characterized by the
time course of diffusion metrics and further quantified using nonlinear regression. The
NODDI-derived metrics, neurite density index (NDI) and orientation dispersion index
(ODI), increased with age. And these two metrics were superior to the DTI-derived
metrics in SVM regression models of age. The NDI in white matter exhibited a more
rapid growth than that in gray matter (including the cortex and deep nucleus). These
diffusion indicators experienced conspicuous increases during early childhood and the
growth speed slowed down in adolescence. Region-specific maturation patterns were
described throughout the brain, including white matter, cortical and deep gray matter.
These development patterns were evaluated and discussed on the basis of NODDI’s
model assumptions. To summarize, this study verified the high sensitivity of NODDI
to age over a crucial developmental period from newborn to adolescence. Moreover,
the existing knowledge of brain development has been complemented, suggesting that
NODDI has a potential capability in the investigation of brain development.

Keywords: diffusion MRI, brain development, NODDI, diffusion tensor imaging, pediatric, neurite density

INTRODUCTION

The human brain undergoes complex anatomical changes from infancy to adolescence, including
axonal growth, myelination, dendritic arborization, synapse formation and neuronal pruning
(Stiles and Jernigan, 2010). Comprehensive knowledge of the process of brain structure maturation
is critical to understanding the cognitive and behavioral development, as well as the mechanism
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of the neurodevelopmental diseases, such as autism (Travers
et al., 2012) and attention deficit hyperactivity disorder (Albajara
Saenz et al., 2019). Valuable insights into brain development
have been gained through postmortem histological explorations
(Yakovlev, 1962; Gilles et al., 1983; Brody et al., 1987);
nevertheless, it’s difficult to collect young healthy brain samples
with a large sample size in histological studies, compared with
in vivo experiments.

With the advent of Magnetic Resonance Imaging (MRI),
diffusion MRI (dMRI) provides an unprecedented opportunity
to measure brain anatomy in vivo. Due to the fact that dMRI
can detect the microscale movement of water molecules in
biological tissues, it is sensitive to pertinent microstructure and
their changes. Thus, dMRI-derived metrics, such as diffusivity
and fractional anisotropy (FA), have become the successful
indicators of neuronal changes during brain development (Song
et al., 2005). To date, the development of white matter (WM)
and gray matter (GM) has been extensively studied through
Diffusion Tensor Imaging (DTI). The majority of studies have
demonstrated an exponential increase (e.g., A− Be−x/C, with
A > 0, B > 0 and C > 0) in FA and an exponential decrease
(e.g., A+ Be−x/C, with A > 0, B > 0 and C > 0) in diffusivity
with considerable regional variation (Mukherjee et al., 2001; Ben
et al., 2005; Hermoye et al., 2006; Lebel et al., 2008; Faria et al.,
2010). Both Paydar et al. (2014) and Shi et al. (2019) pointed
out that except DTI, Diffusion Kurtosis Imaging (DKI) has also
been applied to normal brain development by capturing the
diffusion kurtosis of water molecules. In addition, DKI-derived
parameters have also provided valuable insights into atypical
brain development, such as preterm infants studies (Shi et al.,
2016; Ouyang et al., 2019) and brain disorders like Huntington’s
disease (Blockx et al., 2012).

Despite their sensitivity to brain development, both DTI
and DKI models treat brain tissues as a single compartment,
which is improper because the water molecules in axons,
dendrites and extracellular spaces characterize different diffusion
features. In order to provide more effective in vivo quantification
of neural morphology, Zhang et al. (2012) proposed a
compartment diffusion model termed Neurite Orientation
Dispersion and Density Imaging (which can distinguish three
types of microstructural environments in the brain: neurite (the
collection of axons and dendrites), the extracellular space (the
space around neurites), and the cerebrospinal fluid (CSF). The
three measures of the NODDI model are neurite density index
(NDI, also called intra-cellular volume fraction IcVF), orientation
dispersion index (ODI), and isotropic volume fraction (IsoVF).
Since NODDI has been proposed, emerging research has shown
promising results when utilizing this compartment model in
brain development studies (Chang et al., 2015; Jelescu et al., 2015;
Genc et al., 2017; Mah et al., 2017; Geeraert et al., 2019). As
reported by Chang et al. (2015), the correlation between NDI
and age is stronger than FA from childhood to late adulthood
(Chang et al., 2015). Correspondingly, Genc et al. (2017)
further confirmed the sensitivity of NDI in brain development
from childhood to adolescence (Genc et al., 2017). Meanwhile,
Geeraert et al. (2019) included NODDI in a multiparametric
analysis of white matter maturation during late childhood and

adolescence, and an age-related increase was observed for NDI in
a longitudinal cohort (Geeraert et al., 2019).

However, most of these studies are region of interest (ROI)
based and few of them investigated the performance of NODDI
metrics in gray matter development. Although Mah et al. (2017)
have illustrated that NDI is strongly correlated to age in white
matter and subcortical gray matter development, the results are
limited to a small sample size of 27 and a relatively small age
group (8–13) (Mah et al., 2017). Herein our study, we intended
to apply this promising NODDI model to a reasonably large
developmental dataset (n = 214). Compared to the previous
NODDI studies, our dataset has a wider age range covered the
crucial period of brain development, from newborns to young
adolescence (aged 0–14). Besides, the atlas-based analysis was
adopted in our research instead of the ROI-based methods.
The whole brain was automatically segmented into 122 regions,
including white matter, deep gray matter and cortical gray matter.
Additionally, it was assumed that NODDI-derived metrics are
more sensitive to age-related changes during brain development
than DTI metrics, based on the observations from previous
NODDI researches (Chang et al., 2015; Jelescu et al., 2015; Genc
et al., 2017; Mah et al., 2017; Geeraert et al., 2019). In order to
prove the feasibility of NODDI modeling in brain development,
we compared the age sensitivity of NODDI and DTI metrics
across the whole brain. Then, non-linear functions were utilized
to evaluate the developmental trajectories of different brain
regions according to the NODDI-derived NDI. And the region-
specific maturation patterns were described and explained in light
of different diffusion model assumptions.

MATERIALS AND METHODS

Subjects
The current study included 214 subjects (131 males, 83 females;
ages ranging from 1 day to 14 years; age and sex distribution are
shown in Figure 1) who underwent brain MR imaging for non-
neurological diseases, such as oculopathy, neck hemangioma, and
facial paralysis at Wuhan Children’s Hospital from November
2014 to May 2016. All subjects were born full-term. Clinical
records from these participants were inspected by pediatric
neurologists to ensure that no neurodevelopmental abnormalities
were present. Further, this study was approved by the Wuhan
City Ethics Committee of the Women and Children’s Health Care

FIGURE 1 | Age distribution of 214 subjects (131 males and 83 females).
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Center, and the informed consent was obtained from parents
before the examination.

MRI Acquisition
All subjects were scanned on a 3T scanner (Discovery 750,
General Electric Medical System, Milwaukee, WI, United States)
with an 8-channel head coil. They performed MR scanning under
natural sleep or 6% chloral hydrate sedatives (0.2 ml/kg). Cotton
balls and spongy pads were used for hearing protection and
minimizing motion artifacts. Whole-brain dMRI was acquired
along 15 directions with b = 1,000 s/mm2, and 15 directions
with 2,000 s/mm2 (NEX = 20 for b = 0, NEX = 2 for b = 1,000,
2,000 s/mm2, TR/TE = 4,800/92.9 ms, slice thickness = 3 mm,
slice space = 0, field of view = 240 mm2

× 240 mm2,
matrix = 128 × 128, voxel size = 1.9 mm3

× 1.9 mm3
× 3 mm3,

scan time = 6 min 29 s).

Image Processing
First of all, the raw diffusion-weighted images (DWIs) were
corrected for subject motion and eddy current by the FSL eddy

tool1, with b0 volume as reference for multigradient direction
volumes of DWIs. The averaged head motion level can be
found in Appendix Figure 1. At the same time, skull stripping
was carried out based on b0 images with the FSL bet tool.
In addition, voxel-wised diffusion metrics were obtained for
each subject, including four DTI-derived metrics [FA, axial
diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD)]
and three NODDI-derived metrics (NDI, isotropic volume
fraction (IsoVF), and ODI), using the AMICO (Daducci et al.,
2015) python package2. Especially, the NDI was calculated based
on the fitted intra-cellular volume fraction (ICVF), and scaled
by a factor of (1-IsoVF) to reduce the susceptibility distortion
at the interface between CSF and brain tissues (see Appendix
Figure 2). The scaling factor (1-IsoVF) was chosen from the
original NODDI paper (Zhang et al., 2012), based on the multi-
compartment model assumptions. Note that, studies have found
that the default intrinsic diffusivity d// = 1.7µm2 ms−1 of the
NODDI model is appropriate in white matter but suboptimal in

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
2https://github.com/daducci/AMICO

FIGURE 2 | Representative mappings of NODDI and DTI-derived metrics at different ages. NDI, Neurite Density Index; IsoVF, Isotropic Volume Fraction; ODI,
Orientation Dispersion Index; FA, Fractional Anisotropy; AD/RD, Axial/Radial Diffusivity. The colorbar of each column was shown at the bottom.
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FIGURE 3 | Age regression results from SVM models. (A) Root Mean Square Error (RMSE) of different SVM regression models between age and four diffusion
metrics, NDI, ODI, FA, and MD. (B) Predicted age using the quadratic SVM model by the NODDI-derived metrics, NDI and ODI. (C) Predicted age using the
quadratic SVM model by the DTI-derived metrics, FA and MD.

gray matter and infant brains (Kaden et al., 2016; Guerrero et al.,
2019; Huynh et al., 2019). Herein our NODDI fitting, we adopted
d// = 1.7 µm2.ms−1 in white matter and d// = 1.0 µm2.ms−1

in gray matter. And a separate set of d// was used in subjects
smaller than 1 month, which is d// = 1.5 µm2.ms−1 in white
matter and d// = 1.4 µm2.ms−1 in gray matter. These d// values
were chosen according to the observations made by Guerrero
et al. (2019). Representative maps of different diffusion metrics
at different ages are illustrated in Figure 2.

Registration
In order to improve the registration accuracy in our dataset which
has a wide age range (0–14), a series of JHU Atlases3 were utilized

3http://cmrm.med.jhmi.edu/

TABLE 1 | The averaged weights of features from different tissue groups using the
linear SVM regression model.

WM cGM dGM Others

NODDI NDI 0.5978 0.7325 0.7782 0.9042

ODI 0.7314 0.7043 0.8771 1.3403

DTI FA 0.7989 0.7854 0.4715 1.0261

MD 0.5997 0.4393 0.7416 0.7822

Four brain tissue groups are WM (white matter), cGM (cortical gray matter), dGM
(deep gray matter) and others (including cerebellum and brain stems).

for image registration, including a Neonate Atlas (Oishi et al.,
2011), an 18-month Pediatric Atlas, a 24-month Pediatric Atlas
and a 7-year Children Atlas (Tang et al., 2014). A total of 214
subjects were divided into 4 groups by age: (1) 50 subjects from 0
to 3 months were registered to the Neonate Atlas; (2) 41 subjects
from 3 to 22 months were registered to the 18-month Pediatric
Atlas; (3) 66 subjects from 22 months to 5 years were registered
to the 24-month Pediatric Atlas and (4) the rest 57 subjects from
5 to 14 years old were registered to the 7-year Children Atlas. This
grouped registration process is to make sure that each subject
can be registered to an atlas with similar image contrast, since
the image contrast of dMRI is changing along with development,
especially between infants and adolescence. We adopted the
dual-channel large deformation diffeomorphic metric mapping
(LDDMM) algorithm for image registration by ANTs4, with FA
and MD maps to drive the transformation (Ceritoglu et al., 2009).
Each of the four atlases has its own brain segmentation, whose
nomenclature followed the same adult MRI atlas (Oishi et al.,
2009), based on Talairach’s atlas (Talairach and Tournoux, 1988).
Note that, as described in detail in Oishi et al. (2011), the brain
parcellation of neonate atlas was done manually following the
adult atlas (Oishi et al., 2009) as much as possible, with careful
considerations of the different brain anatomy between adults and
neonates. All the four brain segmentations were projected to a

4https://sourceforge.net/projects/advants/
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standard space consisting of 122 brain regions including white
matter, cortical and deep gray matter (a full name list of these 122
brain regions see Appendix Table 1). Consequently, the brain
segmentation of each subject was automatically achieved after
the registration.

Evaluation of Age Sensitivity Using the
SVM Regression Model
To determine whether metrics derived from NODDI and DTI
in different brain regions could be adopted as a biomarker for
brain development, different SVM (Support Vector Machines)
regression models were tested using MATLAB. True ages were
used as the training measures, and NDI, ODI, FA, and MD
values from different brain regions were used as features of
the SVM models. Four SVM models with different kernel
functions (linear, quadratic, cubic and gaussian) were tested
separately. A twofold cross-validation was adopted to evaluate
the performance of the SVM models. RMSE (Root Mean Square
Error) and R-Square were computed to assess the regression
accuracy. Additionally, the feature weights of the linear SVM
model were calculated to show the contributions of different
tissue groups (WM, dGM, cGM, and others). Here, others include
cerebellum and brain stems.

Atlas-Based Quantitative Analysis
The time course of each metric, including NDI, ODI, IsoVF,
FA, MD, AD, and RD, for each brain region was extracted
by averaging the voxels contained in this region. In order to
make a quantitative description of the developmental trajectories
from different brain regions, these time courses were fitted by
exponential (Y = C − Ae−age/τ), second-order polynomial and
third-order polynomial function, separately. The goodness of
fitting was assessed by R-Square and the Akaike information
criterion (AIC) (Guthery et al., 2003) was used for model
selection. Both metrics were compared by one-way ANOVA
between the different fitting functions using Prism5. Afterward,
the non-linear function with the best fit was chosen for the
following quantification of the brain developmental pattern.

RESULTS

NODDI and DTI Comparison in Age
Regression
Representative mappings of NODDI and DTI-derived metrics
at different ages were shown in Figure 2. Both NDI and FA

5https://www.graphpad.com/scientific-software/prism/

FIGURE 4 | Scatter plot with the exponential fitting results of NDI (A), ODI (B), and FA (C). Three brain regions were shown as examples: the PLIC (the posterior limb
of internal capsule), the middle occipital gyrus and the globus pallidus.
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increased with age, especially in white matter. In addition,
ODI exhibited an opposite image contrast compared to FA as
is expected. To quantify the age sensitivity of these diffusion
metrics, SVM models were trained with NDI, ODI, FA and
MD measurements, separately. The regression accuracy, assessed
by RMSE, of different SVM models for each diffusion metric
was displayed in Figure 3A. NODDI-derived NDI and ODI
showed relatively lower RMSE than DTI-derived FA and MD in
all of the four models. The age sensitivity of the two diffusion
models was further illustrated in Figures 3B,C. The R-Square
of age regression using NODDI-derived NDI and ODI is 0.93,
which is higher than the R-Square using DTI-derived FA and
MD measurements. According to the SVM evaluation above,
both NODDI and DTI were sensitive to brain development,
with NODDI performing slightly better. In addition, the feature
weights of different brain tissue groups in the linear SVM
model were summarized in Table 1 (the detailed weights of
different brain regions can be found in Appendix Figure 3). As
demonstrated in Table 1, NDI had more contributions in GM
than WM. Besides, NDI presented more contributions in dGM
regions than FA in the SVM regression on age.

Quantification of NDI Development
The developmental trajectories characterized by NDI
measurement showed non-linear growth in all the 122 brain
regions. Figure 4A exhibited three example brain regions,
representing white matter, deep gray matter and cortex. The
one-way ANOVA tests between different fitting functions were
demonstrated in Figure 5. The exponential fitting showed the
best fitting goodness with the highest R-Square. When model
complexity was considered together with the goodness of fitting,
the exponential fitting also had the best performance with the
lowest AIC value. Consequently, the exponential function was
selected to quantify the NDI developmental trajectories. Despite
of the AIC criterion, a more comprehensive understanding of
this choice could be that the exponential function has more
interpretable parameters. As presented in Figure 4A, NDI
increased dramatically in the first 2 years, then it slowed down
and gradually plateaued. These characteristics are consistent with
those of the exponential function Y = C − Ae−age/τ, in which
the increasing speed (characterized by the first-order differential
of Y , dY/dt = (A/τ)e−t/τ) also slows over time and the Y
converges to the asymptote indicated by C. Here, C and A reflect
the mature value and the total growth of NDI respectively. And
the time constant τ is an estimate of the time scale of NDI growth
in different brain regions.

Developmental Patterns Between Tissue
Groups
To investigate whether different tissue groups differ from each
other in terms of the different variables (C, A, τ) of the
exponential fitting, the 122 brain regions were clustered into 3
tissue groups, white matter, deep and cortical gray matter. A 3D
scatterplot with C, A and τ as coordinates for all the 122 brain
regions was shown in Figure 6A. Brain regions in GM (including
both cortex and deep gray matter) were easily distinguished from

FIGURE 5 | Comparison among different nonlinear fittings of NDI (Neurite
Density Index) and age. The box and whiskers plot showed (A) the R-Square
and (B) the AIC values of 122 brain regions using three different nonlinear
fitting functions: exponential, the third-order polynomial and the second-order
polynomial. The groups were compared by one-way ANOVA. The R-Square of
the exponential fitting was significantly higher than that of the second-order
polynomial fitting (P < 0.0001, denoted by ‘****’). And there was no significant
difference between the exponential fitting and the third-order polynomial
fitting. The one-way ANOVA test results of AIC were the same as those of the
R-Square.

regions in WM by their C values and A values, which were more
clearly shown in the 2D scatterplot in Figure 6B. Cortical GM
had a lower C (P = 2.690e-10) and a lower A (P = 1.274e-7)
than WM. Deep GM also had a lower C (P = 0.0034) and a
lower A (P = 1.045e-4) than WM. However, the time constant τ

was region-specific and showed no significant difference between
groups, which can also be observed in Figure 6C.

Since the parameter A is an estimate of the total NDI growth
from newborn to young adolescence (0∼14 in our study), the
distinction in A between WM and GM found above was also
examined by comparing the NDI maps of newborns and 13 years
olds. In Figure 7, the top row presented the NDI maps for the
newborns, which were calculated by averaging the youngest 10
subjects whose ages ranged from 1 day to 1 week old. The fifth
row presented the NDI maps for the 13 years old, which were the
averaged results from 5 subjects aged 13. The bright areas in the
newborn NDI maps (the top row) indicated that the PLIC (the
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FIGURE 6 | Scatterplot showing the exponential (Y = C− Ae−age/τ) fitting results of NDI. (A) 122 brain regions with the three fitting parameters (C, A, and τ) as
coordinates were shown in a 3D scatterplot. White matter (WM), cortical gray matter (cortical GM) and deep gray matter (deep GM) were represented by red, blue
and black dots, respectively. (B) 2D scatterplot exhibits the C versus A results. (C) 2D scatterplot exhibits the C versus τ results.

posterior limb of internal capsule), the brain stems (including
medial lemniscus, medulla oblongata and pons), the cerebellar
hemisphere and its related peduncles already had relatively
high NDI values at birth. And there were no clear distinctions
observed between WM and GM. Nevertheless, the differences
between WM and GM were more pronounced in the NDI maps at
13 years of age (the fifth row), which means WM underwent more
NDI growth during childhood and young adolescence. And this is
in line with the higher total growth A and the higher mature value
C we found in WM. The second to the fourth row in Figure 7
demonstrated these NDI changes between newborns and young
adolescence at 1 month, 6 months and 1 year.

Developmental Rate
The time constant τ reflects the time it takes to reach the
asymptote C, which is a prediction of the time it takes for a
brain region to reach its mature NDI. As displayed in the τ

maps in Figure 8, the cerebellum had the lowest τ than other
brain regions, indicating that NDI grows faster in both cerebellar
hemispheres. Besides, the white matter tracts like the corpus
callosum, the anterior and posterior limb of the internal capsule
had relatively lower τ than cortical regions like the superior
frontal gyrus, superior parietal gyrus and superior occipital gyrus.
Example regions in the cortex were listed in a descending order τ

from top to bottom in Figure 9. It was found that the postcentral
gyrus matured faster than the precentral gyrus, the same trend

was observed in the cuneus and the pre-cuneus (these regions
were highlighted in bold in Figure 9). Additionally, although the
frontal gyrus did not exhibit this inferior to superior gradient in
NDI growth, both the temporal and the occipital gyrus showed an
inferior-middle-superior development trend (the temporal and
occipital gyrus were underlined in Figure 9).

DISCUSSION

Whole-Brain NODDI Study From
Newborn to Adolescence
This is the first study to date utilizing NODDI to investigate
the maturation trajectories of the whole brain from infancy to
adolescence. In previous NODDI studies, the ages of subjects
were limited to 0 to 3 years (Jelescu et al., 2015) or 8 to
13 years (Mah et al., 2017). Here, we recruited subjects from
0 to 14 years old, which covered the crucial range of brain
development. Hence, age-related microstructural changes of
brain tissues from birth to adolescence could be investigated
in one dataset. NODDI is more specific to brain tissues than
the widely used DTI model. In the current study, the NODDI-
derived NDI and ODI outperformed the DTI-derived metrics
in SVM regression models of age, similar results have also been
reported in previous studies (Chang et al., 2015; Genc et al.,
2017; Mah et al., 2017). This age-related sensitivity in NODDI is
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FIGURE 7 | The reconstructed NDI maps at 1 week, 1 month, 6 months,
1 year and 13 years old. All the maps in this figure shared the same colorbar
shown at the bottom. The last row displayed the slice numbers and the
locations of each brain view shown in this figure.

beneficial from the multicompartment assumption in its model.
By providing sensible neurite density and orientation dispersion
estimates, NODDI disentangles the two key contributing factors
(NDI and ODI) in FA (Zhang et al., 2012). Fractional anisotropy

is an index for the amount of diffusion asymmetry within a voxel,
which is influenced by both the orientation dispersion and the
neurite density. For example, the increase of FA may be caused
by the increase of neurite density or the reduction of orientation
dispersion. Take the three representative brain regions in Figure 4
as examples, both NDI and ODI increased with age in these brain
regions. The increase of NDI might cause an increase in FA,
but the increase in ODI might reduce the FA at the same time.
Therefore, the FA time course in Figure 4C actually showed the
hybrid results of both NDI and ODI. This offers one possible
explanation for the better age regression accuracy of NODDI
metrics, suggesting that NODDI may provide more biologically
specific characteristics in brain development than DTI (Chang
et al., 2015). Figure 3 shows that the sensitivity of ODI to age
was slightly lower than that of NDI. Both Kunz et al. (2014) and
Mah et al. (2017) also indicated that the correlation between ODI
and age is weaker than that between NDI and age.

Assessment of Developmental
Trajectories
In this study, the exponential function Y = C − Ae−age/τ
showed the best fit in the quantification of NDI developmental
trajectories. Previous studies have found that the human brain
experienced dramatic growth during the first two years and
slowed down after 2 (Barkovich et al., 1988; Mukherjee et al.,
2002; Schneider et al., 2004; Hermoye et al., 2006), in line
with the features of the exponential function, whose increasing
speed dY/dt = (A/τ)e−t/τ also declines with time. Besides, two
additional exponential fittings were calculated for males and
females separately to test the gender effect. The Student’s t-test
was utilized to evaluate if the distributions of the fitted parameters
(C, A, τ) over 122 brain regions stay the same between males and
females. The p-values of these t-tests were listed in Table 2. All
the p-values were larger than 0.05, which means no significant
difference was found between males and females based on the
NDI and ODI trajectories in our study.

Assessment of Brain Developmental
Pattern
As shown in the reconstructed NDI maps (Figure 7), the
cerebellar hemisphere and its related peduncles already exhibited
notably high NDI at newborns, suggesting a remarkable neural
development in the cerebellum before birth (Cho et al., 2011).
Meanwhile, the prominently larger NDI in the brain stem
and cerebellar regions at birth is consistent with the existing
knowledge that the brain stem and cerebellar areas myelinate
prior to the cerebral hemispheres (Barkovich et al., 1988).
Additionally, the cerebellum still presented a relatively high
NDI at 13 years old, agreeing with the understanding that the
cerebellum contains more than half of all neurons in the human
brain (Herculano-Houzel, 2010; Herculano-Houzel et al., 2015).

The group difference of variable C found between WM and
GM can be explained by the assumptions of NODDI models.
NDI estimates the volume fraction of both axons and dendrites
(Zhang et al., 2012). Since white matter are mainly occupied
by compact axon bundles, while gray matter are composite of
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FIGURE 8 | The reconstructed τ maps from the exponential fitting (Y = C− Ae−age/τ) of NDI measurements. The last row displays the slice numbers and the
locations of each brain view shown in this figure.

both dendrites and cell bodies(soma), the volume fraction of
neurites in gray matter is expected to be smaller than that in
white matter. The other distinct variable between WM and GM
groups is A, which stands for the total growth of NDI value
from newborn to young adolescence (0∼14). This indicates that
white matter has experienced a more rapid NDI growth in
childhood and early adolescence. Another view on the difference
between gray and white matter development is provided by ODI.
According to its original definition, ODI estimates the angular
distribution of neurites. The change in ODI may reflect the axonal

organization and neural pruning (Sowell et al., 2004). In our
study, the ODI time courses of different brain regions reach
their plateaus at distinct time points. For instance, in Figure 4B,
two example GM regions, the globus pallidus and the middle
occipital gyrus, underwent ODI increase throughout childhood
and early adolescence. Nevertheless, the example WM region,
PLIC, remained a stable ODI after 2 years old.

Based on the assumptions of the NODDI model, NDI may
provide an estimate of the cerebral neurite density. Still, more
studies are needed to validate the relationship between the
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FIGURE 9 | The time constant τ from the exponential fitting of NDI measurements of different cortical regions. Brain regions are listed in the descending order τ from
top to bottom. The blue bar stands for the brain regions in the right hemisphere. The red bar stands for the brain regions in the left hemisphere. The brain regions
highlighted in bold (postcentral and precentral gyrus, cuneus and precuneus) represented a posterior to anterior developmental trend. And the underlined regions
(temporal and occipital gyrus) exhibited an inferior-middle-superior trend of development.

histologic cerebral neurite density and the NODDI-derived NDI.
For the assessment of NDI developmental patterns, we should be
careful to draw any direct biological explanations. However, it still
gives us valuable insights by comparing the NDI developmental
patterns with the rich findings from histological studies. For
instance, the fifth row in Figure 7 showed an averaged NDI
map at young adolescence, a spatial gradient of NDI values was
found in the cortex. The NDI in the precentral and postcentral
gyrus were higher than those in the prefrontal, parietal and
temporal areas, showing a spatial gradient that anchored in the
sensorimotor regions and radiated to the surrounding areas.

TABLE 2 | Results of t-test between genders.

The P-values of gender tests

Metrics C A τ

NDI 0.146 0.147 0.517

ODI 0.305 0.306 0.326

The exponential fitting (Y = C− Ae−age/τ) of NDI and ODI were applied to males
and females, separately. The distribution of the obtained fitting parameters (C, A,
and τ) was tested between genders, using the Student’s t-test.

A similar gradient has been described in previous studies on
cortical thickness (Wagstyl et al., 2015) and myelin content (Burt
et al., 2018; Huntenburg et al., 2018). Meanwhile, postmortem
histology studies have demonstrated a strong correlation between
cerebral neurite density and the intensity of myelin stain under
light microscopy (Jespersen et al., 2010). Although there is no
confirmed association between the NDI gradient found in this
study and the previously revealed gradients of myelin content
or cortical thickness, this comparison still suggests that NODDI
analysis could provide additional insight to the multi-model
studies of brain development.

The time constant τ was more region-specific and no
significant difference was found between white and gray
matter. In cortical regions, an inferior-middle-superior trend
was observed in both the temporal and the occipital gyrus,
which is potentially related to the myelination process because
myelination is generally thought to process from inferior to
superior (Yakovlev and Lecours, 1967; Brody et al., 1987).

Limitations
Due to most of children cannot stay motionless in the MR
scanner for a long time, acquiring MRI data on pediatrics
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especially on infants is challenging. More difficult is that
NODDI requires at least two shells of diffusion MRI data
for its model fitting, which doubles the scanning time of the
traditional DTI acquisition. Therefore, the number of diffusion
gradient directions in our study was compromised to shorten
the acquisition time for our young participants, which is lower
than the recommended number of the original NODDI protocol
(Zhang et al., 2012). In order to evaluate the quality of our
NODDI fitting, we did a comparison between the fitting results
of our image protocol (protocol_30: 15 directions at b = 1,000
s/mm2 and 15 directions at b = 2,000 s/mm2) and the full NODDI
protocol (protocol_90: 30 directions at b = 1,000 s/mm2 and
60 directions at b = 2,000 s/mm2). The comparison of fitted
NDI was shown in Appendix Figure 4. With the protocol_90
considered as a reference, the fitted NDI of protocol_30 was in
good agreement with the reference in WM. In GM, the fitted NDI
of protocol_30 was lower than the reference with an averaged
difference of −0.0167 ± 0.0106 (mean ± std). This means that
the reconstructed NDI values, as well as the fitted parameter
C from the exponential fitting, may be underestimated in GM
in our study. Nevertheless, according to the NDI ranges in the
present study, the NDI was between 0 and 0.2 in GM and 0∼0.7
in WM (see Figure 6), which means, the fitted parameter C in
GM would still be distinguishable from those in WM even if
there was an NDI bias in GM. The comparison of ODI was
presented in Appendix Figure 5. Unlike the observations of
Zhang et al. (2012) that low angular resolution will undermine
the accuracy of ODI estimation while has little impact on NDI
(Zhang et al., 2012), the fitted ODI of protocol_30 was in line with
the reference in GM. In WM, the ODI of protocol_30 showed a
little bias compared to the reference with an average difference of
−0.0162± 0.0154 (mean± std).

Additionally, the dMRI of all subjects from 0 to 14 years old
were acquired using the same set of b values (0, 1,000, and 2,000
s/mm2). While the optimal protocol recommended for NODDI
used b values = 0, 711, and 2,855 s/mm2 (Zhang et al., 2012),
Wang et al. (2014) showed that the more standard protocol
utilized here in our study yields comparable performance.
Besides, considering that the neonatal brain contains more water
and is less myelinated than the adult brain, the b values used in
DTI studies for neonates are smaller than those for adults, which
are ranged between 600 and 1,100 s/mm2 (Heemskerk et al.,
2013). And the use of b values around 700 s/mm2 is believed to be
optimal for infant brains (Pannek et al., 2012). Up to now, there
is no consensus on the optimal b-values in the neonatal brain for
NODDI, and the same set of b values (0, 1,000 and 2,000 s/mm2)
has been used by other groups when applying NODDI to neonatal
studies (Jelescu et al., 2015; Karmacharya et al., 2018). Still, given
the knowledge from DTI studies, the b = 1,000 s/mm2 used in our
study might be a little too high for infants, which may affect the
SNR of the acquired dMRI data. But the influence on the fitted
diffusion metrics might be small, according to the observations
from the DTI study, the FA values remain stable for b values up
to 3,000 s/mm2 in neonates (Dudink et al., 2008).

Note that, it is still necessary to process further longitudinal
animal studies to verify the relationship between the NODDI-
derived NDI and the histological indices, such as neurite density,

neuron number and neuron density. With such verification, the
physiological significance of NODDI metrics can be clearer and
be used to guide future research in the human brain.

CONCLUSION

This study verified NODDI’s sensitivity to brain development by
quantitative comparison with the most widely used DTI model,
over a large sample size (214) covering a crucial development
period (0∼14 years old). NODDI outperformed DTI in SVM
regression models of age. Both NDI and ODI showed a non-
linear increase with age. NDI in white matter experienced
higher total growth than that in gray matter (including the
cortex and deep nucleus). Region-specific maturation patterns
were described throughout the brain and were evaluated on
the basis of model assumptions. These findings complemented
the existing knowledge of brain maturation and indicated that
NODDI is more specific than DTI in neural changes detection,
suggesting that NODDI can be a powerful tool in further
investigations in brain development, as well as aging and
neurodevelopmental abnormality.
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Appendix Figure 1 | Root mean square head motion (RMS_motion) of 214
subjects. The averaged RMS_motion of 40 diffusion volumes were shown with a
standard error bar. The averaged RMS_motion of all subjects was 0.27mm.

Appendix Figure 2 | A showcase of NDI calculation. The first row represented the
calculated NDI maps. And the corresponding ICVF and IsoVF maps were shown

in the second and third row. Compared to the ICVF maps, the distortion at the
interface between CSF and brain tissues had been reduced in the NDI maps. All
the maps in this figure shared the same colorbar shown at the bottom.

Appendix Figure 3 | Scatterplot showing the feature weight of each brain region
using the linear SVM regression model for (A) NDI, (B) ODI, (C) FA and (D) MD.
Four brain tissue groups are WM (white matter), cGM (cortical gray matter), dGM
(deep gray matter) and others (including cerebellum and brain stems).

Appendix Figure 4 | NDI comparison between protocol_30 and protocol_90.
(A) The fitted NDI in 38 white matter (WM) regions. (B) The fitted NDI in 58 gray
matter (GM) regions.

Appendix Figure 5 | ODI comparison between protocol_30 and protocol_90.
(A) The fitted ODI in 38 white matter (WM) regions. (B) The fitted ODI in 58 gray
matter (GM) regions.

Appendix Table 1 | Exponential fitting results of NDI. * The order of brain regions
remains the same as JHU Atlases (http://cmrm.med.jhmi.edu/).

REFERENCES
Albajara Saenz, A., Villemonteix, T., and Massat, I. (2019). Structural and

functional neuroimaging in attention-deficit/hyperactivity disorder. Dev. Med.
Child. Neurol. 61, 399–405. doi: 10.1111/dmcn.14050

Barkovich, A. J., Kjos, B. O., Jackson, D. E. Jr., and Norman, D. (1988). Normal
maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology
166, 173–180. doi: 10.1148/radiology.166.1.3336675

Ben, B. D., Ben, Sira L, Graif, M., Pianka, P., Hendler, T., Cohen, Y., et al. (2005).
Normal white matter development from infancy to adulthood: comparing
diffusion tensor and high b value diffusion weighted MR images. J. Magn. Reson.
Imaging 21, 503–511. doi: 10.1002/jmri.20281

Blockx, I., De Groof, G., Verhoye, M., Van Audekerke, J., Raber, K., Poot, D., et al.
(2012). Microstructural changes observed with DKI in a transgenic Huntington
rat model: evidence for abnormal neurodevelopment. Neuroimage 59, 957–967.
doi: 10.1016/j.neuroimage.2011.08.062

Brody, B. A., Kinney, H. C., Kloman, A. S., and Gilles, F. H. (1987). Sequence of
central nervous system myelination in human infancy. I. An autopsy study of
myelination. J. Neuropathol Exp. Neurol. 46, 283–301. doi: 10.1097/00005072-
198705000-00005
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