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Gene selection algorithm in micro-array data classification problem finds a small set

of genes which are most informative and distinctive. A well-performed gene selection

algorithm should pick a set of genes that achieve high performance and the size of this

gene set should be as small as possible. Many of the existing gene selection algorithms

suffer from either low performance or large size. In this study, we propose a wrapper

gene selection approach, named WERFE, within a recursive feature elimination (RFE)

framework to make the classification more efficient. This WERFE employs an ensemble

strategy, takes advantages of a variety of gene selection methods and assembles the top

selected genes in each approach as the final gene subset. By integrating multiple gene

selection algorithms, the optimal gene subset is determined through prioritizing the more

important genes selected by each gene selection method and a more discriminative and

compact gene subset can be selected. Experimental results show that the proposed

method can achieve state-of-the-art performance.

Keywords: WERFE, gene selection, RFE, ensemble, wrapper

1. INTRODUCTION

Gene expression data contains gene activity information, and it reflects the current physiological
state of the cell, for example, whether the drug is effective on the cell, etc. It plays important roles
in clinical diagnosis and drug efficacy judgment, such as assisting diagnosis and revealing disease
occurrence mechanism (Lambrou et al., 2019). Gene expression data is rather complex, large in
volume and grows fast. Since the dimensionality of gene expression data is often up to tens of
thousands, it often consumes huge amount of time for analysis and it is difficult to make full use
of it. The performance is not satisfied without proper processing. Although the dimensionality of
gene expression data is extremely high, sometimes only a handful of the genes are informative and
discriminative. Therefore, before the analysis of gene expression data, gene selection, which aims
to reduce the dimensionality, is always carried out as the first step.

Gene selection is one special type of feature selection algorithm. It is amethod to find the optimal
gene subset from the original data set according to the actual needs (Su et al., 2019c). Over the years,
many have studied the feature selection fromdifferent aspects. Kira et al. proposed a relief algorithm
and defined the feature selection as a way to find the minimum feature subset that is necessary and
sufficient to identify the target in ideal situations (Kira and Rendell, 1992). From the perspective of
improving prediction accuracy, John et al. viewed the feature selection as a calculation procedure,
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which could increase classification accuracy or reduce the feature
dimension without reducing the classification accuracy (John
et al., 1994). In the definition of Koller et al.’s study, feature
selection aims to select the smallest feature subset, and ensure
that the predicted class distribution is similar to the original data
class distribution (Koller and Sahami, 1996). InDash et al.’s study,
they considered the feature selection as a method to select a
feature subset as small as possible, and meet conditions that not
reduce the classification accuracy significantly and not change the
class distribution significantly (Dash and Liu, 1997). Although
the definition varied from study to study, they had the same
goal, that is, to find a smallest feature subset to identify the
target effectively and achieve an accuracy as high as possible.
Their definition of feature selection takes into account both
classification accuracy and class distribution. Based on algorithm
model structure, feature selection method has been divided into
three categories: filter, wrapper, and embeddedmethod. The gene
selection can also be divided into these three categories.

Filter method is an early feature selection method, which
selects the optimal feature subset at the first place and then
using this feature subset to train the model. The two steps are
independent. Another way to think about it is that it measures
the importance of each feature, ranks the features, selects the top
ranked features, or the top ranked percentage of all the features
as the final feature subset. This method has often been used
to pre-process the raw data. Phuong et al. (2005) proposed an
effective method filter-based method for finding tagging SNPs. In
the study of Zhang et al.’s, the filter method is used to pre-process
3D image data (Zhang et al., 2015). Roffo et al. (2016) proposed
a new filter-based feature selection method which achieved state-
of-the-art performance.

Unlike filter method, wrapper method uses the output
of the learning model as the evaluation criterion of each
feature subset. In wrapper method, feature selection algorithm
plays as an integral part of the learning algorithm, and the
classification output is used to evaluate the importance of
the feature subsets (here we focus on classification issues).
By generating different combinations of genes, evaluating each
combination, and then comparing between combinations, this
type of approach eventually becomes an optimization problem
in terms of determination of the finally selected subset. The
wrapper algorithm has been studied extensively. Zhang et al.
(2014) built a spam detection model and used a wrapper-based
feature selection method to extract crucial features. Li Yeh et al.
used the idea of wrapper algorithm, combined the tabu search
and binary particle swarm optimization for feature selection,
and successfully classified the micro-array data (Li Yeh et al.,
2009). Shah et al. developed a new approach for predicting drug
effect, and decision-tree based wrapper method was used in a
global searching mechanism to select significant genes (Shah and
Kusiak, 2004).

Wrapper method integrates feature selection process and
model training process into one entirety (Su et al., 2019b).
That is, the feature selection is carried out automatically
during the learning process. This method is often coupled with
well-performed classification methods such as support vector
machine (SVM) or random forests (RF) in order to improve

the classification accuracy and efficiency. Wrapper method has
shown impressive performance in gene studies. Su et al. proposed
a MinE-RFE gene selection method which conducted the gene
selection inside the RF classification algorithm and achieved
good performance (Su et al., 2019b). They also proposed a gene
selection algorithm combing GeneRank and gene importance to
select gene signatures for Non-small cell lung cancer subtype
classification (Su et al., 2019f). The third class, embeddedmethod,
is similar to wrapper methods. Different from the wrapper
method, an intrinsic model building metric is used during
learning in embedded approach. Duval et al. (2009) presented
a memetic algorithm which was an embedded approach dealing
with gene selection for supervised classification of micro-array
data. Hernandez and Hao (2007) tried a genetic embedded
approach which performed the selection task combining a SVM
classifier and it gave highly competitive results.

Ensemble strategy has been used widely to deal with diverse
types of issues (Wei et al., 2017a,b, 2018a; Wang et al., 2018;
Zhang W. et al., 2018; Su et al., 2019d; Zhang et al., 2019a).
It takes advantages of different algorithms and the optimal
outcome is obtained based on the optimization of the multiple
algorithms. In this study, we propose an wrapper approach for
gene selection, named WERFE, to deal with classification issues
within a recursive feature elimination (RFE) framework. This
WERFE employs an ensemble strategy, takes advantages of a
variety of gene selection methods and assembles the top selected
genes in each approach as the final gene subset. By integrating
multiple gene selection algorithms, the optimal gene subset is
determined through prioritizing the more important genes of
each gene selection method. A more compact and discriminative
gene subset is then selected.

2. METHODOLOGY

2.1. Data Sets and Preprocessing
In our study, we used five data sets to validate the proposed
method, RatinvitroH, Nki70, ZQ_188D, Prostate and Regicor.
RatinvitroH was retrieved from Open TG-GATEs database,
which is a large-scale toxicogenomics database (https://toxico.
nibiohn.go.jp/english/index.html). It stores gene expression
profiles and toxicological data derived from in vivo (rat) and in
vitro (primary rat hepatocytes and primary human hepatocytes)
exposed to 170 compounds at multiple dosages and time
points (Yoshinobu et al., 2015; Su et al., 2018). Here we identified
hepatotoxic compounds based on the toxicogenomics data. We
used the liver toxicogenomics data of rat in vitro and we selected
the data at 24 h as at this time point the gene expression is
higher in the single-dose study (Otava et al., 2014; Su et al.,
2019e). All 31,042 genes of 116 compounds in the database
were picked to build and estimate the gene selection method.
Gene expression levels at three concentrations, low, middle, and
high were recorded and we employed the response at the high
concentration to represent the potency of the drugs. The gene
expression was profiled with Affymetrix GeneChip.

Nki70 is a data set assembling expression of 70
breast cancer-related genes of 144 samples. CPPsite
(http://crdd.osdd.net/raghava/cppsite/) is a manually curated
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TABLE 1 | The details of the five data sets.

Dataset Gene number Sample number

RatinvitroH 31,042 116

Nki70 70 144

ZQ_188D 188 9,024

Prostate 100 50

Regicor 22 300

database of experimentally validated 843 cell-penetrating
peptides (CPPs) (Gautam et al., 2012), and CPPsite3.0 is the
updated version of CPPsite2.0 (Piyush et al., 2015). ZQ_188D is
derived from CPPsite3.0. It picks 188 CPPs of 9,024 samples. The
Prostate data set contained 100 genes and 50 samples and it was
used for cancer classification based on gene expression (Torrente
et al., 2013). Regicor data set contained 22 genes and 300
samples (Subirana et al., 2014). It was used to identify death
using cardiovascular risk factors. Table 1 shows the details of the
five data sets we used in this study.

2.1.1. Support Vector Machine (SVM)
SVM is a widely used classification and regression analysis
method in machine learning. It maps the raw data into high
dimensional space through kernel functions to make the data
linearly separable (Wang et al., 2019; Wei et al., 2019a,b). It
was developed in Vapnik et al.’s study of statistical learning
theory (Cortes and Vapnik, 1995), with the core idea to find
the hyperplane between different categories, so that samples
in different categories can be grouped into different sides
of the separating hyperplane as far as possible. The early
SVM was flat and limited. Then using more complicated
kernel function, the application scope of SVM was greatly
enlarged (Zhang N. et al., 2018).

SVM has the cost function as follows (Su et al., 2019a):

J(θ) =C

M∑

i=1

[ yicost1(θ
Txi)+ (1− yi)cost0(θ

Txi) ]+
1

2

γ∑

j=1

θj
2

(1)

where θ is the adjustable parameter of the model and γ is the
number of θ ; M is the number of the samples. yi represents
the category of the i-th sample. Here we considered binary
classification with label 0 and 1. cost1 and cost0 are the objective
function when yi is equal to 1 and 0, respectively. C is the degree
of penalty for controlling mis-classified training samples. It can
only be set as a positive value. Here we used the SVM with
linear kernel.

2.1.2. Random Forest (RF)
Random forest (RF) is another classifier we used to train the
model and obtain the importance of genes. RF is a method of
discriminating and classifying data through voting of different
classification trees (Ho, 1995; Gong et al., 2019; Lv et al., 2019).
It is an ensemble learning method composed of multiple tree
classifiers. It takes a random sample from the sample set with

replacement, and then the samples are fed into the tree classifiers.
Finally the class of the sample is determined by voting with the
principle of majority rule. As it classifies the data, it can also
provide the importance score of each variable (gene) and evaluate
the role of each variable in the classification. In the process
of applying RF, two parameters need to be determined. One is
the number of samples selected each time and the other one
is the number of decision trees in the random forest. The two
parameters are determined according to the size of the data set.

2.2. Gene Selection Based on Recursive
Feature Elimination
Gene selection was widely used in a number of fields (Fajila,
2019; Shahjaman et al., 2019). The most popular methods
include Fisher-based methods (Gu et al., 2011), Relief-based
methods (Robnik-Sikonja and Kononenko, 1997), FSNM
methods (Nie et al., 2010), and mRMR (Peng et al., 2005) etc. All
of these methods firstly rank the genes based on an evaluation
criteria. Then based on the rank of genes, an appropriate gene
subset is determined. However, the relationship between the
number of selected genes and the classification precision cannot
be fully reflected using these gene selection methods. Recently,
Su et al. developed an algorithm balancing performance and gene
number under the framework of recursive feature elimination
(RFE) (Su et al., 2019b). Inspirited by their work, we designed
the WERFE inside the RFE framework.

The RFE is a greedy algorithm which iteratively builds gene
sets and the optimal subset is chosen from them. It was proposed
by Guyon et al. with the intention to detect cancer (Guyon
et al., 2002). The RFE iteratively eliminates the least important
genes and conducts classification based on the new gene subsets.
All the gene subsets are evaluated based on their classification
performance. In our study, the finally selected subset is the one
with the highest accuracy.

2.3. The Proposed Gene Selection
Algorithm WERFE
2.3.1. Gene Ranking Algorithm
In this study, we developed a gene selection algorithm, named
WERFE. Its main idea is to integrate two or more independent
gene selection algorithms and the final decision is made based on
all of these algorithms. TheWERFE can be divided into two parts,
the first is the gene ranking algorithm, and the second part is the
determination of the optimal gene subset. Figure 1 illustrates the
entire process of the gene ranking algorithm. Cross validation is
widely used to evaluate the model (Liu et al., 2017; Zeng et al.,
2017a, 2018). Therefore, the WERFE was performed inside a
ten-fold cross validation procedure. In each fold, different gene
selection algorithms used the training and test data to pick gene
subsets. Then we put all the selected genes which were obtained
from different algorithms into a voting pool (Chen et al., 2018).
We counted the votes of each gene in the voting pool and ranked
the genes based on the votes. In this way, we obtained a list of
genes, GR, ranking from high to low. This ranking would be used
for further gene selection. The pseudo code in Algorithm 1 shows
the process of gene ranking. Here ten-Fold cross validation was
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FIGURE 1 | The entire process of gene ranking algorithm.

used in WERFE, and two gene selection algorithms RF and SVM
are integrated.

2.3.2. Determination of the Optimal Gene Subset
In our study, we generated different gene subsets, gathered all the
genes selected through different gene selection algorithms, and
chose an optimal gene subset according to the votes for each gene.
We assume that Gfinal is the gene subset eventually selected, and
there are p genes in Gfinal. According to the votes we obtained for
each gene, Gfinal is acquired as follows:

Gfinal = Gr :{Gr1, · · · ,Grl} | max(Acc(Gr , t0)),

tf > t0, tf ∈ [1, 10N], t0 ∈ [0, 10N − 1].
(2)

where Gr is the top ranked l genes of GR; Each of these l genes
present vote value tf larger than a threshold t0. Acc() means the
accuracy values of Gr . Assuming we integrated N gene selection

Algorithm 1: Gene ranking of Wrapper Embedded Recursive
Feature Elimination (WERFE)

Input: Input data X : x1, x1...xm and labels Y : y1, y1...ym, where
m is the number of samples. x is n-dimensional gene vector.s is
the step size of RFE.
Output: Ranked genes GR of all the genes.

1: for k = 1 : 10 do
2: The data set was randomly divided into ten equal parts;
3: Keep one part as a test data; The remaining nine parts are

used as training data;
4: while X is not empty do
5: Train a model based on training data of X using SVM;
6: Calculate the prediction accuracy of the model using the

test data;
7: Obtain the weight of each gene produced from SVM;
8: Remove s least weighted genes and update X;
9: end while

10: Obtain the gene subset G1 with the highest prediction
accuracy;

11: while X is not empty do
12: Train a model based on training data of X using RF;
13: Calculate the prediction accuracy of the model using the

test data;
14: Obtain the importance of each gene produced from RF;
15: Remove s least weighted genes and update X;
16: end while

17: Obtain the gene subset G2 with the highest prediction
accuracy;

18: Count the votes for all the genes contained in both G1 and
G2;

19: end for

20: Rank genes based on votes and obtain GR.

algorithms, and thus we would have N ten-fold cross validation,
respectively. Since all the selected subsets would be put into the
voting pool, it made that the number of votes for each gene
ranged from 0 to 10 × N. Therefore, the tf ranges from 1 to
10 × N and the threshold t0 ranged from 0 to 10 × N − 1.
Each time, we selected genes with tf larger than t0 and tested
the performance for the selected genes. As we set various t0
values and each t0 corresponded to a gene subset with l genes,
the performance using this subset could be calculated. Thus, we
obtained a list of accuracy values corresponding to each t0. Then
the subset with the highest accuracy was selected as the final
gene subset.

2.4. Performance Measurements
Classification sensitivity, specificity and accuracy are important
indicators for performance evaluation, which are widely used
in diverse applications (Zeng et al., 2017b; Wei et al.,
2018b, 2019c; Jin et al., 2019; Zhang et al., 2019b). In
this study, we used these three measurements to estimate
the performance of the gene subset. They are formulated
as follows:
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TABLE 2 | Voting and predicted results on RatinvitroH data set using WERFE.

tf tf GNa Acc.RFb Sen.RF Spe.RF Acc.SVM Sen.SVM Spe.SVM

19 20 0 – – – – – –

18 19, 20 2 75.79 74.58 56.19 60.45 100 0

17 18–20 17 77.30 81.10 47.26 57.80 95.42 3.33

16 17–20 685 77.15 81.46 48.10 76.67 90.69 60.48

15 16–20 1,092 77.43 85.82 53.10 75.00 82.27 69.76

14 15–20 6,142 75.70 80.17 43.10 65.53 69.57 65.48

0 1–20 31,042 76.84 81.74 66.62 60.23 49.52 50.71

aGN, gene number.
bAcc.RF, Acc using RF as classifier. Other abbreviations in the first row mean in the same

way.

Sensitivity(Sen) =
TP

TP+ FN
× 100%,

Specificity(Spe) =
TN

TN+ FP
× 100%,

Accuracy(Acc) =
TP+ TN

TP+ FP+ FN+ TN
× 100%.

(3)

The receive operating characteristic (ROC) curves as well as the
area under the ROC, named AUC, were also implemented to
measure the performance.

3. EXPERIMENTAL RESULTS

3.1. Performance Using Different Voting
Threshold
Theoretically, the proposedWERFE can ensemble any number of
gene selection algorithms. Here in order to made the calculation
efficient, we integrated two of the most popular wrapper gene
selection algorithms, the RFRFE and SVMRFE, and performed
the ten-fold cross validation to pick the most informative genes.
In each fold, using the same data splitting strategy, RFRFE
and SVMRFE selected their gene subsets respectively. Then
we obtained 20 gene subsets considering the ten-fold cross
validation. These gene subsets were gathered and put into the
voting pool. Based on votes of each gene, we obtained gene
rank GR, which is in descending order. Then we re-generated
gene subsets by setting different threshold t0. We evaluated the
classification performance of each new gene subset and made
the final decision. Here we used RF and SVM as the classifier
respectively after obtaining the final gene subset. We used
RatinvitroH to validate the WERFE as it is high in dimension.
Table 2 shows part of the intermediate outcome of applying
WERFE method to RatinvitroH data set. Here as the vote of each
gene ranges from 1 to 20, we set the threshold t0 from 0 to 19.

From Table 2, it shows that no gene has 20 votes. It can also
be seen that RF performs significantly better than SVM. Two
genes obtain 19 votes, and the classification using gene subset
composed of these two genes has reached 75.95% of accuracy,
74.58% of sensitivity, and 56.19% of specificity, based on RF.
With the increase of the number of genes in the gene subset, the

TABLE 3 | Comparison with RFRFE.

Dataset WERFE RFRFE

GNa Acc Sen Spe GNa Acc Sen Spe

RatinvitroH 17 77.30 81.10 47.26 11 72.27 68.71 34.95

Nki70 5 82.27 49.75 86.13 43 80.15 35.36 83.92

ZQ_188D 1 93.81 98.43 100.00 41 95.80 17.29 99.98

Prostate 4 98.00 95.00 100.00 3 95.31 90.00 100.00

Regicor 4 76.54 65.34 62.71 5 77.76 68.95 64.70

aGN, gene number.

TABLE 4 | Comparison with SVMRFE.

Dataset WERFE SVMRFE

GNa Acc Sen Spe GNa Acc Sen Spe

RatinvitroH 17 77.30 81.10 47.26 51 70.30 80.86 53.79

Nki70 5 82.27 49.75 86.13 25 77.10 57.42 88.17

ZQ_188D 1 93.81 98.43 100.00 1 93.81 0 100.00

Prostate 4 98.00 95.00 100.00 42 98.00 96.67 100.00

Regicor 4 76.54 65.34 62.71 3 65.33 62.21 72.24

aGN, gene number.

classification accuracy ranges from 75.70 to 77.43%, sensitivity
ranges from 74.58 to 85.82%, and specificity ranges from 43.10
to 66.62%, using RF evaluation method. The accuracy achieves
the highest when the t0 is set to 15. However, a huge number of
genes are obtained, which makes the computation slow down. In
order to balance the gene number and the accuracy, we selected
17 genes as the final gene subset when t0 equals to 17 and tf ranges
from 18 to 20, and obtained an accuracy of 77.30%, sensitivity of
81.10%, and specificity of 47.26%. That means we can obtain a
relatively high classification result with a small number of genes.

3.2. Comparison and Analysis With
Non-ensemble Algorithms
In theory, our ensemble strategy assumes that integrating more
gene selection algorithms is able to give better performance,
yet will lead to large calculation cost. Here we only integrated
two wrapper algorithms, RFRFE and SVMRFE in the proposed
WERFE. We compared WERFE with RFRFE and SVMRFE,
respectively and show the results in Tables 3, 4. The comparison
was made based on the five data sets.

In Table 3, for RatinvitroH, Nki70 and Prostate, it can be
clearly seen that the classification accuracy of WERFE is similar
or higher than the RFRFE method and the gene subset number
is similar or less; while for ZQ_188D and Regicor, although the
performance is slightly lower, the gene number is also smaller.
The overall performance of WERFE is better than the RFRFE.

From Table 4, we can find that the WERFE performs better
on all the five data set than SVMRFE. The accuracy is higher or
similar and gene number is smaller or similar.

Comparing across tables, we find WERFE outperforms the
other two methods. For example, Nki70’s classification accuracy
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FIGURE 2 | ROC curve on RatinvitroH dataset.

FIGURE 3 | ROC curve on Nki70 dataset.

reaches 82.27% using WERFE algorithm. While using RFRFE,
the accuracy is 80.15% (Table 3) and using SVMRFE, the
classification accuracy is 77.10% (Table 4). The number of
selected genes is 5, 43, and 25, respectively. WERFE achieves the
highest accuracy using the least number of genes. It is obvious to
see the similar trend for the other data sets. Even the accuracy is
lower using WERFE, e.g., for data ZD_188D, the accuracy is 2%
lower, the much smaller number of gene subset can compensate
the slight decrease of accuracy.

Figures 2, 3 show the ROC curves of the three methods on
RatinvtroH and Nki70 data set. WERFE stays on the top left
of RFRFE and SVMRFE, which shows it performs better on
RatinvtroH and Nki70 data sets than the other two methods.

TABLE 5 | Performance between lightGBM with WERFE and without WERFE.

Dataset With WERFE Without WERFE

GNa Acc Sen Spe GNa Acc Sen Spe

RatinvitroH 17 77.30 81.10 47.26 31042 59.13 73.90 36.93

Nki70 5 82.27 49.75 86.13 70 63.60 31.25 80.00

ZQ_188D 1 93.81 98.43 100.00 188 96.80 61.50 98.90

Prostate 4 98.00 95.00 100.00 100 89.80 88.00 91.70

Regicor 4 76.54 65.34 62.71 22 59.90 64.00 55.70

aGN, gene number.

3.3. Validation Using Other Classifiers
We have shown the results of WERFE using both RF and
SVM as the classifiers in section 3.1. Besides classification, RF
and SVM also provide gene ranking criteria for WERFE. In
order to provide a fair evaluation of WERFE, we used another
algorithm, LightGBM algorithm to classify the five data sets and
we compared the results with or without WERFE gene selection.
LightGBM, a gradient Boosting framework proposed in recent
years (Ke et al., 2017), is a distributed and efficient machine
learning algorithm based on Gradient Boosting Decision Tree
(GBDT) with two key techniques, Gradient-based One-Side
Sampling (GOSS), and Exclusive Feature Bundling (EFB). It has
been used in gene studies and shown impressive performance (Su
et al., 2019e). We show the results using lightGBM with WERFE
and lighGBM without WERFE in Table 5.

Table 5 shows that, with the exception of the ZQ_188D data
set, the classification accuracy and sensitivity of lightGBM plus
WERFE is much higher than that of using LightGBM alone. And
the WERFE greatly reduces the gene number. This shows that
WERFE algorithm performs well in gene selection of most data
sets and achieves the purpose of using fewer genes to reach higher
classification accuracy.

3.4. Comparison With Other Gene
Selection Algorithms
We also compared the WERFE with some widely used gene
selection approaches including Nie et al.’s method (Nie
et al., 2010), Fisher score-based approach and ReliefF
approach (Kononenko et al., 1997). We denoted them with
FSNM, Fisher, and ReliefF, respectively. These three gene
algorithms were conducted combining an incremental search
method (ISM). Firstly, the genes were ranked (descending
order) using FSNM, Fisher score, and ReliefF, respectively. Then
according to the rank, we assumed the basic gene subset include
the top ranked θ genes. Next, by adding step size genes each
time on top of the basic gene subset, we constructed a group
of gene subsets. In order to be consistent with the evaluation
method of WERFE algorithm, we also used RF and SVM as
the classification methods, and took the subset with the highest
accuracy as the result of gene selection. In our study, we set θ to
10 and the step size to 10. The results are shown in Tables 6, 7
for data RatinvitroH and Nki70, respectively.

Table 6 shows that, in the RF column, FSNM algorithm uses
the gene subset composed of 60 genes to obtain the classification
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TABLE 6 | Comparison with other gene selection algorithms on RatinvitroH.

Algorithms RF SVM

GNa Acc Sen Spe GNa Acc Sen Spe

WERFE 17 77.30 81.10 47.26 685 76.67 90.69 60.48

FSNM 60 77.50 83.65 43.52 100 74.85 83.95 60.02

Fisher 20 73.39 69.60 34.02 10 59.85 93.02 14.83

ReliefF 40 73.21 74.60 40.45 80 62.20 97.46 8.17

aGN, gene number.

TABLE 7 | Comparison with other gene selection algorithms on Nki70.

Algorithms RF SVM

GNa Acc Sen Spe GNa Acc Sen Spe

WERFE 5 82.27 49.75 86.13 5 72.33 33.00 92.17

FSNM 63 80.85 22.93 88.06 28 81.33 61.79 90.86

Fisher 35 81.46 35.33 92.94 35 74.24 46.12 89.14

ReliefF 21 80.31 39.36 82.11 35 75.76 50.62 87.86

aGN, gene number.

accuracy of 77.50%, which is the highest among the four
algorithms, and the classification accuracy obtained by WERFE
algorithm by using the gene subset composed of 17 genes is
77.30%. Through the comparison of FSNM andWERFE, we find
that, although the classification accuracy is similar, the number
of genes selected by WERFE algorithm is 20, while the number
of genes selected by FSNM is 60, which is 40 more than that
of WERFE. Therefore, it is reasonable to choose the WERFE in
real applications considering both performance and computation
consumption. In the SVM column, the WERFE selects more
genes than FSNM but achieved an increase of 2% of accuracy.

Similarly, we applied these gene selection algorithms on the
Nki70 dataset. Table 7 shows a comparison of the results of these
methods. For the RF column, it is easy to find that WERFE
method has the highest classification accuracy 82.27%, when 5
genes were selected as the gene subset. But in the SVM column
the WERFE has the worst performance. This indicates that it is
better to combine WERFE with RF to perform the gene selection
and classification.

4. CONCLUSION

A good gene selection can improve the performance of the
classification and play an important role in further analysis. It
should take both gene number and classification accuracy into
account. In this paper, we proposed an ensemble gene selection
algorithm, WERFE, which belongs to a wrapper method within
a RFE framework, and conducts the gene selection combining
cross validation. The WERFE takes good advantages of multiple
gene selection algorithms. Through evaluating each gene with
different gene selection algorithms, a small set of genes are
selected and the classification accuracy is also improved.

It is expected that better performance can be achieved if
integrating more gene selection algorithms. Our study integrates
two gene selection algorithms in order to reduce the computation
cost. Some of our operations are inspired by the non-ensemble
embedded algorithm that we proposed in previous studies (Chen
et al., 2018). For instance, we also completed the integration
of the algorithm within ten-fold cross-validation. In each fold,
under the same training set and test set, different gene selection
algorithms were used to obtain the optimal gene subsets,
respectively. Then we put the genes contained in each subset of
each fold into a voting pool to obtain the votes for each gene. The
number of votes of each gene in the voting pool is an important
indicator for us to evaluate the gene’s importance and based on
the votes, we obtained a gene ranking. We constructed new gene
subsets according to the ranking and a pre-set threshold was set.
Eventually each gene subset was evaluated and a final gene subset
was selected.

We used five data sets (RatinvitroH, Nki70, ZQ_180D,
Prostate, and Regicor) to validate the proposed method. In order
to verify the effectiveness of the gene selection algorithm, we
designed three groups of comparative experiments. Firstly, we
chose two wrapper algorithms, which are also the two basic
algorithms integrated into our proposed algorithm, to compare
with the WERFE. The results show that the proposed method
outperforms the other two wrapper algorithms. Secondly, we
used another classification algorithm, lightGBM, to evaluate
the proposed method. We compared the performance between
methods using WERFE and not using WERFE. And the results
show that lightGBM performs better when using WERFE.
Finally, we compared theWERFE with three other gene selection
algorithms. It shows from the results that WERFE is best in both
improving classification accuracy and reducing gene number.
However, there are some limitations of the proposed method.
For instance, this method needs to consume more computing
resources if more gene selection algorithms are integrated.
When the number of genes is large, the operation time will be
relatively long.

In the future, we will test this algorithm on more types of
data sets to further improve the algorithm. At the same time, we
will also try to integrate more gene selection methods, aiming to
evaluate the importance of genes in a more objective way, and
meanwhile reduce the calculation time. We target to solve this
through deep learning method.
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