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Background: Parkinson’s disease (PD) results in both motor and non-motor symptoms.

Traditionally, the underlying mechanism of PD has been linked to neurodegeneration

of the basal ganglia. Yet it does not adequately account for the non-motor symptoms

of the disease, suggesting that other brain regions may be involved. One such region

is the cerebellum, which is known to be involved, together with the basal ganglia, in

both motor and non-motor functions. Many studies have found the cerebellum to be

hyperactive in PD patients, a finding that is seldom discussed in detail, and warrants

further examination. The current study thus aims to examine quantitively the current

literature on the cerebellar involvement in both motor and non-motor functioning in PD.

Methods: A meta-analysis of functional neuroimaging literature was conducted with

Seed-based D mapping. Only the studies testing functional activation in response

to motor and non-motor paradigms in PD and healthy controls (HC) were included

in the meta-analysis. Separate analyses were conducted by including only studies

with non-motor paradigms, as well as meta-regressions with UPDRS III scores and

disease duration.

Results: A total of 57 studies with both motor and non-motor paradigms

fulfilled our inclusion criteria and were included in the meta-analysis, which revealed

hyperactivity in Crus I–II and vermal III in PD patients compared to HC. An analysis

including only studies with cognitive paradigms revealed a cluster of increased

activity in PD patients encompassing lobule VIIB and VIII. Another meta-analysis

including the only 20 studies that employed motor paradigms did not reveal any

significant group differences. However, a descriptive analysis of these studies revealed

that 60% of them reported cerebellar hyperactivations in PD and included motor

paradigm with significant cognitive task demands, as opposed to 40% presenting

the opposite pattern and using mainly force grip tasks. The meta-regression with

UPDRS III scores found a negative association between motor scores and activation

in lobule VI and vermal VII–VIII. No correlation was found with disease duration.
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Discussion: The present findings suggest that one of the main cerebellar implications

in PD is linked to cognitive functioning. The negative association between UPDRS scores

and activation in regions implicated in motor functioning indicate that there is less

involvement of these areas as the disease severity increases. In contrast, the lack of

correlation with disease duration seems to indicate that the cerebellar activity may be a

compensatory mechanism to the dysfunctional basal ganglia, where certain sub-regions

of the cerebellum are employed to cope with motor demands. Yet future longitudinal

studies are needed to fully address this possibility.

Keywords: Parkinson’s disease, fMRI, motor, cognition, symptoms, meta-analysis

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative movement
disorder characterized by classic symptoms including tremor,
bradykinesia, rigidity, akinesia, postural instability, and balance
problems. Its diagnosis is mainly made through the careful

assessment of these symptoms, which become the target
of subsequent treatment interventions. However, non-motor
functions comprising cognitive, sensory, sleep, emotional, and

social abilities are also affected by the disease [for a review, see (1–
3)] andmay even precede the appearance of the motor symptoms
(4). Furthermore, even though the non-motor symptoms can be

more detrimental to patients’ quality of life than the motor signs
(5), they have not yet received the same amount of attention in
clinical and research settings alike.

A plethora of studies have established that the neurological
underpinnings of PD are tied to the neurodegeneration of
the basal ganglia, more specifically the dopaminergic cells of
the substantia nigra pars compacta. The traditional model

of PD states that such a dopaminergic denervation leads to
hyperactivity in basal ganglia output nuclei (globus pallidus
internus and substantia nigra, pars reticulata), hence resulting in
increased inhibition from thalamocortical and brain stem motor
regions, which subsequently leads to impaired movements (6, 7).
Indeed, several models have been proposed that discuss how
basal ganglia dysfunction has cascading effects on interconnected
circuits, including the thalamus and cortical (motor) regions that
result in some of the characteristic motor symptoms seen in PD
[for an overview, see (8)]. Yet, whether these effects indicate
the spreading of the underlying pathology into the non-affected
areas, or an adaptive/compensatory response to the basal ganglia
neurodegeneration is largely unknown.

Furthermore, although basal ganglia dysfunction can explain
many of the motor symptoms seen in PD, it does not adequately
explain the non-motor symptoms of the disease, hence suggesting
that other brain structures, and the cerebellum in particular,
may also be involved in the pathophysiological process. In fact,
several lines of evidence support this notion. First, certain PD
motor symptoms, like tremor, have been linked to abnormal
functional connectivity between the basal ganglia and the
cerebellum, via the thalamus (9, 10). Second, despite the fact
that the cerebellum has traditionally been considered to play
a merely supporting role in motor functioning, adjusting and
fine-tuning movements based upon an internal model (11)

as well as through a feedforward system (12), it has recently
been suggested that the cerebellum is involved in monitoring
performance for several types of behaviors (13). To this effect,
early cerebellar lesion and neuroimaging studies have linked the
cerebellum to a wide range of higher cognitive functions, such
as working memory, executive functioning, planning, set shifting
and more (14, 15). These findings have been further confirmed
and expanded through reports that the cerebellum also plays
a role in pain, mood disorders and emotional processing,
sensorimotor integration, as well as language and learning (16–
20). Finally, investigations in healthy individuals have revealed
that the basal ganglia and cerebellum are working synergistically
to produce efficient motor and non-motor functioning (19).
For instance, both sub-cortical structures are implicated in
reinforcement learning and reward (18, 21), motor planning
and action understanding (22, 23), as well as sensorimotor
prediction and control (24, 25) amongst others. Thus, together
these findings likely suggest that the cerebellum is instrumental
in non-motor symptoms in PD. Indeed, a recent meta-analysis
on volumetric cerebellar changes in neurodegenerative disorders
proposed that the cerebellum plays a bigger role in cognitive,
than in motor symptoms experienced by PD patients (26).
Neuroimaging studies have also been consistent with this
notion, as positron emission tomography studies using 18F-
fluorodesoxyglucose have reported increased metabolism in the
cerebellum to be linked to cognitive impairment in PD patients,
hence characterizing the observed cerebellar hypermetabolism
as a part of a “PD related cognitive pattern” (27–30) that
is not modulated by treatment interventions (27). There are
also increasing amounts of evidence from functional magnetic
resonance imaging (fMRI) studies, which support the notion of
aberrant activity in the cerebellum of PD patients during both
task and rest conditions (31–35).

Despite the recent advances described above, however, there
are several important factors that limit our understanding of
the role of cerebellum in PD. First, in most imaging studies
with PD patients, the cerebellum is commonly reported to be
active in response to non-motor paradigms; yet its activation
is rarely discussed in detail or seldom constitutes the focus
of the study. Moreover, even though anatomical boundaries of
cerebellar regions have been clearly defined with specialized
functional topography (36, 37) and atlases are readily available
(38, 39), the findings are commonly described in the context of
the cerebellum as a whole, without reference to its sub-regions. It
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is therefore not clear whether certain parts of the cerebellum are
more implicated than others in relation to motor and non-motor
functioning in PD. Finally, the potential role of the cerebellum
in PD has been discussed elsewhere in narrative reviews (40, 41),
but the cerebellar involvement remains largely unclear, especially
in regards to the pathological and/or compensatory mechanisms
at play. With exception of one meta-analysis of cerebellar gray
matter atrophy across several neurodegenerative conditions (that
did not report any findings in PD patients) (26), the existing
literature lacks a quantitative and systematic review of cerebellar
findings in PD based upon functional neuroimaging methods. In
response to this knowledge gap, the current systematic review
and meta-analysis appraises the fMRI literature on cerebellar
involvement in both motor and non-motor processes in patients
with PD. First, a general analysis including all fMRI studies
comparing task-related activity in PD vs. matched control
participants is carried out, before stratification of motor and
non-motor studies, which are then examined separately in order
to determine whether certain regions of the cerebellum are
specifically implicated in these functions. Relationships with
disease severity and duration are also assessed. With this, we
aim to develop a greater insight into the role of the cerebellum
in PD, with a particular focus on its involvement in motor and
non-motor functioning.

METHODS

Study Eligibility and Research Methods
An extensive search was carried out on Pubmed, and included the
following search terms:

• “Parkinson’s Disease” [AND] “functional magnetic resonance
imaging” [AND] cerebellum

• “Parkinson’s Disease” [AND] “fmri” [AND] cerebellum
• “Parkinson’s Disease” [AND] “fmri”
• “Parkinson’s Disease” [AND] “functional magnetic

resonance imaging”.

We then used the following inclusion criteria for the selection
of eligible studies. They had to: (1) be published in peer-reviewed
journals, written in English and not behind paywalls that were not
covered by McGill University Library subscriptions; (2) include
a healthy control group that was compared with PD patients;
(3) assess functional brain activity with fMRI in response to a
task paradigm; and (4) include results from original research,
not from secondary sources (i.e., reviews). The meta-analysis
was conducted in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) statement
(see Figure 1 for overview, and Supplementary Materials for the
PRISMA checklist). The last search was conducted on December
9th, 2019.

Meta-Analysis
Cerebellar activation coordinates and the effect size from
comparisons between PD and a control group in response to
motor or cognitive paradigms were first extracted from each
paper, together with scanning and preprocessing parameters. The
meta-analysis was carried out using seed-based mapping (SDM)

[(42), https://www.sdmproject.com], a software that conducts
meta-analyses similarly to the activation likelihood estimation,
and multilevel kernel density analysis approaches, but with
integrated sensitivity analyses, effect size estimation, as well as
the option to include negative and nil-findings. Data were then
preprocessed to achieve a voxelwise recreation of the studies
using an isotropic Full Width Half Maximum (FWHM) of
20mm, and a voxel size of 2 mm3. Third, the global means of all
studies were analyzed (the meta-analysis) using 50 imputations,
creating beta-coefficients and a mean activation map including
the associated variance. Finally, the maps were corrected for
multiple comparisons with Family Wise Error (FWE) using 500
permutations. However, as corrected maps were not sensitive
enough to detect clusters associated with group differences, an
uncorrected p > 0.005 with an extent threshold of >10 voxels
was later used for the meta-analyses.

Data preprocessing included information on coordinates
space (MNI or Talairach) and on the analysis package used (SPM,
FSL or “other”). Each study’s t-threshold was included in the
analyses as a measure of the statistical threshold used for the
findings reported in each study. In cases where this was not stated
in the paper, SDM’s built-in effect-size estimation tool was used to
provide effect-size threshold estimates. Information on subjects’
age, gender ratio, as well as information on the patients’ UPDRS
III, Hoehn&Yahr scores and disease duration was extracted from
the papers whenever available (see Table 1). The disease duration
and UPDRS scores were later used for correlation analyses in
the meta-analysis.

One of the benefits of our method (SDM, described above)
is the option to include studies with nil-findings. These studies
were included in the main analysis as studies with no peaks,
allowing us to increase accuracy of our analysis. In studies where
neither Z-scores, nor F-values were reported in the between
groups comparisons, the SDM’s conversion tool was utilized to
obtain the corresponding t-statistic. As the effect size was not
given in a few of the articles, the peaks were then marked as
“positive” or “negative,” hence denoting direction of the contrast
used. Because of the variability in study methodologies, and to
include as much data points as possible, studies utilizing an ROI
approach were also included in the analysis, even though in
literature, the cerebellum may be an uncommon ROI.

The findings were then inspected for heterogeneity and bias
by examining the peak values and the corresponding I2 statistic
and its funnel plot. I2 is a test of heterogeneity for meta-
analytical studies, where a low value generally represents a low
level of heterogeneity. Egger statistics were also examined by
plotting the effect size against precision of the studies as a
measure of publication bias. Finally, the SDM toolbox provided
results in MNI coordinate space which were confirmed both
with the Diedrichsen probabilistic cerebellar atlas (39) in FSL
Eyes (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes), as well as
with Schmahmann et al.’s MRI cerebellum atlas (38).

Medication Status
To be as inclusive as possible, studies that included patients who
were not asked to refrain from taking medication (i.e., in an
ON-state) were also included. Since previous studies have found
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TABLE 1 | Study demographics of all included studies.

References PD (n) HC (n) f/m PD f/m HC PD age (±SD) HC age (±SD) UPDRS III Hoehn & Yahr Disease duration

(years)

Nil-

finding

Task

Vriend et al. (43) 21 37 4/10 8/6 59.0 (±10.4) 56.2 (±9.9) 21.6 (±8.3) 1.9 (±0.4) 0.19 (±0.31) No Cognitive control task

Filip et al. (44) 21 28 10/11 14/14 68 (±4.85) 66.4 (±6.9) Not stated 2.24 (±0.57) 7.69 (±3.8) No Cognitive: impulse control

Heller et al. (45) 26 25 1/11 5/7 63.9 (±8.4) 62.6 (±9.0) 26.8 (±11.6) 2 8.18 (±6.83) No Emotional processing

Yu et al. (31) 8 8 6/14 10/10 59.4 (±8.4) 59.5 (±9.5) 31.1 (±10.8) Not stated 5.9 (±2.6) No Motor and auditory task

Martin et al. (46) 22 22 4/10 5/9 52.5 (±10.7) 48.5 (±12.4) 15.6 (±6.4) 1.4 (±0.6) Not stated No Motor and planning task

Burciu et al. (47) 20 20 1/8 5/10 65.8 (±8.0) 64.8 (±8.8) 31.9 (±9.6) 2.0 (±0.3) 4.14 (±1.65) No Motor and visual

Rottschy et al. (48) 23 23 8/14 8/14 67.2 (±6.2) 65 (±4.4) 23.9 (±16.1) 1.5 (±0.9) (ON) 4.7 (±4.2) No Motor and working memory task

Pinto et al. (49) 9 15 7/13 5/5 59 (±9) 55 (±11) 33 (±13) Not stated 14 (±7) No Motor hand movement and speech

Caproni et al. (50) 11 11 3/8 3/8 65 (±4.98) 65.1 (±5.86) 20 (±4.5) 2 3.8 (±1.5) No Motor task

Husárová et al. (51) 20 21 9/11 10/11 55.4 (±9) 57 (±7.3) 18.08 (±3.8) Not stated 2.5 No Motor task

Poisson et al. (52) 6 10 2/4 6/4 65 (±10) 53.6 (±8.5) 16 (±5.1) Not stated 5.4 (±4.6) No Motor task

Wu and Hallet (33) 12 14 4/8 4/8 61.2 (±7.64) 61.8 (±no SD) 25.5 (±7.4) 2.04 (±0.62) 6.33 (±2.84) No Motor task

Jia et al. (53) 22 22 8/14 8/14 61.04 (±4.38) 60.59 (±4.64) 16.45 (±4.63) 1.64 (±0.44) 4.04 (±1.81) No Motor task

Toxopeus et al. (54) 12 18 5/7 9/9 59 (±9) 58.7 (±5.4) 22 (±7) 2.0 (±0.5) 6 (±4) No Motor task

Planetta et al. (55) 14 14 7/12 17/5 64 (±8.7) 61.9 (±8.4) 29.6 (±5.3) Not stated 5.9 (±5.5) No Motor task

Neely et al. (56) 14 14 5/5 6/5 64.0 (±8.7) 60.2 (±9.2) 29.6 (±5.3) Not stated Not stated No Motor task

Cerasa et al. (57) 10 11 8/12 10/10 64.2 (±13.6) 63.4 (±9.3) 27.5 (±8.8) 2.5 (±0.6) 7.2 (±3.5) No Motor task

Schwingenschuh et al. (58) 20 10 5/7 9/9 66.8 (±7.2) 33.9 (±8.9) 37.9 (±11.1) 2.2 (±0.4) 6.3 (±3.1) No Motor task

Kraft et al. (59) 12 12 5/10 5/10 60.8 (±7.3) 53.0 (±12.0) 21.0 (±3.3) 1.8 (±0.5) 3.1 (±1.1) No Motor task

van der Stouwe et al. (60) 12 18 7/9 8/7 59 (±9) 59 (±5) 21.5 (±6.9) 1.9 (±0.5) Not stated No Motor task

Wu et al. (61) 15 15 Not stated Not stated 59.73 (±8.27) 60.3 20.67 (±3.48) 1.7 (±0.37) 3.47 (±1.6) No Motor task

Wurster et al. (62) 10 10 7/14 7/12 66.4 (±7.2) 64.9 (±8.14) 20.7 (±9.1) 2 (±0.83) 6 (±5.6) No Motor task

Hughes et al. (63) 16 15 11/10 11/11 63.9 (±7.5) 66.5 (±5.9) 31.3 (±11.) 2.0 (±0.5) (ON) 7.6 (±3.7) No Motor task

Lemos et al. (64) 19 22 6/15 16/21 64.9 (±6.3) 66.4 (±9.5) Median: 19 (±19) Median: 1.5 (±1) 4 (±8) No Saccade task

Takeda et al. (65) 9 7 5/4 5/2 54 51 Not stated 2.2 Not stated No Sensory: olfactory

Tessitore et al. (66) 20 18 9/11 8/10 60 (±8.9) 55.9 (±5.2) 10.1 (±7) 1.4 (±0.5) 1.2 (±0.5) No Sensory: pain

Harrington et al. (67) 21 19 7/5 5/7 67 (±9.4) 64.6 (±8.5) 29.6 (±10.4) 2 Not stated No Working memory task

Snijders et al. (68) 24 21 3/9 6/10 60.2 (±8.9) 57.0 (±9.1) 31.6 Not stated 8.45 Yes (Imagined) motor task

Maidan et al. (69) 20 20 8/16 4/6 72.9 (±1.6) 69.7 (±1.3) 29.8 (±2.4) Not stated 6.8 (±1.3) Yes (Imagined) motor task

Baglio et al. (70) 15 11 4/11 7/4 66.5 (±6.4) 66.9 (±5.7) 21.5 (±7.24) 1.56 (±0.46) Not stated Yes Cognitive: attention and inhibition

Labudda et al. (71) 10 12 2/10 6/6 57.6 (±7.83) 62.33 (±4.81) Not stated 3 7.1 (±3.7) Yes Cognitive: decision

Gescheidt et al. (72) 18 18 4/14 7/11 52.67 50.61 18.89 1.97 6.33 Yes Cognitive: decision

Schonberg et al. (73) 7 17 5/2 13/4 58.7 (±3.7) 60 (±4.1) 12.4 (±7.2) 1.9 (±0.7) 4 (±2.9) Yes Cognitive: error detection

Grossman et al. (74) 7 9 Not stated Not stated 71 (±10.2) 65.7 (±10.2) Not stated 1 Not stated Yes Cognitive: sentence comprehension

Ibarretxe-Bilbao et al. (75) 24 24 8/16 8/16 56.13 (±8.5) 57.58 (±8.9) 14.67 (±3.5) 1.73 (±0.4) 3.06 (±1.6) Yes Cognitive: speech

Isaacs et al. (76) 13 18 7/6 12/6 62.23 (±6.83) 68.06 (±9.52) Not stated 1.46 (±0.52) 5.39 (±3.8) Yes Cognitive: speech

Sachin et al. (77) 8 6 3/8 4/8 Not stated Not stated Not stated Not stated Not stated Yes Cognitive: speech

(Continued)
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TABLE 1 | Continued

References PD (n) HC (n) f/m PD f/m HC PD age (±SD) HC age (±SD) UPDRS III Hoehn & Yahr Disease duration

(years)

Nil-

finding

Task

Nemcova et al. (78) 16 55 4/75 38/17 62.7 (±6.8) 66.7 (±7.3) 16.8 (±9.1) Not stated 4.4 (±2.5) Yes Cognitive: visual object-matching task

Dan et al. (79) 25 32 10/15 17/15 64.7 (±8.3) 63.3 (±7.7) 30.4 (±11.1) 2 (±0.5) 11.9 (±4.7) Yes Emotional recognition task

Pohl et al. (80) 13 13 5/8 6/7 Median: 68 Median: 65 24.21 (±9.60) Not stated 5.94 (±4.39) Yes Emotional recognition task

Nombela et al. (81) 10 10 9/14 10/13 60.5 (±3.45) 59.6 (±4.47) 22.2 (±7.9) 2.5 (±0.5) 8.1 (±2.0) Yes Executive functioning task

Rowe et al. (82) 12 12 9/15 9/12 62 (±6) 62 (±6) 33.7 (±8.54) 2.46 (±0.45) 5.4 (±3.6) Yes Motor and attention task

Arnold et al. (83) 20 20 8/12 8/12 63.9 64.2 26.1 1.65 5.8 Yes Motor and cognition task

Nieuwhof et al. (84) 19 26 4/15 10/16 70.7 (±6.1) 71.2 (±5.3) 36.0 (±8.2) 2 6.2 (±4.8) Yes Motor and cognition task

Zhao et al. (85) 21 22 Not stated Not stated 60.43 (±9.65) 59.23 (±11.12) 20.57 (±3.83) 1.2 (±0.3) 1.95 (±1.8) Yes Motor and sensory task

Sabatini et al. (86) 6 6 2/4 2/4 61 (±8) 59 (±19) 16 (±4) 2.7 (±0.5) 5 (±2) Yes Motor task

Matt et al. (87) 13 14 6/7 5/9 58.7 (±13) 57.4 (±9.8) 30.2 (±12.2) 2.35 (±0.32) 6.3 (±4.7) Yes Motor task

Tessa et al. (88) 11 10 2/9 3/7 68 (±8) 64 (±3.8) 13.5 (±4.8) 1.2 (±0.3) 1.5 (±0.5) Yes Motor task

Hughes et al. (89) 20 20 10/10 13/7 65.5 65.2 22.2 2.2 Not stated Yes Motor task

Yan et al. (90) 11 12 0/26 0/25 61.5 (±7.1) 65.5 (±10.1) 20.1 (±6.3) Not stated 4.9 (±3.9) Yes Motor task

van Eimeren et al. (91) 20 10 9/11 ’5/5 50.3 (±7.8) 50 (±8.7) 21.95 (±13.6) Not stated 10.86 (±7.69) Yes Motor task

Spraker et al. (92) 14 14 ’6/8 (mached) 57.2 (±9.6) 57.6 18 (±8.1) 1.7 (±0.45) 16.5 (±10.8) Yes Motor task

Bedard et al. (34) 10 10 ’5/5 8/2 57.4 (±8) 62.4 (±10) 14 (±7.8) Not stated Not stated Yes Motor, sensory- and learning

Westermann et al. (93) 12 16 5/5 ’6/4 57.1 (±2.2) 64.7 (±1.4) Median: 28 Median: 2 Median: 3.3 Yes Sensory (olfactory) task

Lefebvre et al. (94) 34 17 12/23 7/10 63.1 62.76 23.4 2 (±0.83) 8.53 Yes Sensory (visual) task

Caminiti et al. (95) 13 12 63.3 (±6.3) 59 (±2.3) NA 1-2 5 (±3.4) Yes Working memory task

Simioni et al. (96) 19 20 0/10 0/10 66 (±8.6) 65 (±6.7) 15.3 (±5.4) 2.4 (±0.7) 6.9 (±3.3) Yes Working memory task

F, female; HC, healthy controls; M, male; PD, Parkinson’s Disease; UPDRS, Unified Parkinson’s Disease Rating Scale.
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FIGURE 1 | Overview of the study identification and selection process.

medication to have a “normalizing” effect on the neural activity
of PD patients (97, 98), a separate sensitivity analysis using only
patients in their OFF-state (i.e., patients who were asked to stop
taking medication for∼12 h), was also carried out.

Motor Studies
In order to investigate group differences in cerebellar
activation(s) specific to motor paradigms, a meta-analysis
including only studies using a motor-task was also conducted.
As we aimed to localize regions specifically linked to motor
functioning in PD patients, only studies with reported differences
(i.e., no nil-findings) were thus included in this analysis. The
uncorrected threshold was kept at p < 0.005 with a cluster size
threshold of 10 voxels.

Cognitive Studies
Likewise, a separate meta-analysis was conducted including only
studies employing cognitive paradigms. Here, as before, an
uncorrected threshold of p < 0.005 was used, with an extent
threshold of 10 contiguous voxels.

Meta-Regression Analyses
Two separate regression analyses were also performed to examine
the relationship between the pattern of cerebellar activations and
the patient’s UPDRS III motor scores, as well as the disease
duration. As five studies had not defined whether the UPDRS
scores referred to the motor subscale (UPDRS-III) or to the
total, we thus conducted a sensitivity analysis including only

those that explicitly stated that they used the motor subscale. For
exploratory purposes, the threshold used for the meta-regression
analyses were kept at a liberal uncorrected p < 0.05 and extent
threshold of >10 voxels.

Finally, we used PD patients’ cognitive status [assessed
through scores on cognitive tests, such as the Mini Mental
State Examination (MMSE) (99)] in a regression to explore the
relationship between this variable and their related cerebellar
activity in a meta-regression analysis.

RESULTS

Selected Studies
An overview of the study identification, screening and selection
process is presented in Figure 1. Our search yielded a total of
755 articles after duplicate findings were removed. After further
screening, 112 articles were further assessed yielding 57 articles
that fulfilled the inclusion criteria. The total number of subjects
across all studies included in this meta-analysis was 1856 (890
PD patients and 966 HC), with an average age of 62.07 (±4.69)
and 60.69 (±6.15), respectively. The PD patient sample had an
average disease duration of 5.90 (±3.05) years, an average Hoehn
& Yahr score of 1.92 (±0.41), and an average UPDRS III score
of 23.24 (±6.63). A summary of the study demographics can
be found in Table 1. Of the 57 studies, 30 did not report any
significant differences between PD and controls in response to
either motor or cognitive paradigms. A chi-square test assessing
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TABLE 2 | Results from the meta-analyses and meta-regression with their corresponding coordinates and regions.

Region Hemisphere x y z SDM-Z p-value Voxels Peak I2 Eggers bias Eggers p-value

All studies (n = 57) Crus II L −38 −70 −42 3.123 0.000894606 66 43.397 0.74 0.530

Ver III/IV L −2 −42 −16 2.891 0.001919806 18 38.690 0.21 0.856

Negative clusters:

Fusiform gyrus R 30 −44 −18 −2.844 0.002227843 13 27.541 −0.66 0.530

Local peaks:

Fusiform gyrus R 30 −44 −18 −2.844 0.002227843

Lobule IV/V R 26 −46 −22 −2.686 0.003616929

Lobule IV/V R 20 −50 −28 −3.038 0.001190126 10 67.158 −3.51 0.001

OFF-state (n = 36) Ver III/IV L/bilateral −2 −44 −14 3.332 0.000430882 59 6.574 0.68 0.635

Local peaks:

Ver III L/bilateral −2 −42 −14 3.332 0.000430882

Lobule IV/V L −6 −54 −8 2.878 0.002003968

Crus II L −40 −66 −48 3.127 0.000883460 20 15.949 0.69 0.643

Negative clusters:

Lobule IV/V R 16 −50 −22 −3.040 0.001183808 30 42.218 −1.43 0.323

Cog studies (n = 5) Lobule IV/Lobule III/Ver III R 10 −44 −18 3.647 0.000132442 158 8.546 2.28 0.843

Local peaks:

Lobule IV/Lobule III/Ver III R 10 −44 −18 3.647 0.000132442

Lobule I-IV R 8 −38 −26 3.575 0.000175357

Lobule I-IV R 6 −38 −14 3.440 0.000290871

Lobule VIII L −32 −60 −48 3.027 0.001234889 88 9.701 7.87 0.353

Local peaks:

Lobule VIII L −32 −60 −48 3.027 0.001234889 32

Lobule VIII L −18 −64 −46 2.995 0.001370609

Lobule VIII L −24 −64 −48 2.942 0.001628339

Lobule VIII L −18 −68 −48 2.942 0.001628876

Lobule VI/V L −20 −74 −18 2.891 0.001922667 11 10.196 9.66 0.229

Local peaks:

Lobule VI L −20 −74 −18 2.891 0.001922667

Crus I L −18 −84 −26 2.592 0.004770517

UPDRS III regression (n = 25) Negative clusters:

Lobule VI R 10 −62 −28 −2.312 0.010397077 84 3.767 −0.03 0.979

Vermal lobule III Bilateral 2 −74 −34 −2.189 0.014311850 49 28.736 −0.04 0.978

Local clusters refer to clusters where more than one local peak was identified. Coordinates are in MNI space.

whether the prevalence of cerebellar findings across studies was
different from chance (i.e., the null hypothesis being that half
the studies will show cerebellar difference and half will not)
did not reach significance [χ2(df=1) = 0.157, p = 0.691]. This
indicates that—without accounting for any other variable (i.e.,
type of tasks, medication status, etc.)—the probability of finding
differences in cerebellar BOLD activity across fMRI studies
comparing PD patients and healthy controls was not different
from 50%.

Meta-Analysis
Despite the fact that 30 of the studies did not report any
significant differences between patients and controls in response
to tasks, the general meta-analysis of all selected fMRI studies
yielded significant results implicating the cerebellum, even after

accounting for the nil findings. It revealed two positive activation
clusters (i.e., hyperactivation in PD patients as compared to
healthy controls), one predominantly covering the left Crus I and
Crus II (Table 2, Figure 2) while the other cluster covered largely
the vermal area of lobule III. In addition, the results revealed two
negative clusters that were located over the fusiform gyrus, and
lobule IV/V (Table 2).

Of note, almost half of the studies that reported a nil-effect
(when comparing patients and controls) included participants
that were scanned in the ON medication state (14/30) (status
unknown in 2/30), while only three of the studies that reported
a between-group effect included patients in the ON state (3/27)
(status unknown in 2/27). A chi-square test assessing whether the
PD patients medication status (ON vs. OFF) was associated with
the prevalence of cerebellar findings across studies was significant
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FIGURE 2 | Results from the meta-analysis including both medicated and unmedicated patients (yellow area), as well as the results including only studies with

unmedicated patients (purple area) are overlaid on the MNI152 template brain with a probabilistic cerebellar atlas (39). (A) The clusters are mainly located in Crus II (in

brown), with the larger cluster also expanding into Crus II (in olive) and lobule VI (in light green). (B) Both clusters are located in the vermal lobule III. In this case, the

cluster from the main meta-analysis (in pink) is overlaid the larger cluster from the second meta-analysis including only patients in the OFF-state (blue cluster).

[χ2
(df=1)

= 6.202, p< 0.05]. This indicates that one is significantly

more likely to find cerebellar differences between PD patients and
healthy controls across fMRI studies that included patients in the
OFF state, compared to those that involved patients in the ON
state. To investigate the effect of medication, a separate analysis
was then performed, including only studies where patients were
in the OFF-state (36 studies). This analysis yielded two positive
and one negative activation clusters similar to those identified in
the previous analysis when all studies were included. The largest
positive cluster was located in vermal lobule III/IV, although with
a smaller spatial extent as compared to the same cluster obtained
in the main meta-analysis (i.e., including all studies). The other
cluster was located over Crus II with some voxels extending into
Crus I. Both of these activation clusters overlapped with those
obtained from the main meta-analysis. As with the main analysis,
the OFF-state studies also resulted in a negative cluster in lobule
IV/V. Figure 2 shows the results of both analyses overlaid on a
cerebellar atlas using the MNI template brain.

Motor Studies
Thirty-one out of 57 studies used motor paradigms to assess
differences in patients vs. controls; of these, 20 showed significant
differences in cerebellar activation between patients and controls,
and were thus included in the analysis. The meta-analysis did

not reveal any significant clusters of activation related directly
to differences between PD patients and healthy controls during
tasks tapping into motor functioning.

Cognitive Studies
Twenty-one studies employed a cognitive task. These included
paradigms that tested a variety of cognitive functions including:
planning (46), cognitive control (43, 44, 70, 72, 73), attention
(82), memory and working memory (48, 95, 96), executive
functioning (67, 81, 84), object recognition (78), learning (34),
imagery (68), decision making (71), linguistic processing (74–
76, 83). However, only five studies reported significant differences
between patients and controls. The meta-analysis based upon
these studies revealed clusters of increased activity in PD patients
in the left lobule VIII and VI and in the right lobule IV and V (see
Figure 3), indicating that these areas are particularly implicated
in cognitive functioning in PD patients.

Meta-Regressions
UPDRS
A meta-regression was conducted to examine the possible
relationship between the pattern of cerebellar activity and the
UPDRS scores in PD patients. Overall, the UPDRS scores (100)
were listed in 25/27 studies (with nil-finding studies excluded).
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FIGURE 3 | Including only cognitive studies showed an activation cluster (red) over the left lobule VIIB (yellow), here overlaid on coronal slices of the cerebellum.

The meta-regression conducted on these studies revealed a
negative correlation between the average UPDRS scores and
cerebellar activation in a cluster covering the right lobule VI,
suggesting that reduced level of functional activity in this area
was particularly linked to the patients’ motor symptomology. An
additional negative correlation was found in a cluster located
within the vermal lobule VIII region. Upon visual inspection,
the latter cluster was shown to cover mainly the right vermal
VII-VIII, with some bordering voxels in right and left Crus
II. Average estimates from each study were extracted from the
local peak (x = 10, z = −62, y = −2) and plotted against
UPDRS scores, resulting in a significant correlation between the
two (r = −0.711, p < 0.001) (see Figure 4). It is important
to note that 20 out of the 25 studies reported explicitly the
UPDRS III (i.e., part 3 of the UPDRS test—the motor subscale)
scores. For the remaining five studies it was unclear whether
the listed UPDRS scores were referring to the total score or
to the motor subscale (UPDRS III). As such, we conducted a
sensitivity analysis, assessing the impact of the five studies on the
UPDRS correlation. When these five studies were excluded from
the correlation, the Pearson correlation coefficient remained
significant (r =−0.728, p < 0.001).

Disease Duration
Disease duration (in years) was reported in 22/27 studies (with
nil-finding studies excluded). The meta-regression examining
the relationship between cerebellar functional differences in PD
compared to HC during both motor and cognitive paradigms
revealed no significant correlation with disease duration.

Cognitive Functioning
We examined the reported cognitive scores (either MMSE or
MOCA) from each study with the intent of conducting a meta-
regression analysis involving the PD patients’ level of cognitive
functioning and their general pattern of cerebellar activation.
The average MMSE scores reported in the 22 studies, in which
cognitive measures were stated, was 28.6 (STD:1) (of a total
of 30). Most studies used MMSE cut-off scores (most often a
cut-off of 26/30) as an inclusion/exclusion criterion in order to

avoid including PD patients with cognitive decline, while in some
studies the MMSE or Montreal Cognitive Assessment [MoCA
(101)] scores were not indicated, hence resulting in a limited
spread of the scores in the studies where these were reported.
Including cognitive scores in the meta-analysis could therefore
have been a source of bias. Consequently, we opted against
conducting a meta-regression with these scores.

DISCUSSION

This is the first meta-analysis of functional neuroimaging studies
that aimed to quantify task-related differences in cerebellar
neural activity in PD patients relative to healthy controls. Our
findings reveal that PD patients showed hyperactivity in Crus I
and II, as well as in lobule I—IV, across studies that used both
motor and non-motor (i.e., cognitive) paradigms. Furthermore,
results from the meta-regressions showed that the functional
changes found in cerebellar regions VI, and vermal lobule VII
and VIII correlate negatively with UPDRS scores. Together,
such findings provide support for the functional specificity
of the cerebellum in relation to the disease, as discussed in
detailed below.

Overall Hyperactivation in PD Patients
The meta-analysis including all studies (both motor and non-
motor paradigms) revealed a cluster of increased activation over
the right Crus I and II in PD patients compared to controls. This
pattern was evident even when the analysis was performed using
only studies with patients in their OFF-state, hence indicating
that this result does not depend on the medication status.

Lobules Crus I and II have been referred to as a part of
the “cognitive cerebellum” (37, 102). This notion is based upon
the following three lines of evidence; first, from non-human
primate studies that found direct anatomical connections to
exist between these cerebellar sub-regions and the pre-frontal
cortex (103); second, from previous reports in humans using
resting state functional connectivity analyses where connectivity
between Crus I and II with the dorsolateral pre-frontal cortex
(DLPFC) and anterior pre-frontal cortex (APFC) has been
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FIGURE 4 | A meta-regression assessed the relationship between PD cerebellar activity in response to all paradigms with patients’ UPDRS III scores. The figure

illustrates the correlation between UPDRS III scores and each study’s estimates of the activity in lobule VI from the local peak in the cluster 10, −62, −28.

observed (26, 37, 104–106); and finally, from a meta-analysis
of neuroimaging activation studies on cerebellar functional
topography in healthy individuals that provided evidence that
Crus I and II are frequently activated during cognitive tasks (107).

Both structural and functional studies in groups of PD
patients also support the role of Crus I and II in cognitive
functioning. For instance, a meta-analysis on graymatter changes
in neurodegenerative disorders reported that PD patients
showing evidence of a cognitive impairment most frequently also
presented a reduction in cerebellar gray matter, while no atrophy
in motor regions of the cerebellum was found (26). Furthermore,
another structural study showed that gray matter alterations in
Crus I can be used to classify between PD patients and matched
control subjects with a 95% accuracy (108). Finally, using fMRI, a
study in which healthy controls and PD patients executed amotor
timing task requiring cognitive demands, the authors reported
increased activation in both Crus I and II in PD compared to
controls (31). Together, these findings are thus in accord with our
results that Crus I and II are overactive in PD patients compared
to controls, and that the cerebellar hyperactivation may be linked
to cognitive functioning in PD.

Our meta-analysis included almost twice as many studies that
focused on “motor” compared to “cognitive” functions. However,
the observed hyperactivation in the “cognitive cerebellum”
described above is unlikely to represent pure motor or pure
cognitive functioning, but rather a more non-specific overactivity
in PD patients compared to controls, irrespective of the task. If

we consider that some of the motor studies in the current meta-
analysis included also sensory components, i.e., auditory (31),
tactile (85), and pain processing (66), the idea that hyperactivity
in Crus I and II in PD patients is not strictly linked to motor
functioning seems to receive more support. Indeed, the lack of
relationship between the UPDRS motor scores and Crus I and II
functional activity also supports this notion. Thus, although the
underlying basis for this hyperactivity is not easy to pinpoint, one
could speculate that it reflects a compensatory response to basal
ganglia dysfunction.

Finally, our findings revealed a cluster of hyperactivity on
the border of the hemispheric and vermal lobule III area,
a region linked to sensorimotor/vestibular function (26, 31).
Interestingly, a link between symptoms of ataxia and damage to
areas II-V of the cerebellum has previously been reported (109).
Thus, given that both disorders are associated with problems
of balance and postural instability, this could explain why
we observed such overactivity within this sub-region in PD
patients. Consistent with this interpretation is also the fact that
the same activation clusters were obtained when we included
the studies investigating only patients in the OFF state in
the analysis.

Cognitive Paradigms Are Linked to PD
Hyperactivity in Lobules VI and VIII
When including only studies that employed cognitive paradigms
in the meta-analysis, our results revealed stronger activations
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in lobule VI and VIII in PD patients as compared to controls.
Even though both lobules VI and VIII are thought to be part of
the cerebellar homunculus (110) and are considered as “motor
lobules” due to their anatomical projections to the motor cortex
(111, 112), there is also evidence that they contribute to cognitive
functions as well. For instance, these lobules have been found
to be involved in executive functioning (107) as well as spatial,
language and verbal processing (VI) (107) in healthy individuals
through their functional connectivity with the APFC and DLPFC
(104, 105). Moreover, reciprocal connections between these
regions have been described in non-human primates (103).
Taken together, these findings thus provide support to the
idea that our results reflect a hyperactivation of lobules VI
and VIII in PD in response to the cognitive demands of the
task, such as working memory and other executive functions.
The meta-analysis also resulted in a cluster of activation over
lobules IV/V. Both lobules have functional connections to the
sensorimotor cortex (36), while studies in non-human primates
have also provided evidence for anatomical projections between
these two regions (103). Lobule IV and V moreover show
a topographical sensorimotor representation that is frequently
activated during sensory or motor engagement (113). A cluster
of activity over this area in response to cognitive paradigms
is thus not unexpected, as most cognitive paradigms carried
out in the scanner also requires sensory and motor processing.
Stimuli are normally presented with a visual or auditory
modality, prompting a motoric feedback, usually with a hand
response. While it is true that, in most of these studies
that used cognitive paradigms, the behavioral performance
of PD patients was impaired relative to healthy controls,
hence suggesting that the cerebellar hyperactivation may reflect
functional impairment, there were no reported correlations
(either positive or negative) between cerebellar activation and
behavioral performance. Therefore, besides concluding that this
hyperactivation seems to be in response to the cognitive demands
of the tasks, our review of the current neuroimaging evidence
cannot provide a proper interpretation of its functional role, nor
determine whether the pattern of activity reflects a pathological
or compensatory mechanism.

Motor Paradigms Did Not Reveal Any
Significant Group Differences in Cerebellar
Activation
Twenty studies were identified using motor paradigms and were
included in a separate meta-analysis. However, the latter did
not result in any significant clusters of cerebellar activation
that would indicate a differential functional involvement of this
structure when comparing the PD patients with their healthy
counterparts across a variety of motor paradigms. A closer
examination of these studies indicates, however, that the lack
of a significant group difference may be due to the fact that
12 studies reported cerebellar hyperactivations in PD relative to
healthy controls, with 8 studies presenting the opposite pattern. It
is also important to note that most of these studies did not report
significant differences in motor performance between the two
groups (this was, in some cases, by design, because all subjects

were trained to reach a certain performance level prior to the
fMRI session). Thus, it is possible that differences in motor
functioning between PD and controls cannot be linked reliably
to specific cerebellar sub-regions at the current time, perhaps
due to the variation of tasks utilized by the studies included
in the meta-analysis. Yet despite the lack of a significant result
in this meta-analysis, several useful observations can be drawn
from a descriptive analysis of these 20 studies that employed
motor paradigms and nevertheless reported significant group
differences at the study level. The first observation is that 9
of the 12 studies that reported cerebellar hyperactivations in
PD also used paradigms with rhythmic tapping or sequential
movements tasks, with the remaining 3 using motor tasks that
had a strong cognitive component to it, such as predictive motor
timing (51), controlled thumb pressing movements (31), and
center-out step-tracking (60). The second is that of the eight
studies that reported hypoactivations, half used grip force tasks
and the other half required participants to produce various types
of sequential or ballistic movements. As such, we can observe
that hyperactivations tend to be associated with tasks that had
significant cognitive demands, thus supporting the idea that the
hyperactivations seen in our general meta-analysis combining
motor and cognitive paradigms are likely to reflect the general
cognitive task demands.

UPDRS III Scores Are Negatively Linked to
Activity in Lobule VI and Vermal VII and VIII
The meta-regression revealed a negative relationship in PD
patients between the UPDRS scores and the cerebellar activity in
lobule VI, Crus II and vermal lobules VII/VIII, hence suggesting
that patients with the worsemotor clinical states also had reduced
activity in these areas. The link between the patients’ symptoms
measured with the UPDRS III and functional activation in
these regions can be explained by the known neuroanatomical
connections between the cerebellum and the cerebral cortex.
For instance, lobule VI is a part of the cerebellar homunculus
and is known to have functional and anatomical connections
to the sensorimotor system (26, 37, 114–116). Interestingly, the
volume of lobule VI has also been shown to correlate positively
with motor functioning (dexterity, grip force, coordination and
finger tapping speed) in older adults (117). Similarly, anatomical
connections between vermal lobules V—VIIIB and the primary
motor cortex have been reported and are hypothesized to
play a significant role in both active movements and posture
(118). Thus, together, these findings may explain the negative
association between the activity in vermal lobules VII and VIII
and the UPDRS scores through the connections between these
cerebellar regions and the sensorimotor system. If this is the case,
then the reduction of functional activity in vermis and lobule
VI might be the main cerebellar perpetrators involved with the
worsening of motor symptoms.

Although PD motor symptoms tend to worsen as the
disease progresses, the meta-regression with disease duration
did not reveal any significant association with cerebellar activity
using the studies considered in the current meta-analysis. One
interpretation of this result could be that the mean disease
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duration reported in these studies is not a very good proxy
of disease severity. Indeed, several factors could explain both
intra- and inter-study variability in this regard. For instance,
it is expected that patients deteriorate at different rates, are
diagnosed at various ages and stages of the disease, and
have different lifestyles. Moreover, while the average disease
duration in the studies included in the meta-analysis ranged
between 0.19 and 6.5 years, most studies included only patients
in stages I and II (119). By contrast, if one considers that
the average disease duration constitutes an adequate proxy
of disease severity, the lack of correlation between it and
cerebellar activation could again be interpreted as reflecting
a compensatory mechanism of the cerebellum. As such, it
is conceivable that this mechanism could be set in effect as
early as the basal ganglia ceases to function optimally, and
that its effectiveness reaches an asymptote when it is unable
to engage more resources. Alternatively and as suggested by
Wu and Hallett (41), it is also possible that the cerebellum
reaches a compensatory peak activity early in the disease, but
wears off as the disease progresses and its efforts become
futile. Finally, another reason for the lack of correlation with
disease duration is the notion that certain changes in cerebellar
activity in PD are more directly related to specific symptoms
of the disease (120–123), and even influenced by dopaminergic
medication as suggested by Mirdamadi (40). Previous research
has shown that tremor dominant PD patients may recruit
the cerebellum more so than those who are akinetic/rigid
predominant (120), the latter being linked more specifically
to vermal dysfunction. Although we do not have information
regarding the symptom profile of the patient’s included in
these studies, a akinetic/rigid predominant representation could
explain the negative association between the symptom severity
and vermal function. Thus, the finding that the UPDRS
III, and not disease duration, was found to be linked with
cerebellar hypoactivity could be explained by heterogeneity
of patient subtypes recruited in the studies. This could also
explain why our meta-analysis yielded, not only a non-specific
hyperactivity, but a hypoactivity linked to motor symptom
severity as well.

Regrettably, there were insufficient data and little variability
regarding themeasure of cognitive functioning (MMSE orMoCA
scores) to conduct an informative meta-regression to assess the
relationship between the level of cerebellar activity and cognitive
dysfunction in PD patients. Understandably, many studies used
cognition scores as a screening measure in order to exclude
patients with signs of significant cognitive dysfunction. Thus, a
proper assessment of the relationship between cognitive decline
and the cerebellum should be the focus of future research.
Interestingly, a previous study examined the neural activity
of PD patients with and without mild cognitive impairment
(MCI) over time, and found that PD patients with MCI showed
increased cerebellar activity (mainly Crus I) in the follow-
up test, which was not seen in PD patients without MCI
(124). This finding further adds to the involvement of Crus
I in cognitive functioning in PD patients, and argues for a
progressive involvement of cerebellar activity with cognitive
function/dysfunction.

Limitations
By design, our review focused only on task-related activation
studies. As such, we did not cover other functional neuroimaging
approaches, such as resting-state, which might have provided
additional information. A systematic analysis of the results based
on this modality is yet to be done, and could bring valuable
insight into the role of cerebellum in PD.

This review, as with most studies on PD, is faced with
the problem of heterogeneity across studies, both in terms
of experimental paradigms and patient samples. The clinical
presentation varies from patient to patient, each presenting with
different types of symptoms as well as the level of severity
of both motor and non-motor symptoms. Although we made
efforts to keep the studies as similar as possible, we could not
control for the within-study heterogeneity. Moreover, because
we aimed to be as inclusive as possible in our meta-analysis,
including studies with and without nil-findings from whole-
brain and ROI analyses, we can be more certain that the
results obtained from this study reflect true differences. Another
challenge when reviewing articles in a research domain like the
one discussed here, is the difference inmethodology and outcome
measures used in the respective studies. This is problematic as
it makes study comparisons and interpretations more difficult.
Prospective studies should therefore aim to use standardized
and/or well-established methods and outcome measurements.

CONCLUSIONS

The current review provides valuable insight into the functional
role of the cerebellum in PD, in regards to both motor and
non-motor functioning. We were able to quantify the current
cerebellar findings from the PD task induced fMRI literature,
which revealed that an overall hyperactivity is seen in Crus I
and II in response to both motor and non-motor paradigms,
whereas hypoactivity in lobule VI and Crus II is linked to
motor symptoms. These results suggest that certain cerebellar
regions show a special implication in motor and non-motor
functioning in PD, and that they are linked to the motoric
clinical state, but not disease duration. Moreover, the negative
correlation between the UPDRS scores and cerebellar activation
in lobule VI, Crus II and vermal lobules VII/VIII, together
with the lack of a significant correlation with disease duration,
provide support for the view that the pattern of cerebellar
activity may represent a compensatory mechanism for the basal
ganglia dysfunction, where movement impairments place more
demands on certain cerebellar sub-regions than others. However,
this hypothesis can only be tested in a longitudinal setting
and by including more severe PD populations, with specific
symptomatic subgroups.

Furthermore, the present systematic review has identified
several knowledge gaps and important issues that need to be
addressed by future neuroimaging research using task-based
paradigms in PD patients. There is a need for future studies that
should include patients at a later stage in the disease, as well
as longitudinal investigations of brain activity in general, and
cerebellar activity in particular. This will shed more light on how
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the pathology progresses and compensatory mechanisms unfold,
as well as how these will impact the functional organization
of the cerebellum in response to specific cognitive and motor
demands. There is also a paucity of studies investigating the
functional changes and reorganization of brain activity in PD
in relation to pharmacological management of the disease over
time. Finally, patient heterogeneity remains another important
challenge that could be addressed by undertaking a better
stratification of patients based on their disease pathology and
symptomology, though understandably this may pose a challenge
due to practical difficulties of including patients with a more
advanced clinical state.

In conclusion, our study provides a review of task-based
neuroimaging studies in PD with a focus on the functional
specificity of the cerebellum. We show that the cerebellum
in PD patients are hyperactive compared to healthy controls,
irrespective of the task. We also show that cognitive functioning
in PD is linked to the more recently developed cerebellar
regions (i.e., Crus I and II, as well as lobule VI and VIII). In
contrast, we also show that a lack of activity in motor related
regions (lobule VI and vermal VII) is associated with motor
symptoms severity. Together, these findings provide the first ever
quantitative assessment of functional cerebellar involvement in
PD patients, and importantly link various clinical aspects of the
disease with specific sub-regions of the cerebellum.
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