
Expression of c-MYC under the Control of GATA-1 
Regulatory Sequences Causes Erythroleukemia in 
Transgenic Mice 
By Radek C. Skoda,* Shih-Feng Tsai,~ Stuart H. Orkin,~ 
and Philip Leder* 

From the *Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, 
and *Division of Hematology-Oncology, Children's Hospital, Howard Hughes Medical Institute, 
and the Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, 
Boston, Massachusetts 02115 

Summary  
To study oncogenesis in the erythroid lineage, we have generated transgenic mice carrying the 
human c-MYC proto-oncogene under the control of mouse GATA-1 regulatory sequences. Six 
transgenic lines expressed the transgene and displayed a clear oncogenic phenotype. Of these, 
five developed an early onset, rapidly progressive erythroleukemia that resulted in death of the 
founder animals 30-50 d after birth. Transgenic progeny of the sixth founder, while also ex- 
pressing the transgene, remained asymptomatic for more than 8 mo, whereupon members of 
this line began to develop late onset erythroleukemia. The primary leukemic cells were trans- 
plantable into nude mice and syngeneic hosts. Cell lines were established from five of the six 
leukemic animals and these lines, designated erythroleukemia/c-MYC (EMY), displayed proerythro- 
blast morphology and expressed markers characteristic of the erythroid lineage, including the 
erythropoietin receptor and B-globin. Moreover, they also manifested a limited potential to differen- 
tiate in response to erythropoietin. Studies in the surviving transgenic line indicated that, con- 
trary to our expectations, the transgene was not expressed in the mast cell lineage. That, coupled 
with the exclusive occurrence of erythroleukemia in all the transgenic lines, suggests that the 
GATA-1 promoter construct we have used includes regulatory sequences necessary for in vivo 
erythroid expression only. Additional sequences would appear to be required for expression in 
mast cells. Further, our results show that c-MYC can efficiently transform erythroid precursors 
if expressed at a vulnerable stage of their development. 

O ne of the genes controlling the differentiation of 
immature hematopoietic progenitor cells encodes a zinc 

finger transcription factor called GATA-1 (1). Disruption of 
the GATA-1 gene through homologous recombination in em- 
bryonic stem cells prevents normal erythroid development 
(2, 3). Consistent with its proposed role as a key regulator 
in erythropoiesis, GATA-1 mKNA is present in the earliest 
identifiable blood island cells in the yolk sac and is later found 
in fetal liver and in adult erythroid cells (4). In addition, 
GATA-1 mR.NA is also expressed in adult hematopoietic cells 
of megakaryocytic, eosinophil, and mast cell origin (5-8). 
This expression pattern suggests that GATA-1 might also be 
present in progenitor cells committed to the erythroid, mega- 
karyocytic, eosinophil, and mast cell lineage. Therefore, the 
regulatory sequences that control expression of the GATA-1 
gene might provide the opportunity to direct expression of 
transgenes to hematopoietic progenitors with muhilineage 
potential. Nonhematopoietic cells, with the exception of 
the testis, do not express GATA-1. The testis form is tran- 

scribed from a separate promoter located 5' to the erythroid 
first exon (9). 

Deregulated expression of the c-myc proto-oncogene in vivo 
can immortalize a variety of hematopoietic lineages including 
lymphoid (10, 11) and myelo-monocytic cells (12, 13). c-myc 
is ubiquitously expressed and plays a central role in the con- 
trol of cell proliferation (14). For oncogenic activity the myc 
protein must form a heterodimer with max (15), a ubiqui- 
tously expressed member of the helix-loop-hdix family (16). 
Despite its promiscuous properties as an oneogene, its potential 
in the transformation of erythroid cells has yet to be defined. 

To derive an in vivo model and to immortalize cell lines 
that represent stages in hematopoietic development dependent 
on GATA-1, we used regulatory sequences of the murine 
GATA-1 gene to express the human c-MYC proto-oncogene 
in transgenic mice. Several such independently derived trans- 
genic mice developed early onset erythroleukemia and although 
these mice died before reaching sexual maturity, we were able 
to derive and characterize cell lines from these animals. One 
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transgenic line, by contrast, developed late onset erythro- 
leukemia and survived to provide an in vivo model of  this 
disease. This surviving line also allowed us to assess the ex- 
pression pattern of  the transgene directed by the GATA-1 
regulatory sequences used in these studies. 

Materials and Methods 
Construction of the GATA-1/c-MYC Transgene and Generation of 

7~ansgenic Mkr A 4.3-kb XbaI-SmaI genomic fragment, including 
2.7 kb of 5' flanking region, the nontranslated exon 1 (80 bp), 
and 1.5 kb of intron 1 of the mouse GATA-1 gene, was ligated 
to a 3.8-kb SmaI-XbaI genomic fragment, comprising the 3' part 
of the first intron as well as exon 2, intron 2, and exon 3 of the 
human c-MYC gene (17). The resulting 8.1-kb GATA-1/c-MYC 
fragment, which contains no vector sequences, was used for oo- 
cyte microinjection. We have generated 13 transgenic founder mice 
in the FVB/N inbred strain (Taconic Farms, Inc., Germantown, 
NY) by standard oocyte injection methods (18). The animals were 
maintained under specific pathogen-flee conditions in microisolator 
cages. 

RNA Isolation, RNase Protection Assay, and Northern Analysis. 
RNA samples were prepared in 4 M guanidium isothiocyanate, 
followed by ultracentrifugation on a 5.7 M CsC1 cushion (19). For 
gNase protection analysis, T3 or T7 antisense probes were synthe- 
sized and hybridized to total RNA samples as described (20). Pro- 
tected fragments were separated on 6% polyacrylamide/8 M urea 
sequencing gels, which were then dried and exposed for autoradi- 
ography using Kodak XAR-5 film and an intensifying screen. 

Human c-MYC mRNA was detected with a riboprobe tran- 
scribed from the plasmid pFcRVS (a gift from David Beier, Har- 
vard Medical School, Boston, MA). pFcRVS consists of a 360-bp 
EcoRV-SstlI fragment from exon 2 of the human c-MYC gene 
cloned into pBluescriptlI vector. 

Antisense RNA transcribed from pFcR.VS protects a 360-bp frag- 
ment of human c-MYC and fragments of 220 and 160 bp of mouse 
c-rnyc corresponding to conserved regions between human and 
mouse. We synthesized ribosomal protein L32 riboprobes (gift from 
Michael M. Shen, Harvard Medical School) at one-tenth the specific 
activity of MYC probes (21) as an internal standard. The fragment 
protected by this riboprobe comigrates with the 220-bp mouse c-my 
band protected by pFcRVS. Mouse GATA-1 mRNA was probed 
with a riboprobe which protects a 240-nucleotide (nt) region ex- 
tending from a HinfI site in exon 2 to an EcoRI site in exon 3 
of the GATA-1 gene. Mouse c~-globin riboprobe (gift from Aya 
Leder, Harvard Medical School) consisted of a 210-bp PstI-BamHI 
fragment from the mouse o~-globin gene (22). 

For Northern analysis, total RNA (10 #g) was electrophoresed 
on a 1% agarose gel with formaldehyde and transferred to a posi- 
tively charged nylon membrane (Nytran; Schleicher & Schuell, Inc., 
Keene, NH). The filters were sequentially hybridized and stripped 
to the following ~2P-labeled double stranded probes: XhoI frag- 
ment of the routine EPO-R cDNA (gift from Alan D'Andrea, Dana 
Farber Cancer Institute, Boston, MA) (23); mouse ~/-globin (gift 
from Frederick Lee, Harvard Medical School) (24); SacI fragment 
of the Spi-1 cDNA (25, 26), Fli-1 cDNA (27); mouse GATA-1 
cDNA (28); human c-MYC cDNA (17); and ribosomal protein 
L32 pseudogene (21, 29) 

Blood and Tissue Analysis. Blood was obtained by phlebotomy 
of the tail vein or by cardiac puncture. Blood smears were stained 
with May-Griinwald-Giemsa. Bone marrow or spleen cells were 
resuspended in 50-100 #1 PBS and concentrated on microscopic 
slides using a Cytospin 3 centrifuge (Shandon, Ostmore, UK). 
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Figure 1. The GATA-1/c-MYC transgene. A 4.3-kb EcoRI-SmaI frag- 
ment including 2.7 kb of the 5' flanking region, the nontranslated first 
exon (solid box), and 1.5 kb of the GATA-1 first intron of the mouse GATA-1 
gene was ligated to a SmaI-EcoRl genomic human c-MYC fragment. This 
fragment includes the 3' part of the first intron, the two translated exons 
(hatched box) and the 3' RNA processing signal from the human c-MYC 
gene. The position of the initiator ATG is indicated. 

Automated blood counts were performed with a cell counter (model 
H-l; Tecnicon Co., Tarrytown, NY). For histology, freshly dis- 
sected tissues were fixed in Optimal*Fix (American Histology Re- 
agent Co., Stockton, CA). Fixed specimens were embedded in 
paraffin, sectioned, and stained by the Transgenic Pathology Labo- 
ratory at the University of California at Davis. 

Tumor Transplants. Spleen cells from transgenic erythroleukemia/ 
c-MYC 1 (TG.EMY-1) 1 and TG.EMY-2 founder or lymph node 
cells from TG.EMY-1 were suspended in PBS and 3 x 106 cells 
were each injected either intravenously or subcutaneously into syn- 
geneic FVB (n = 7 for EMY-1; n = 4 for EMY-2) or nu/nu mice 
(n = 7 for EMY-1; n = 3 for EMY-2). Only one FVB injected 
with EMY-1 and one FVB injected with EMY-2 and two nu/nu 
injected with EMY-1 remained tumor free. All other animals (n = 
14) developed leukemia by day 28 or were found dead in the cage 
(n = 3). Histological examination confirmed the presence of tumor 
infiltrates. 

Cell Culture and Colony Assays. Cell lines were established by 
plating suspensions of cells from bone marrow or spleen in KPMI 
media supplemented with 10% bovine calf serum, glutamine, and 
antibiotics. After a few days, cells were growing rapidly in suspen- 
sion and after a few weeks the cells appeared morphologically ho- 
mogeneous. The cell lines required flesh media every 2 d. Subclones 
were derived by placing single cells into 96-well plates lined with 
NIH 3T3 cells that had been treated with mitomycin C to irrevers- 
ibly prevent cell division. 

We tested the differentiative potential of EMY-1 and EMY-2 cells 
by growing them in media containing mouse erythropoietin (sp 
act: 350,000 U/rag) (a gift from the Genetics Institute, Cambridge, 
MA) at a final concentration of 0.1 #g/ml ('~35 U/ml). After 10 d, 
total RNA was prepared for Northern analysis. 

Methylcellulose cultures of bone marrow cells were plated as 
triplicates at two densities (5 x 104 and 1 x 10 s cells/ml) in 
IMDM containing 4% FCS, erythropoietin (EPO) (0.08 U/ml), 
bib1 (2 ng/ml), rolL-3 (100 ng/ml), kit ligand (2% COS cell su- 
pematant), BSA fraction V, transferrin, and lipids according to Iscove 
(30). Colony assays of EMY cell lines were performed in IMDM/ 
methylcellulose supplemented with 10% FCS without addition of 
growth factors. 

1Abbreviations used in this paper: EMY, erythroleukemia/c-MYC; EPO, 
erythropoietin; MCFV, mink cell focus viruses. 
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T a b l e  1. Summary of GATA-1 /c -MYC Transgenic Mice 

Transgene Cell  line 
Transgenic  mouse  expression Life span Spleen we igh t  established Ferti l i ty 

T G . E M Y - 1  

T G . E M Y - 2  

T G . E M Y - 3  

T G . E M Y - 4  

T G . E M Y - 5  

T G . E M Y - 6  

T G . E M Y - 7  

T G . E M Y - 8  

T G . E M Y - 9  

T G . E M Y - 1 0  

TG.EMY-11  

T G . E M Y - 1 2  

T G . E M Y - 1 3  

#1 

#2 

d mg 
+ 45 N D *  + - 

+ 50 770 + - 

+ 35 830 + - 

+ 30 700 + - 

+ 240 1,600 + + 

260 1,300 - + 

+ 30 520 - - 

+ Normal  110 - + 

+ Normal  90 - + 

+ Normal  105 - - 

- Normal  90 - + 

- Normal  95 - + 

- Normal  100 - - 

- Normal  95 - - 

* Spleen enlarged but weight not determined. Transgenic F1 offspring or infertile transgenic founder animals were analyzed. Spleen weights in age- 
matched wild-type controls ranged between 80 and 110 mg (not shown). 

Figure  2. Expression of the transgene in tissues and cell lines from transgenic mice. KNase protection assay with the pFcKVS riboprobe for exon 
2 of human c-MYC. As indicated by arrows, this riboprobe generates a protected fragment corresponding to the human c-MYC transcripts, as well 
as smaller fragments that represent mouse c-myc transcripts and correspond to conserved regions between man and mouse. (RP) Ribosomal protein 
L32 mRNA as an internal control (left and middle only). (Left) 6-wk-old healthy TG.EMY-5 animal; (middle) 34-wk-old leukemic TG.EMY-5 mouse; 
(right) cell lines EMY-3 and EMY-4. Bone marrow (bin), spleen (sp), liver (li), kidney (kd), lung (lu), brain (br), heart (ht), thymus (ty), lymph node 
(In), and testes (re). 
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Mast ceils from TG.EMY-2 and TG.EMY-5 were derived by first 
culturing bone marrow cells for 3 d in Dexter media and then in 
RPMI media with 10% bovine calf serum and 10% WEHI-3 con- 
ditioned media as a source for IL-3. Leukemic cells died in Dexter 
media and a homogeneous population of IL-3-dependent cells with 
the typical morphology of mast cells emerged. After 3 wk of cul- 
ture, cells were analyzed morphologically using Cytospin prepara- 
tions stained with May-Gr~inwald-Giemsa or toluidine blue. 

Immunoprecipitations. Cell lines (107 cells each) were labeled 
with 0.25 mCi/ml [3sS]-methionine for 6 h at 37~ The cells 
were lysed on ice in 0.9 ml TBS (150 mM NaC1, 50 mM Tris, pH 
8) with 1% Triton X-100 and protease inhibitors. The lysates were 
spun for 30 min at 10,000 g. Supernatants were adjusted to 0.2% 
SDS, 0.5% NP40, and 0.5% deoxycholate final concentration and 
incubated with a goat anti-Rauscher MuLV gp70 polyclonal an- 
tiserum that cross-reacts with SFFV gp55 (31) at a 1:200 dilution 
for 12 h at 4~ Protein A-Sepharose beads (Pharmacia, Piscataway, 
NJ) were added, incubated for 2 h and washed four times in RIPA 
buffer (0.1% SDS, 0.5% NP40, and 0.5% deoxycholate in TBS) 
and twice with TBS. The immune complexes were eluted with 
SDS-PAGE loading buffer. 

Results 

Generation of Transgenic Mice. To direct expression of an 
immortalizing oncogene to erythroid or perhaps to multipo- 
tent hematopoietic precursors, we placed the human c-MYC 
gene under the control of mouse GATA-1 regulatory sequences 
(Fig. 1). To preserve the configuration of the GATA-1 regula- 
tory region (32), we chose to use 2.7 kb of the 5' flanking 
region, the noncoding first exon, and 1.5 kb ofintron 1 from 
the GATA-1 gene. The first exon of c-MYC was excluded 
in this construct, as it represents a noncoding sequence that 
is not required for transformation (17). Thus, this fusion gene 
is composed of GATA-1 sequences at the 5' portion of the 
first intron and of c-MYC sequences at the 3' portion (Fig. 1). 

13 founder mice carrying the GATA-1/c-MYC transgene 
were generated (Table 1). We have observed a phenotype in 
6 of the 13 transgenics. Five transgenic founders (TG.EMY-1, 
TG.EMY-2, TG.EMY-3, TG.EMY-4, and TG.EMY-6) devel- 
oped a rapidly progressive disease with signs of respiratory 
distress and anemia, and died between days 30 and 50 (Table 
1). These founders were unable to generate offspring. A sixth 
founder, TG.EMY-5, remained healthy, allowing us to estab- 
lish a breeding transgenic line. Thus far, two transgenic 
offspring from the TG.EMY-5 founder displayed a similar 
phenotype, but with a late onset, resulting in death at days 
240 and 260 (Table 1). The disease is variably penetrant in 
this line since several transgenic mice have remained healthy 
past the age of 18 mo. 

Analysis of the Tissue Specificity of Transgene Expression Con- 
ferred by the GATA-I Regulatory Sequences. To assess the trans- 
gene expression we performed an RNase protection assay with 
a human c-MYC riboprobe that can distinguish between trans- 
cripts originating from the transgene and from the endogenous 

mouse c-myc gene. We examined the surviving TG.EMY-5 
line and compared the tissue distribution of transgene ex- 
pression in a healthy young TG.EMY-5 animal to that in a 
leukemic TG.EMY-5 mouse (Fig. 2). The transgene in the 
healthy animal was expressed in bone marrow and, at low 
levels, in the spleen. This distribution agrees with that of 
the endogenous GATA-1 gene. In the leukemic TG.EMY-5 
animal the transgene RNA was expressed at much higher 
levels and in several additional organs, including spleen, liver, 
lung, and thymus, and at low levels also in kidney, brain, 
and heart. Histology of the tissues from this mouse revealed 
leukemic infiltration of the spleen, liver (Fig. 3 D), lung, and 
thymus. The kidney, brain, heart, lymph node, and testis were 
histologically less affected or normal (not shown). This sug- 
gests that the transgene expression in these organs originated 
from the tumor cells. The endogenous mouse c-rayc tran- 
scripts detected in the organs of the leukemic mouse seem 
to be derived from RNA from nonleukemic tissue, since en- 
dogenous mouse c-myc RNA was not detectable in cell lines 
derived from leukemic TG.EMY mice (Fig. 2). Suppression 
of endogenous c-myc transcripts by expression of an exoge- 
nous myc gene is observed regularly and appears to occur at 
the transcriptional level (33, 34). 

In the five founders with early onset of leukemia, TG.EMY-1, 
TG.EMY-2, TG.EMY-3, TG.EMY-4, and TG.EMY-6, we ob- 
served a similar expression pattern of the transgene as in the 
leukemic TG.EMY-5 mouse and the same histopathological 
findings (not shown). In some cases, the lymph nodes and 
brain were affected as well. Three additional lines (TG.EMY-7, 
TG.EMY-8, and TG.EMY-9) showed expression of the trans- 
gene in bone marrow and spleen (not shown), similar to that 
of the healthy TG.EMY-5. We have not studied these lines 
in detail, although in the transgenic offspring of one of these 
strains a mouse was found dead that displayed splenomegaly. 
Offspring of the other two strains remained healthy for up 
to 20 mo. 

As the endogenous GATA-1 gene is expressed in mast cells 
(5, 6), and regulates the promoters of some mast cell-specific 
proteases (7), we assessed expression of the GATA-1/c-MYC 
transgene in a homogeneous population of mast cells derived 
from a leukemic TG.EMY-5 animal (Fig. 4). Had the regula- 
tory sequences used in our transgene construct been com- 
plete, we would have expected the transgene to be expressed 
in all cells that express the endogenous GATA-1 gene. Sur- 
prisingly, the c-MYC transgene was not expressed in mast 
cells from this TG.EMY-5 animal, despite expression of the 
endogenous GATA-1 gene. Although there was less RNA 
loaded in the lanes from both mast cells samples (as assessed 
by ribosomal protein L32 probe), mRNA for GATA-1 and 
Fli-1 was easily detectable. Southern analysis of DNA from 
these mast cells confirmed that they had not lost the trans- 
gene (not shown). Similarly, mast cells derived from the 
TG.EMY-1 transgenic founder did not express the transgene 

Figure 3. Morphology of EMY-5 tumor cells. May-Griinwald-Giemsa stain of blood smear (A). Cytospin preparation from spleen (B) and from 
the EMY-5 leukemia cell line (C). Hematoxilin-eosin-stained section of the liver (/9) from the leukemic TG.EMY-5 mouse. 
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Figure 4. Northern analysis of total 
RNA from mast cells and leukemic 
cells derived from the TG.EMY-5 
mouse and from mast cells derived 
from a wild type control. The same 
blot was sequentially probed with spe- 
cific 32p-labeled cDNAs as indicated. 

by the RNase protection assay (not shown). Thus, the GATA-1 
sequences used in this construct are insufficient to direct ex- 
pression of the transgene to the mast cell lineage. 

Characterization of Primary Tumors and Derivation of Eryth- 
roleukemia Cell Lines. The peripheral blood of all leukemic 
animals contained proerythroblasts and erythroblasts, as shown 
for a leukemic TG.EMY-5 mouse (Fig. 3 A). Automated blood 
counts were performed on two leukemic animals and com- 
pared to healthy transgenic and wild type mice (Table 2). 
Leukocytosis was found in the leukemic TG.EMY-5 mouse, 
but not in TG.EMY-1, reflecting variability in the numbers 
of circulating leukemic cells. Both animals displayed severe 
anemia and moderate thrombocytopenia. The spleens of all 
leukemic mice were found to be largely replaced with leu- 
kemic cells (Fig. 3 B). Primary tumor cells from spleens of 
TG.EMY-1 and TG.EMY-2 animals were clonogenic in methyl- 
cellulose without addition of growth factors and were also 

transplantable into nu/nu mice or syngeneic FVB. Transplanted 
animals developed the same pathology within 3-4 wk and 
the leukemic cells displayed the same proerythroblast mor- 
phology (not shown). 

We were able to derive cell lines from the bone marrow or 
spleen of leukemic animals TG.EMY-1, TG.EMY-2, TG.EMY-3, 
TG.EMY-4, and TG.EMY-5. All cell lines grew rapidly in 
suspension culture without the addition of growth factors. 
After a few weeks in culture they appeared homogeneous and 
displayed predominantly a proerythroblast morphology (Fig. 
3 C). These cell lines formed colonies in methylceUulose 
without the addition of growth factors and 5-15% of EMY 
cells were clonogenic (Table 3). 

The EMY cells were negative for the megakaryocytic marker 
acetylcholinesterase (35, 36) and the specific toluidine blue 
staining of mast cell granules (37). To confirm the erythroid 
origin of the cell lines, we performed Northern analyses with 
probes for erythroid-speciflc markers (Fig. 5 A). Both fl-globin 
and erythropoietin receptor (EPO-R) mRNAs were expressed 
in all EMY cell lines, consistent with representing cells of 
the erythroid lineage. Treatment with recombinant mouse 
EPO led to upregulation of B-globin RNA (Fig. 5 B) but 
did not induce any morphological changes associated with 
maturation. We were also unable to induce the appearance 
ofbenzidine-positive cells in EMY cell lines treated with 1.2% 
DMSO, indicating that no significant amounts of hemoglobin 
were formed. Thus, erythroleukemia cells immortalized by 
the c-MYC proto-oncogene are partially blocked in their 
differentiation, similar to MEL cells transfected with c-myc 
expression vectors (38-40). 

Since leukemia in TG.EMY-5 mice occurs stochastically 
after a latency of more than 30 wk, we examined whether 
expression of the c-MYC transgene has an effect on erythropoi- 
esis in younger healthy transgenics. We found no difference 
in blood counts or red blood cell parameters between healthy 
6-8-wk-old TG.EMY-5 mice and the wild type controls (Table 
2). However, a subtle effect on erythroid differentiation was 
detectable when colony assays in methylcellulose with bone 

Table 2. Blood Counts of Transgenic Mice and Wild-type Controls 

TG.EMY-1 leukemic TG.EMY-5 leukemic TG.EMY-5 healthy Wild-type controls 

n = l  n = l  n = 6  n = 6  

WBC x 103//zl 3.3 41.1 5.7 + 4.2 4.9 + 2 
RBC x 106//~1 0.7 3.4 8.8 + 0.6 8.6 + 0.5 
HCT% 4 16 46 + 4 47 + 7 
HGB g/100 ml 1.4 5.2 14 _+ 0 14 + 1 
MCV fl 66 47 53 +- 4.5 55 + 7.8 
MCH pg 21 15 16 _+ 0.3 16 + 0.6 
PLT x 103//zl 215 248 1,170 _+ 278 1,022 _+ 144 

Blood counts were performed on a Technicon H1. 
HCT, hematocrit; Hgb, hemoglobin; MCH, mean corpuscular hemoglobin (vg); MCV, mean corpuscular volume (fl); PLT, platelets; RBC, red 
blood cells; WBC, white blood cells. 
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Table 3. Clonogenicity Assay 

Cell line CFU/10 ~ cells 

EMY-1 56/33 
EMY-2 150/115 

EMY-3 144/215 

EMY-4 115/58 

Numbers of CFU from duplicate plates are given. 

marrow cells from 10-wk-old healthy EMY-5 mice and lit- 
termate controls were performed (Table 4). O n  day 7, we 
observed an about twofold increase in blast-forming uni t -  
erythroid (BFU-E) colonies in the transgenic group. When  
we analyzed the colonies on day 10, the number of pure 
erythroid colonies (E) was again increased in the transgenic 
group. However, no difference in GM colonies, bi-lineage colo- 
nies consisting of  erythroid and megakaryocytic cells (E/Mg), 
or muhilineage colonies containing erythroid cells (E/multi), 
was observed. Thus, this effect is confined to relatively late 
progenitor cells committed to the erythroid lineage, whereas 

Table 4. Frequency of Colony-forming Cells in Bone Marrow 
from Healthy EMY-5 and Wild-type Mice 

EMY-5 Wild-type 

Cells per femur x 10 -6 19.6 +_ 2.4 19.2 _+ 5.6 

BFU-E per 10 s cells 

(day 7) 10.8 _+ 3 5.0 _+ 2 
Total CFU per l0 s cells 

(day 10) 143 _+ 21 141 _+ 28 
GM 105 _+ 13 108 _+ 20 

E 9.3 _+ 3.7 4.6 _+ 0.8 

E/Mg 25 _+ 5.3 25 + 7.6 

E/multi 2.5 +_ 1.4 3.3 _+ 1 

Bone marrow cells from 10-wk old EMY-5 and wild-type littermates 
were assayed in methylcellulose in the presence of kit ligand, IL-1, IL-3, 
and EPO. BFU-E were counted after 7 d, total CFU and the CFU sub- 
types after 10 d. Results are expressed as mean ~ standard deviation (n 
= three mice per group). For each mouse, colonies from six plates were 
counted. GM, granulocyte and/or macrophage colonies, E, erythroid; 
E/Mg, erythroid and megakaryocytic; E/multi, large (>1 mm) multiline- 
age colonies consisting of erythroid, megakaryocytic, and macrophage 
or granulocytic ceils. 

Figure 5. Northern analysis ofgene expression in EMY cell lines. (A) 
The same blot was sequentially probed with specific 3Zp-labeled cDNAs 
as indicated, except for EPO-R, for which a second blot with the identical 
RNAs was used. (RP) Was used to normalize for RNA loading. (B) Anal- 
ysis of the effect of EPO on expression of/3-globin in EMY cell lines. 
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Figure 6. Immunoprecipitation 
of cell lysates from [35S]methio- 
nine-labeled BaF3 (Ba), MEL and 
EMY cell lines with polyclonal an- 
tibodies against the Friend virus 
envelope protein (anti-RLV) or 
preimmune serum. 

more immature precursors with bi- or multilineage poten- 
tial seem to be unaffected. 

Search for Secondary Events Involved in ~ansformation of EMY 
Cell Lines. To assess the possibility that the secondary events 
frequently associated with Friend virus or spleen focus forming 
virus transformation might also be involved in leukemogen- 
esis in our transgenic mice, we analyzed the expression of 
Fli-1 (27) and Spi-1 (25, 26) in EMY cell lines (Fig. 5 A). 
Spi-1 was not expressed in EMY erythroleukemic cell lines 
and therefore does not play a role. In contrast, Fli-1 mRNA 
was expressed in three of the five cell lines (EMY-1, EMY-2, 
and EMY-4). Thus, activation of Fli-1 could be one of the 
mechanisms in the leukemogenesis in these TG.EMY mice. 

Friend helper virus can activate dormant endogenous mink 
cell focus viruses (MCFV) to express the oncogenic trun- 
cated envelope protein gp55 (41). To rule out the possibility 
that the deregulated expression of the c-MYC transgene could 
activate endogenous MCFV, we analyzed expression of gp55 
protein in metabolically labeled EMY cell lines by immuno- 
precipitation with antienvelope antibodies (Fig. 6). In MEL 
cells this antiserum (31) recognizes both the wild-type enve- 
lope protein (gp70) and the mutated gp55, as well as an un- 
characterized intermediate of ~60 kd (42). In EMY cell lines 
we found no envelope protein. The bands visible in EMY-2 
display a faster mobility than gp55 and on longer exposure 
appeared in all lanes, including the preimmune sera panel. 
Therefore, the c-MYC transgene does not activate dormant 
MCFV and does not induce expression of gp55. Thus, de- 
spite the fact that EMY cells resemble Friend virus-derived 
MEL cells in some respects, they have been generated by a 
distinct mechanism. 

Discussion 

We have generated transgenic mice that are prone to de- 
veloping erythroleukemias because of the deregulated expres- 
sion of the c-MYC proto-oncogene. We have derived erythro- 
leukemia cell lines from these animals that morphologically 
resemble proerythroblasts (Fig. 3 C) and constitutively ex- 
press the erythroid markers EPO-R and 3-globin (Fig. 5 A). 
The occurrence of erythroleukemia infers that the regulatory 
elements necessary for expression in the erythroid compart- 
ment are present in our construct. Interestingly, committed 
hematopoietic precursors deficient for the GATA-1 gene dis- 
play a block in erythropoiesis at the proerythroblast stage, 
as determined by an in vitro differentiation assay of GATA-1- 
embryonic stem cells, indicating that GATA-1 is required for 
differentiation to later stages of erythroid development (43). 

The reproducible observation of leukemias with exclusively 
erythroid characteristics was unexpected, since the endoge- 
nous GATA-1 gene is also expressed in other hematopoietic 
lineages, such as mast cells, megakaryocytes, and eosinophils 
(5-8). The regulatory sequences from the GATA-1 gene used 
in this transgenic construct might include the elements neces- 
sary for erythroid expression only. Consistent with this no- 
tion we found that the transgene was not expressed in mast 
cells derived from the TG.EMY-5 line (Fig. 4). This suggests 
that the region of the mouse GATA-1 gene comprising 2.7 
kb of the 5' upstream region and 1.5 kb of the first intron 
lacks element(s) required for expression in mast cells in vivo. 
The EMY cell lines did not display megakaryocytic markers, 
such as acetylcholinesterase (35, 36) or 4A5 (44). We were 
unable to determine expression of the transgene in megakaryo- 
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cytes or eosinophils from leukemic mice, because of the lim- 
iting amounts of cells. As expected, we have not detected 
transgene transcripts in the testis (Fig. 2), since expression 
of GATA-1 in testis was found in neonates only (9) and is 
initiated from a testis-specific promoter not included in this 
construct. Recently, factor-dependent cell lines with pluripo- 
tent characteristics were derived from transgenic mice that 
express a temperature-sensitive mutant of the SV40 large T 
antigen driven by GATA-1 regulatory sequences (45). This 
promoter-enhancer construct includes only a part of the se- 
quences used in our transgenic mice and might differ in its 
pattern of expression. Alternatively, T antigen and c-MYC 
might preferentially immortalize different stages of devel- 
opment. 

It is interesting that erythroleukemia arises in these trans- 
genic strains in two distinctly different kinetic patterns. The 
late onset transgenic line (TG.EMY-5) develops leukemia, if 
at all, after 8-9 mo of age. By contrast, the five early onset 
animals (TG.EMY-1, TG.EMY-2, TG.EMY-3, TG.EMY-4, and 
TG.EMY-6) developed leukemia and died before they were 
2 mo old. The basis for this difference is not clear, but we 
suspect that it is related to some difference in transgene ex- 
pression. The levels of c-MYC transgene expression in cell 
lines derived from mice with early onset leukemia were similar 
to that detected in the late onset EMY-5 cell line (Fig. 5 A) 
suggesting that any difference must involve either differing 
numbers of individual cells expressing the transgene in each 
lineage or a difference in the developmental status of cells 
in which the transgene is expressed. Unfortunately, we cannot 
confirm either of these related models because the disease oc- 
curred too soon after birth in the early onset strains and 
breeding lines could not be established. Nonuniform expres- 
sion of transgenes among strains bearing the same construct 
is known to occur in other systems (46). 

Our experiments do, however, clarify the status of c-myc 
as a transforming oncogene in the erythroid lineage. Avian 
retroviruses expressing c-myc primarily cause myeloid leukemia 
and do not transform the erythroid lineage (47), whereas coex- 
pression of both v-myc and v-rafwas required to transform 
erythroid cells in murine fetal liver cell cultures infected with 
retroviruses (48). By contrast, similar experiments using two 
retroviruses (Zen and MIrZen) that carry c-myc as their only 
oncogene yielded erythroid cell lines that initially displayed 
poor viability and grew slowly, but became fully transformed 
after several months in culture (49). This long latency, be- 
fore fully transformed cell lines arise in vitro, kinetically 
resembles the long in vivo latency period seen in the TG.EMY-5 
line. It remains possible that infection with the Zen or MPZen 
retroviruses activated expression of Friend spleen focus virus 
envelope protein gp55, a mechanism that has been excluded 
in our transgenic cell lines (Fig. 6). The early onset of erythro- 
leukemia in the majority of our transgenic mice, however, 
demonstrates that c-MYC can efficiently transform erythroid 
progenitors. The GATA-1 regulatory sequences therefore seem 
to deregulate expression of c-MYC at a particularly vulner- 
able phase in the erythroid development. 

The TG.EMY-5 mice and the EMY cell lines also allowed 

us to examine the ability of c-MYC to influence terminal 
differentiation in the erythroid lineage. Expression of c-MYC 
in TG.EMY-5 mice before the manifestation of leukemia had 
no effect on erythropoiesis in vivo. The blood counts and 
red blood cell parameters in young healthy TG.EMY-5 mice 
were indistinguishable from the controls (Table 2). A two- 
fold increase in BFU-E or in day 10 pure erythroid colonies 
was detectable in bone marrow colony assays in vitro (Table 
4), whereas more immature precursors with bi- or multilineage 
potential were unaffected. This parallels the mature pheno- 
type of erythroleukemic cells and the lack of transformation 
at the level of multipotent progenitors in TG.EMY mice and 
is consistent with predominant expression of the transgene 
at a late erythroid progenitor stage. Albeit the effect of c-MYC 
on erythropoiesis in TG.EMY-5 mice is relatively minor and 
is compensated in vivo, it sufficed as a first hit to initiate events 
that resulted in fixll transformation after a long latency. Deregu- 
lated expression of c-MYC in leukemic cell lines caused a more 
pronounced effect on erythroid differentiation. EMY cell lines 
failed to become hemoglobinized in response to 1.2% DMSO 
and failed to display morphological characteristics of terminal 
differentiation. This is in agreement with the observation 
that c-myc inhibits terminal differentiation in response to 
DMSO and other inducing agents in transfected MEL cells 
(38-40). Deregulated expression of c-MYC did not prevent 
upregulation of/3-globin mRNA in response to EPO (Fig. 
5 B). A similar partial block in differentiation was observed 
in Ba/F3 cells, an IL-3-dependent progenitor cell line. Treat- 
ment with EPO induced globin mRNA but not the appear- 
ance of hemoglobin in Ba/F3 cells transfected with EPO-R 
(50, 51). The effect of c-MYC on hemoglobinization and ter- 
minal differentiation in transformed cells and the apparent 
lack of a block in bone marrow from healthy EMY-5 mice 
might reflect different levels of transgene expression. Alter- 
natively, the transformed cell lines might be more sensitive 
to c-MYC because of secondary changes associated with trans- 
formation. 

Our search for known secondary events linked to viral leu- 
kemogenesis in the erythroid lineage revealed Fli-1 as a poten- 
tial oncogenic partner of c-MYC. Fh-1 mKNA was expressed 
in three of the five EMY cell lines (Fig. 5 A) and is also up- 
regulated in 95% of Friend erythroleukemias (27). In contrast, 
activation of Spi-1, another member of the ets family that 
is upregulated in spleen focus forming virus erythroleukemia 
(25), does not seem to be a common secondary event in 
c-MYC-based erythroleukemia since it was expressed in nei- 
ther the EMY lines nor in the retrovirally transformed myc- 
erythroleukemias (49). 

The TG.EMY-5 transgenic line creates a new in vivo model 
for erythroleukemia. Because of the slow occurrence of 
erythroleukemia in this transgenic strain, it should provide 
a useful system in which to identify the secondary genetic 
events that can collaborate with c-MYC to accelerate tumor 
formation in the erythroid lineage. The use of insertional 
mutagenesis with retrovirus or appropriate genetic crosses 
with other tumor-predisposing transgenic lines should be par- 
ticularly fruitful in this regard. 
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