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A B S T R A C T

Tartaric acid is one of the characteristic acids in wine, playing a crucial role in wine characteristics. However,
superabundant tartaric acid will form insoluble salts and precipitate in the form of crystals, affecting consumers'
purchasing appetite. Therefore, tartaric stability is also one of the important indices for controlling the wine
quality. At present, the main processing methods for tartaric stability include cold stabilization, ion exchange
treatment, electrodialysis and the addition of exogenous components (gum arabic, metatartaric acid, carbox-
ymethyl cellulose, mannoprotein and potassium polyaspartate). This review summarizes and analyzes the origin
of tartaric acid in wine, factors influencing the tartaric stability, detection methods, treatments for tartaric
stabilization, and the effects of these methods on the sensory quality of wine. Comparing the effects of these
methods on wine quality can provide a basis for the further study of tartaric stabilization methods in order to
select an appropriate tartaric stabilization method.

1. Introduction

Wine is an alcoholic beverage derived from grapes, characterized by
a specific alcohol content achieved through the fermentation process in
which yeast consumes the sugars present in the grapes, converting them
into ethanol. In addition to its appealing flavor and aroma, wine is rich
in health-promoting components such as organic acids, phenols, and
aromatic compounds, which have been shown to possess antioxidant
properties, regulate lipid and lipoprotein metabolism, and lower blood
sugar levels (Ivanova-Petropulos et al., 2018; Kang et al., 2023).
Consequently, wine has garnered widespread popularity among
consumers.

Organic acids represent an essential class of compounds in wine.
They enhance the aroma and flavor by softening the taste, reducing
astringency, and contributing acidity, while also stabilizing the phenolic
substances within the wine, thus serving protective roles in terms of
antioxidant activity and color preservation (Volschenk et al., 2006). The
primary organic acids found in wine include tartaric acid, citric acid,
malic acid, succinic acid, lactic acid, and acetic acid, with tartaric acid

being the most abundant. Tartaric acid, also known as 2,3-dihydroxy-
succinic acid with the molecular formula C4H6O6, contains two chiral
carbon atoms, resulting in three optical isomers: levorotatory, dextro-
rotatory, and mesoform, which are illustrated in Fig. 1 (Pei et al., 2021).
Among grapes, bananas, hawthorns, tamarinds, and various fruits, L-
tartaric acid is the sole form present, with grapes containing the highest
concentration. In the absence of exogenous additives, the tartaric acid in
wine originates entirely from grapes, implying a direct correlation be-
tween the tartaric acid content in grapes and that in wine. The con-
centration of tartaric acid varies significantly among different grape
varieties, with wine grapes exhibiting higher levels than both table
grapes and those used for juice production (Niu et al., 2022). In addition,
tartaric acid remains stable during wine fermentation as it resists
metabolism, degradation, or transformation. It is not effectively
metabolized by microorganisms unless fermentation temperatures
exceed 35 ◦C (Li et al., 2007; Melino et al., 2009). Consequently, tartaric
acid integrates readily into wine, assisting in maintaining acidity,
lowering pH, inhibiting bacterial growth, and preserving long-term
freshness. Additionally, tartaric acid is vital for strengthening the
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structure of wine, enhancing its flavor profile, and protecting its color
integrity (Yang, 2021).

However, tartaric acid readily combines with potassium (K+) or
calcium (Ca2+) in wine to create tartrates. Under wine conditions, tartar
tends to precipitate readily and form crystals that attach to the bottom
and sides of bottles, or the corks (Tan et al., 2016).

While tartar crystals pose no harm to consumers, they impact the
visual appeal of wine, potentially affecting consumers' purchase de-
cisions. Therefore, to prevent tartrate precipitation and inhibit tartrate
crystal formation in wine, methods such as cold stabilization, ion ex-
change treatment, electrodialysis, and the addition of stabilizers are
employed prior to bottling (Waterhouse et al., 2016). However, tartaric
stabilization treatments inevitably impact the aroma, taste, or color of
wine. Hence, striking a balance between the level of tartaric stabilization
and its effects on the sensory characteristics of wine is of utmost
importance. However, there are currently few studies and reviews on the
effects of wine tartar stabilization treatment and wine sensory quality.

This review summarized the origin of tartaric acid in wine, factors
influencing the tartaric stability, detection methods for tartaric acid, and
treatments for tartaric stabilization. Additionally, the effects of different
stabilization methods on the sensory quality of wine were also discussed.
The objective was to establish a theoretical basis for choosing a wine
tartaric acid stabilization treatment plan and advancing new stabiliza-
tion technologies.

2. Tartaric acid in grapes and wine

2.1. Tartaric acid in grapes

Tartaric acid is one of the three primary organic acids naturally
present in grapes. Initial research indicated that tartaric acid originated
in grape leaves, and was later transported and stored in grape berries.
However, subsequent studies demonstrated that grape berries also serve
as the primary locations for tartaric acid synthesis, notably in the grape
pulp. Throughout the development period of grape berries, tartaric acid
mainly generates and accumulates in young berries. After veraison, as
the berries enlarge and water content rises, the concentration of tartaric
acid decreases to 2–6 g/L in grapes (Cao et al., 2021; Li et al., 2007;
Waterhouse et al., 2016).

Tartaric acid in grapes is directly converted from the C1-C4 in L-
ascorbic acid (Saito & Kasai, 1969). Therefore, the synthesis of tartaric
acid involves two main steps: the synthesis of L-ascorbic acid (step 1)
and the synthesis of tartaric acid (step 2). Fig. 2 summarizes the proven
biosynthetic route of L-tartaric acid during grape growth.

Step 1, the biosynthesis of L-ascorbic acid: There are four known
biosynthetic pathways for L-ascorbic acid in plants, the Smirnoff-
Wheeler pathway (also known as the L-galactose pathway) (Wheeler
et al., 1998), the galacturonic acid pathway (Agius et al., 2003), the
gulose pathway (Wolucka & Van Montagu, 2003), and the inositol
pathway (Lorence et al., 2004). The confirmed synthesis pathways for L-
ascorbic acid in grapes include the Smirnoff-Wheeler pathway and the
galacturonic acid pathway, while the existence of the other two path-
ways in grape berries requires further exploration. In the Smirnoff-
Wheeler pathway, GDP-D-mannose acts as the initial metabolite, un-
dergoing isomerization and phosphorylation to form L-galactose,

followed by a two-step redox process leading to the production of L-
ascorbic acid (Wheeler et al., 1998). The galacturonic acid pathway was
first discovered in strawberries (Agius et al., 2003). Cruz-Rus et al.
(2010) found D-galacturonate reductase gene (VvGalUR) in Palomino and
confirmed a positive correlation between the expression of VvGalUR and
the content of ascorbic acid. In the galacturonic acid pathway, L-
ascorbic acid can be synthesized from D-galacturonic acid. The primary
intermediates are L-galacturonic acid and L-galacturonic acid-1,4-
lactone (Agius et al., 2003).

Ascorbic acid biosynthesis in grapes involves multiple pathways
throughout fruit development. The Smirnoff-Wheeler pathway serves as
the primary route for ascorbic acid production before grape berry
ripening, with its significance diminishing as the grapes mature (Li et al.,
2023). In contrast, the expression levels of crucial genes in the gal-
acturonic acid pathway, including D-galacturonic acid reductase gene
(VvGalUR) and L-galactono-1,4-lactone dehydrogenase gene (VvGalLDH),
rise as grapes develop, indicating that this pathway predominantly
synthesizes ascorbic acid during ripening (Cruz-Rus et al., 2010). Tar-
taric acid accumulates primarily at the green stage in grape berries,
suggesting that the synthesis of ascorbic acid to produce tartaric acid
relies mainly on the Smirnoff-Wheeler pathway.

Step 2, tartaric acid synthesis: The production of tartaric acid com-
mences with the conversion of ascorbic acid into 2-keto-L-gulonic acid
through hydrolysis and oxidation. This compound is then catalyzed
sequentially by 2-keto-L-gulonic acid reductase, L-iduronic acid dehy-
drogenase, transketolase, and tartaric semialdehyde dehydrogenase to
yield tartaric acid (Cao et al., 2021; Jia et al., 2019).

2.2. Tartaric acid in wine

Tartaric acid is present in three forms in wine: free tartaric acid
(H2T), hydrogen tartrate (HT− ) and tartrate (T2− ). The proportion of
H2T, HT− and T2− correlates with the pH level. In the pH range of wine,
HT− is the predominant form, making up 50%–70% of the total tartaric
acid. HT− and T2− can react with K+ and Ca2+ to form precipitates as
potassium hydrogen tartrate (KHT) and calcium tartrate (CaT). Since the
content of K+ in wine is 10 times that of Ca2+, the main tartar crystal is
KHT (Gonçalves et al., 2003).

The solubility of KHT in wine is influenced by temperature, alcohol
content and pH level. Higher alcohol content, lower temperature and
higher pH level result in decreased solubility of KHT. During fermen-
tation, as the alcohol content in wine rises, tartrate gradually pre-
cipitates, leading to the crystallization of KHT on the inner walls of the
fermentation tank. In wine, crystalline KHT appears as right-angled
prisms or diamonds (Coulter et al., 2015; Waterhouse et al., 2016).

Compared to K+, the quantity of Ca2+ in wine is relatively small
(Ough et al., 1982). And the amount of T2− is lower than that of HT− at
wine pH. Although T2− can combine with Ca2+ to form soluble CaT
(Mckinnon et al., 1994). The content of CaT crystalline is quite low.
However, during the long-term storage of wine, some of the dextro CaT
(with a solubility of 230 mg/L) is gradually transformed into racemic
CaT (with a solubility of 30 mg/L) (Zhao & Wang, 2001). This trans-
formation greatly reduces the solubility of CaT after prolonged storage
of wine. Therefore, while avoiding the formation of KHT crystals, the
appearance of CaT crystals should also be prevented.

Fig. 1. Three optical isomers of tartaric acid.
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3. Factors affecting the stability of tartaric acid

The process of tartar crystal formation involves crystal nucleation
and growth. There are two types of crystal nuclei: homogeneous
nucleation, where crystal-forming ions associate in a supersaturated
solution through electrostatic interactions, spontaneously creating
crystal nuclei; and heterogeneous nucleation, where solid particles
mixed in the solution act as crystal nuclei (Barlow & Gregus, 2019).
When the crystal nuclei grow, ions diffuse to their surface and crystal-
lize, resulting in the formation of tartaric acid crystals. And several
factors can influence tartar formation in wine.

3.1. Wine compositions

3.1.1. The concentrations of K+, Ca2+ and tartaric acid conjugated base in
wine

The concentrations of K+, Ca2+ and tartaric acid conjugated base in
wine influence the equilibrium for tartrate formation. They are
described that K+ and Ca2+ with tartrate according to the equations:

K+ + HT− ⇌ KHT (1).
Ca2+ + T2− ⇌ CaT (2).
Upon reaching a supersaturated state, excess tartrate will precipitate

and crystallize. When the concentration of any of these ions decreases,
the chemical equilibrium will shift in the opposite direction, leading to
the dissolution of tartrate into an ionic form that is less prone to pre-
cipitation (Wang, 2004). Therefore, controlling the concentration levels
of K+, Ca2+ and tartaric acid conjugated base can effectively prevent the
formation of tartar.

3.1.2. Colloidal substances in wine
Wine is a solution that contains various colloidal components,

including tannins, proteins, and saccharides, which also affect the pre-
cipitation of tartrate (Waterhouse et al., 2016).

(1) Protein and tannin.
Proteins act as a ‘coating’ to inhibit further growth of tartrate crystal.

At a pH of 3.3, proteins partially unfold, exposing more amino acids and
increasing the number of binding sites binding to the surface of tartrate

crystals. When tannin and protein coexist, they form aggregates
centered on protein and covered by tannin, exerting complex effects on
tartrate crystallization. In a 1:10 ratio of protein to tannin, the aggre-
gates easily precipitate, diminishing the protective effect of protein on
tartrate crystals. As the ratio reaches 1:30, protein is covered by more
tannin molecules, forming small and easily soluble aggregates. Addi-
tionally, some hydroxyl groups on the tannin molecules not bound to
proteins attach to the curved surfaces of the tartrate crystal by hydrogen
bonds, providing protection to the crystal. However, tannin, being a
weak acid at low pH, carries the same charge as the exposed HT− on the
crystal surface, which weakens the hydrogen bond between tannin and
the crystal surface due to electrostatic repulsion, leading to poor pro-
tection by the protein-tannin polymer. In solutions with high tannin
content (protein: tannin = 1:50 or 1:80), tannin may combine with the
tartar crystal plane without affecting crystal growth as the crystal plane
remains inactive in the growth process. Consequently, the tartrate
retention capacity decreases as the protein-to-tannin ratio decreases
(Lambri et al., 2014). Fig. 3 demonstrates the binding of protein, tannin
and tartar crystal as the tannin content changes. Concerning CaT, pro-
teins and tannins can delay crystal nuclei formation by complexing with
Ca2+, yet they do not influence crystal growth (Postel et al., 1984).

(2) Saccharides.
Saccharide is also colloidal substance found in wine. The two main

groups that affect the tartrate stabilization of wine are glycoproteins and
uronic acids, such as galacturonic acid, glucuronic acid, poly-
galacturonic acid, rhamnogalacturonan-I (RG-I), rhamnogalacturonan-
II (RG-II), arabinogalactan protein (AGP) and mannoprotein. When
0.5 g/L galacturonic acid, glucuronic acid, and polygalacturonic acid
were added to three simulated wine solutions at pH 3.5. Poly-
galacturonic acid was able to combine with 23% Ca2+ in the solution to
form an ‘egg box’ model. This extension increased the CaT crystalliza-
tion time from 7 to 510 min, inhibiting CaT precipitation. The inhibitory
effect of polygalacturonic acid on CaT crystallization decreased as its
concentration decreased. Even at a concentration as low as 62.5 mg/L,
the inhibitory effect remained noticeable. Galacturonic acid had no
significant effect on the induction time of tartrate crystallization but
decreased the crystallization rate, while glucuronic acid had no effect on

Fig. 2. Biosynthesis pathways of tartaric acid in grapes. GME, GDP-D-mannose-3′, 5′-epimerase; GGP, GDP-L-galactose phosphorylase; GPP, L-galactose-1-phosphate
phosphatase; GalDH, L-galactose dehydrogenase; GalLDH, L-galactono-1,4-lactone dehydrogenase; 2-KGR, 2-keto-L-gulonic acid reductase; L-IdnDH, L-idonate de-
hydrogenase; TK, Transketolase; TSAD, Tartaric semialdehyde dehydrogenase; GalUR, D-galacturonate reductase; Alase, Aldolactonase. The dotted line indicates the
unconfirmed route.
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the induction time or rate of tartrate crystallization (McKinnon et al.,
1996; Pellerin et al., 2013).

The results of the evaluation of AGP, RG-I, RG-II, and mannoprotein
for tartaric acid stabilization showed that RG-I was the most potent in-
hibitor of CaT precipitation. Consisting of two parallel polymer chains,
RG-I formed a cavity capable of sequestering Ca2+. Its carboxyl binding
site chelated with Ca2+ to retain it, thereby prolonging the time before
CaT precipitation. RG-II also prolonged the induction time of CaT pre-
cipitation, although less effectively than RG-I. Although RG-II has the
same structural features as RG-I, including two parallel chains and
carboxyl binding sites, its larger cavity prevented Ca2+ encapsulation,
leading to no isolating effect on Ca2+. Thus, the impact of RG-II on the
induction time of CaT precipitation is speculated to be primarily due to
its impact on crystal growth via uronic acid. Mannoprotein minimally
affected the induction time of CaT precipitation. Typically, the combi-
nation of Ca2+ and phosphate occurs at higher pH levels. But at wine pH,
this combination is less likely, resulting in mannoprotein having no
chelation effect on Ca2+. The ability of AGP to bind Ca2+ was related to
the carboxyl group of glucuronic acid in AGP, but an excess of H+ at low
pH led to the dissociation of AGP's Ca2+ binding (Gerbaud et al., 1996;
Lamport & Varnai, 2013; Leszczuk et al., 2020; Pellerin et al., 2013). In
addition, white wine is more prone to tartrate precipitation than red
wine due to the lower content of RG-I and RG-II in white wine.

3.1.3. Organic acids in wine
Organic acids in wine can bind with K+ and Ca2+ to compete with

tartaric acid, thereby inhibiting the formation of crucial crystalline
nuclei. The inhibition sequence of CaT precipitation by organic acids

was found to be citric acid > malic acid > lactic acid > succinic acid
when various organic acids were added at 2 g/L to wine. Malic acid
prolonged the induction time of CaT precipitation by 16 times, whereas
lactic acid only did so by 4 times (McKinnon et al., 1995). Furthermore,
the solubility of KHT decreases with the reduction of malic acid content
in wine (Zhu, 1995). During fermentation, microorganisms metabolize
citric acid and malic acid to generate lactic acid and succinic acid. As a
result, the inhibitory effect of organic acids on CaT crystal formation
diminishes, increasing the likelihood of tartaric precipitation in wine
post-fermentation.

3.2. pH

The pH level influences the dissociation state of tartrate. In dry red
wine, tartrate exists primarily in molecular form when the pH is below
2.75. As the pH rises, the concentration of HT− also increases. At a pH of
3.6, the proportion of tartrate in ionic form is the highest, and the
concentration of tartrate molecules is insufficient to form tartrate crystal
nuclei, resulting in stable tartrate in the wine. As the pH rises above 3.6,
the concentration of HT− declines continuously, resulting in the for-
mation of T2− (Yu et al., 1999). Consequently, a higher pH value will
result in an increased concentration of tartrate in the wine, thereby
increasing the risk of tartar formation.

3.3. Temperature

As the primary tartrates in wine, the solubilities of KHT and CaT are
influenced by temperature. The formation of crystal nuclei is a reversible

Fig. 3. Schematic diagram of the combination of protein, tannin and tartar crystal (Lambri et al., 2014).
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process (Gao et al., 1999; Zhu, 1995). As the temperature increases, the
solubilities of KHT and CaT also increase, and the crystal nuclei formed
in the solution are re-dissolved. Conversely, lower temperature can
reduce the solubility of tartrate in wine, promoting its crystallization.
Therefore, temperature changes can alter the saturation state of tartrate
in wine.

3.4. Alcohol content

The solubility of tartrate is inversely proportional to the alcohol
content of the solution. The higher the alcohol content, the lower the
solubility of tartrate in the wine, thereby rendering the tartrate more
unstable (Wang, 2004). An increase in the alcohol content of the
simulated liquor from 10% to 12% or 14% was accompanied by a sig-
nificant increase in the conductivity drop value and saturation temper-
ature of the simulated liquor (Lambri et al., 2014). This indicates that
the stability of tartaric acid in wine is negatively impacted by an increase
in alcohol content.

3.5. Oxygen content in wine

Wine typically contains a variety of phenols, which can be divided
into two categories based on their structures: flavonoid phenols and non-
flavonoid phenols. Flavonoid phenols include flavonoids, tannins and
anthocyanidins, while non-flavonoid phenols mainly consist of phenolic
acids (Ma et al., 2023). When exposed to aerobic conditions, phenols
undergo an oxidation reaction, which ultimately leads to the formation
of polymer molecules though polymerization. When the degree of
polymerization of the product is high enough, it can precipitate or co-
precipitate with protein, which can easily induce the tartrate nucle-
ation in wine, leading to tartaric acid instability (Guo, 2007; Wang,
2004).

4. The detection methods of tartaric acid in wine

4.1. High-performance liquid chromatography (HPLC)

The high-performance liquid chromatography (HPLC) detection
method is a widely utilized approach for the identification and quanti-
fication of organic acids. Among the most common methods employed
in this context are ion chromatography (IC) and reversed-phase high-
performance liquid chromatography (RP-HPLC).

4.1.1. IC
IC is a chromatographic technique that utilizes ion exchange resin

with low exchange capacity as the stationary phase to separate ionic
substances (Hungerford et al., 2023).

The determination of tartaric acid in wine usually uses solid-phase
extraction or direct dilution method for pre-processing, combined with
an anion analytical column, conductivity detectors and anion suppres-
sors to identify the conductivity signal of the ions (Mu et al., 2022; Song
et al., 2018). Song et al. (2018) developed a conductivity suppression-
gradient elution ion chromatography method for the determination of
26 organic acids and anions in wine. This method enables the quanti-
fication of tartaric acid, succinic acid, maleic acid and other organic
acids in wine.

This method is capable of simultaneously detecting multiple organic
acids in a sample with high accuracy, sensitivity, and reproducibility.
This method is suitable for the analysis of low-content and low-
molecular-weight organic acids present in wine. However, due to its
lengthy analysis time, it is not optimal for rapid sample detection (Pang
et al., 2019).

4.1.2. RP-HPLC
RP-HPLC is employed to separate nonpolar, polar, or ionic com-

pounds depending on the intermolecular bond strengths with the

stationary phases (Nair et al., 2022). In the case of wine analysis,
employing C18 as the stationary phase, with a mobile phase comprising
methanol and a 0.1% phosphoric acid solution, facilitates either
gradient or isocratic elution processes. Subsequently, the analysis of
tartaric acid content within the sample is viable.

RP-HPLC has diverse applications, including the quantification of
tartaric acid in a variety of wines (such as red, white, rose, and ice wines)
and fruit wines across different climatic conditions (warm and cold
climates) within the concentration range of 0.0313–1.89 g/L (Chahine&
Tong, 2019). Besides exhibiting high column efficiency, reproducibility,
and selectivity, RP-HPLC is adaptable to most detectors and can simul-
taneously analyze multiple organic acids in samples. Despite these
benefits, the limits of this method include low sensitivity and potential
environmental pollution due to the extensive use of mobile phases. To
determine small molecular organic acids effectively, it is recommended
to utilize eluents with high polarity and low pH value while avoiding
continuous analysis of large sample quantities (Pang et al., 2019).

4.2. Capillary electrophoresis (CE)

CE is a liquid-phase separation method that employs a capillary tube
as the separation channel and a high-voltage direct current field as the
driving force (Pitkanen & Siren, 2022). CE is commonly coupled with
either an ultraviolet (UV) detector or a mass spectrometry (MS) detector
for the quantification of tartaric acid in wine, which are displayed in
Table 1.

LOD, the limit of detection; LOQ, the limit of quantification.
CE is a suitable method for the rapid analysis of organic acids owing

to its high determination speed, excellent resolution, minimal chemical
consumption, and low sample requirement. However, its drawbacks
include poor reproducibility and inaccurate quantitative analysis results
attributed to the variability in the absolute migration time of solutes
(Mato et al., 2007; Pang et al., 2019).

4.3. Gas chromatography (GC)

GC is another commonly utilized method for organic acid detection,
with tartaric acid detectable through derivatization in conjunction with
GC. Silylation and esterification are the primary derivatization tech-
niques employed for tartaric acid analysis by GC. Analyzing wine using
N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) for silylation
derivatization combined with GC–MS enables the simultaneous identi-
fication of 2 monosaccharides, 8 organic acids, and 14 amino acids. The
linear range spanned 109–7000 mg/L, with a LOD of 1.52 μg/L and a
LOQ of 4.51 μg/L for tartaric acid (Zhang et al., 2018). Esterification of
tartaric acid through iodine lactonization using tetramethylammonium
hydroxide, N, N-dimethyl formamide, and iodoethane ensures that the
analysis of tartaric acid in homemade and branded wines remains un-
affected by sugars, water, pigments, or other wine sample constituents
(Du et al., 2007).

GC employs an environmentally friendly gaseous mobile phase for
tartaric acid detection. When paired with a highly sensitive selective

Table 1
The determination of tartaric acid in wine by capillary electrophoresis.

Detectors LOD
(mg/
L)

LOQ
(mg/
L)

Advantages Disadvantages References

UV 0.38 1.31
Short analysis
time

Low sensitivity
and poor
qualitative ability

(Mato
et al.,
2007)

MS 1.0 –

High
sensitivity
and
specificity

Sheath fluid has
certain influence
on the test results

(Li et al.,
2013)
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detector, GC provides the benefit of heightened sensitivity. However,
since tartaric acid is a non-volatile acid, pretreatment of the sample is
necessary via derivatization, leading to heightened complexity and
duration in sample processing (Du et al., 2007; Pang et al., 2019).

5. The treatment method for tartaric acid stability

Tartaric acid stability is defined as its capacity to prevent tartrate
precipitation. While tartar itself is harmless to human health and has no
effect on the flavor of wine, its appearance resembling shattered glass
could be unappealing to consumers. Therefore, winemakers usually
adopt one or more methods to stabilize the tartaric acid in wine before it
is bottled and sold. The process of stabilizing tartaric acid in wine is
commonly categorized into two approaches. The first method entails
diminishing the tartrate concentration in wine by removing K+, Ca2+,
and the tartaric acid conjugate base via technological procedures,
referred to as the ‘subtraction’ tactic. The second method involves
introducing external stabilizing agents into the wine to enhance its
capability to preserve tartrate and avert tartrate precipitation, identified
as the ‘addition’ approach (Li & Xia, 2020).

5.1. The ‘subtraction’ strategy

The ‘subtraction’ method of stabilizing tartaric acid involves
diminishing the solubility of tartrate in wine to induce crystallization,
followed by filtration to eliminate the precipitated tartrate. This
approach decreases the tartrate concentration in wine, ensuring its
stability throughout storage and distribution. Primarily, it comprises
cold stabilization, ion exchange procedures, and electrodialysis.

5.1.1. Cold stabilization method
The solubility of KHT in wine increases with increasing temperature.

When the temperature increases from − 4◦C to 20◦C, the solubility of
KHT increases by three times. Following this principle, the wine can be
cooled to 0.5◦C above the freezing temperature of wine, and stirred
continuously for one week to several weeks to make the tartrate su-
persaturate and precipitate. Then, the wine is filtered at a low temper-
ature to remove the KHT crystals. Subsequently, the wine is gradually
returned to storage temperature to achieve an unsaturated state, thereby
ensuring the tartaric acid stability in the wine (Li& Xia, 2020; Wei et al.,
2019). This method primarily employs three cold treatment methods:
long-term treatment, contact stability, and continuous stability. The first
method abstains from adding tartaric crystals and relies on extended
cold treatment for tartaric acid stabilization. Conversely, the latter two
methods expedite cold stabilization by introducing tartaric crystals
during the process (Li et al., 2007). The process of cold treatment for
wine tartaric acid stabilization is shown in Fig. S1.

The efficacy of cold treatment in stabilizing tartaric acid is contin-
gent upon the specific conditions of the treatment and the characteristics
of the wine being treated. Lower temperature, faster cooling rate and
longer treatment time facilitate the precipitation of tartrate and enhance
the stability of tartaric acid. Additionally, wines with higher clarity and
shorter aging time demonstrate a more pronounced stabilizing effect of
cold treatment. Furthermore, stirring can facilitate the combination of
tartrate and tartar crystal nuclei and accelerate tartar precipitation (Li
et al., 2007).

Cold stabilization is the primary, efficient, and commonly employed
technique for improving tartaric acid stability in wines. Nonetheless,
this method exclusively targets KHT removal without affecting CaT due
to minimal changes in CaT solubility, and potentially leads to new wine
stability issues. For example, the co-precipitation phenomenon associ-
ated with cold stabilization significantly influences the levels of antho-
cyanins and tannins in wine. The presence of tartrate crystals in cold-
stabilized Carignan wines has been demonstrated to contain 0.2%–
0.3% anthocyanins and 1.9%–2.5% tannins (Vernhet et al., 1999).
Moreover, the cooling andmaintenance of low temperature necessitate a

significant expenditure of energy. To enhance energy efficiency, cooled
wine after filtration can undergo exchange with the wine for cooling
through a cold-heat exchange method to optimize energy usage and
minimize consumption. Alternatively, the addition of seed crystals can
initiate tartrate nuclei formation in the wine, reducing cold stabilization
duration (Wei et al., 2019). Furthermore, the crystals generated during
the process tend to adhere to the inner walls of tanks, complicating
equipment cleaning procedures.

5.1.2. Ion exchange treatment
Ion exchange treatment is the process of removing K+ and Ca2+ from

wine by exchanging cations within resin with the corresponding ions in
the wine. This technique diminishes the likelihood of tartar precipitation
by reducing the levels of K+ and Ca2+ in the wine (Wei et al., 2019). In
Fig. S2, the principle and procedure of ion exchange treatment are
demonstrated.

The effectiveness of ion exchange treatment in stabilizing tartaric
acid is influenced by the resin types and their activation procedures. Ion
exchange resins are categorized into anion exchange resins and cation
exchange resins. Studies demonstrate that decreasing the levels of K+

and Ca2+ using cation exchange resins yields superior tartaric acid sta-
bilization compared to reducing HT− and T2− contents with anion ex-
change resins, with fewer adverse effects on wines (Mira et al., 2006). As
a result, cation exchange resins are frequently employed for tartaric acid
stabilization in wine. Typically, ion exchange resins are activated using
an acidic solution, such as sulfuric or hydrochloric acid. A greater vol-
ume and concentration of acid applied lead to enhanced tartaric stability
in the wine. This is because the H+ attached to the resin can be
exchanged with more metal ions in the wine, resulting in a lower K+ and
Ca2+ levels and a higher TA content in the wine (Ponce et al., 2018).
Nevertheless, the OIV mandates that the pH of wines undergoing cation
exchange resin treatment should not decrease by more than 0.3 and
must remain above 3.0 (OIV, 2022a). Consequently, when employing
cation exchange resins for stabilizing wine tartaric acid, it is crucial to
select the correct volume and concentration of the acid utilized. Addi-
tionally, the tartaric stability of original wine and the percentage of wine
subjected to treatment impact the effectiveness of the process (Mislata
et al., 2021). Certain studies suggest that a sherry wine treatment ratio
of 10%–15% proves to be adequate (Benítez et al., 2002; Ponce et al.,
2018).

Cation exchange resins are employed to improve tartaric stability in
wine, leading to a decrease in the concentration of metal ions like Fe3+

and Cu2+, thus effectively averting iron and copper rupture diseases.
Additionally, this method boasts low energy consumption. Nevertheless,
it diminishes wine anthocyanin content, requires substantial initial
equipment investment, and exhibits low efficacy, making it exclusively
viable for large wineries (Wei et al., 2019).

5.1.3. Electrodialysis method
Electrodialysis is a process whereby ion exchange membranes

exhibit selective permeability to ions in solution under the influence of
an external direct current. This enables anions and cations in solution to
move in opposite directions and pass through the anion exchange
membrane and cation exchange membrane, respectively, with the
objective of achieving desalination or concentration (Gu et al., 2022).
When wine is subjected to electrodialysis treatment, HT− , T2− and K+, as
well as Ca2+, move to opposite electrode direction under the potential
difference and are discharged through the selective permeability mem-
brane into polar water chambers. This results in the removal of the
effective components that form tartrate (Zhang, 2007). Fig. S3 illus-
trates the schematic diagram of the electrodialysis method.

The stabilization of tartaric acid through the electrodialysis method
is contingent upon fluctuations in both ion concentration and voltage.
These factors serve as the driving force behind the removal of ions. The
greater the initial concentration of ions that contribute to tartrate for-
mation in wine, the higher the voltage, resulting in more effective

W. Cui et al.



Food Chemistry: X 23 (2024) 101728

7

tartrate removal (Nuri et al., 2019).
Electrodialysis has been demonstrated to be an effective method for

improving the tartaric stability of wine, with minimal impact on the
wine body and low energy consumption. Nevertheless, this method ex-
hibits a low treatment efficiency and necessitates a substantial initial
investment during the initial stage (Wei et al., 2019). Consequently,
electrodialysis is more appropriate for large wineries.

5.2. The ‘addition’ strategy

The ‘addition’ strategy of tartaric stability in wine refers to the
addition of stabilizers to the wine in order to inhibit the precipitation of
tartrate. The most commonly used stabilizers are gum arabic, meta-
tartaric acid, carboxymethyl cellulose, mannoprotein and potassium
polyaspartate. The limits of additives are illustrated in Table 2 and
Fig. S4 shows the operation principle of these stabilizers.

5.2.1. Gum arabic stabilizer
Gum arabic, the secretion product of Acacia senegal (Linn.) Willd, is

composed of hydrophobic proteins andmacromolecular polysaccharides
and their calcium, magnesium and potassium salts (Prasad et al., 2022).
Gum arabic can combine with tartrate to form a polymerand, which is a
hydrophilic layer on the surface of the polymer. This increases the sol-
ubility of tartrate in wine, inhibits the growth of crystal nuclei, and
maintains the metastable state of wine (Wei et al., 2019). This stabilizer
is typically employed prior to bottling and filtration. However, it is
inadvisable to employ gum arabic in wines that require aging or long-
term storage, as it impedes the formation of natural precipitates in
long-term storage wines, resulting in their emulsification (Li et al.,
2007).

5.2.2. Metatartaric acid stabilizer
Metatartaric acid, a polyester resulting from the esterification of

tartaric acid molecules, forms soluble complexes with K+ and Ca2+ of
tartrate in wine, enhancing tartrate solubility. It envelops minute
tartrate crystals in wine, impeding their growth and ensuring stability
and non-precipitation (Huang, 1997). Metatartaric acid is usually
employed after the final filtration and prior to bottling of wines (OIV,
2022e). Metatartaric acid acts as a potent inhibitor of tartrate crystal
nucleation with minimal cost and impact on wine characteristics (Wei
et al., 2019). However, prolonged storage or high temperature can
trigger hydrolysis of metatartaric acid, converting it to tartaric acid,
compromising tartaric stability (Huang, 1997). The stabilizing effect of
metatartaric acid is also wine-dependent. Red wine stored at 20◦C for 5
months with 100 mg/L metatartaric acid showed instability due to hy-
drolysis, while white wine remained stable for up to 12 months under
the same conditions (Bosso et al., 2015). Consequently, metatartaric
acid is better suited for high-demand wines.

5.2.3. Carboxymethyl cellulose stabilizer
Carboxymethyl cellulose, a harmless polysaccharide substance

resistant to heat and acid, carries a negative charge in wine (Tang & Lu,
2020). It competes with HT− to bind with K+, lowering the concentra-
tion of KHT in the wine and maintaining the tartrate in an unsaturated
state. Moreover, carboxymethyl cellulose interacts with the positive
charges on KHT crystal surfaces, decreasing the free ions essential for
crystal growth, thereby delaying crystal growth (Gerbaud et al., 2010).

A higher concentration of carboxymethyl cellulose in wine leads to
improved inhibition of tartar crystallization. Additionally, its effective-
ness in inhibiting tartaric crystallization correlates with its degree of
polymerization (DP) and substitution degree (SD). The DP serves as a
crucial metric for assessing polymer molecular size. The higher the
molecular weight of carboxymethyl cellulose, the greater the DP and
viscosity, with polymerization and folding of molecular chains reducing
its solubility in wine and weakening its stabilizing effect on tartrate. In
Cabernet Sauvignon red wine with an 80 mg/L addition of carbox-
ymethyl cellulose, a lower DP enhances the tartrate stabilizing effect.
The SD value indicates the quantity of carboxylic acid groups (-COOH)
in carboxymethyl cellulose, with higher SD value providing more cation-
binding sites, enhancing its competitive interaction with HT− and
improving the tartaric stability effect in wine. Carboxymethyl cellulose
with an SD value between 0.60 and 0.95 is suitable for use in wine ap-
plications (Bosso et al., 2010; Filipe-Ribeiro et al., 2021; Guise et al.,
2014; Hou, 2019; Wei et al., 2019).

The carboxymethyl cellulose additive offers a cost-effective solution
and long-lasting effectiveness. White wine with 40 mg/L carboxymethyl
cellulose maintained tartaric stability for at least 1 year (Bosso et al.,
2015). Currently, carboxymethyl cellulose is widely employed as a tar-
taric stabilizing agent in the production of high-quality and premium
wines. But the addition of carboxymethyl cellulose affects the color and
turbidity of red wines. As a result, the OIV restricts the usage of car-
boxymethyl cellulose to white wines and sparkling wines exclusively
(OIV, 2022c). Furthermore, carboxymethyl cellulose has the potential to
interact with proteins in wine, leading to haziness. Hence, wines
intended for carboxymethyl cellulose treatment need to be protein-
stabilized (Dabare et al., 2023).

5.2.4. Mannoprotein stabilizer
Mannoprotein, a soluble glycoprotein extracted from the yeast cell

wall, has the ability to adsorb outside the crystal nuclei, preventing
further crystal growth, thus contributing to stabilizing tartrate in wine
(Wei et al., 2019).

The stabilizing efficacy of mannoprotein stabilizer varies based on
the dosage and the wine type under treatment. Comparing the tartaric
stability outcomes of 150–350 mg/L mannoprotein, white wine treated
with 250 mg/L mannoprotein exhibited minimal K+ loss and the highest
tartaric stability (Zhou & Zhou, 2011). Conversely, due to the abundant
presence of protective colloids in red wines, the addition of man-
noprotein does not notably impact tartaric stability (Pascotto et al.,
2021).

Mannoprotein usage in white wines not only effectively enhances
stability of tartaric acid, but also improves protein stability and boosts
the organoleptic quality of the wine (Juniora et al., 2020). However,
employing mannoprotein for tartaric stability in red wines has con-
straints. The use of saponite, gelatin and bentonite in the finning process
may reduce mannoprotein level in the wine. Therefore, mannoprotein is
typically applied for enhancing tartaric stability in white or rose wines
(OIV, 2022b).

5.2.5. Potassium polyaspartate stabilizer
Potassium polyaspartate is a macromolecular amino acid polymer

composed of L-aspartic acid units, featuring active groups like peptide
bonds and carboxyl groups (Galbusera et al., 2017). Known for its
chelating, dispersing, and adsorptive capabilities, potassium poly-
aspartate finds utility as a scale and corrosion inhibitor, fertilizer

Table 2
Allowable amounts of stabilizers in wine (g/L).

Additive
Institutions

GA MAT CMC MP KPA References

USA 1.9 Nad Ad 0.4 Nad
(United States, Code of
Federal Regulations, 2015)

Australia Ad Ad Ad 0.4 0.1
(Australia Government,
2021)

OIV 0.3 0.1 0.2 Ad 0.1
(OIV, 2022b, OIV, 2022c,
OIV, 2022d, OIV, 2022e,
OIV, 2022f)

China Nad Nad Nad Nad 0.3

(GB 2760–2014, 2014;
National Health
Commission of the People's
Republic of China, 2023)

GA, gum arabic; MAT, metatartaric acid, CMC, carboxymethyl cellulose; MP,
mannoprotein; KPA, potassium polyaspartate; Ad, allowed but no clear limits;
Nad, not allowed to use.
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synergist, and enhancer in industries like papermaking, printing,
dyeing, and laundry (Li et al., 2019). In winemaking, potassium poly-
aspartate is crucial in preventing the formation of tartar crystals by
modifying the surface properties of tartrate crystals (Wei et al., 2019).
To address high colloidal instability in red wines, it is recommended to
perform pretreatment with bentonite as the final step prior to bottling
(OIV, 2022f).

Research indicates that potassium polyaspartate effectively inhibits
the formation of tartrate crystals. The stabilizing effect on tartaric acid
increases proportionally with the addition of potassium polyaspartate.
However, even at the lower dose of 100 mg/L, tartaric stability is ach-
ieved in both red and white wines (Bosso et al., 2015; Bosso, Motta,
Panero, Lucini, & Guaita, 2020; Bosso, Motta, Panero, Petrozziello,
et al., 2020). Storage temperature is the most important factor influ-
encing the efficacy of potassium polyaspartate. However, even at 40◦C,
the inhibition of tartar crystallization by potassium polyaspartate is still
maintained for at least 45 days (Canuti et al., 2019).

5.3. The testing method of tartaric stability

After the treatment for tartaric stabilization, an evaluation needs to
be conducted to assess the stability of tartaric acid. This evaluation is
typically performed using cold stability testing, conductivity micro-
contact method, saturation temperature method, or ion concentration
product method. The comparison of advantages and disadvantages of
these methods are shown in Table 3 (Li & Xia, 2020; Liu, Lu, et al.,
2008).

5.3.1. Cold stability testing method
The cold stability testing method to assess the stability of tartaric

acid in wine is based on the fact that the solubility of KHT decreases in
wine as the temperature decreases (Li & Xia, 2020). The wine for testing
is cooled and kept at a low temperature, and then observed for precip-
itation with the naked eye to ascertain if the wine is in a stable tartaric
acid state.

The cold stability testing methods include freezing and refrigerating.
The former involves freezing the wine below its freezing point for 4 to
16 h, while the latter involves refrigerating the wine at 1◦C above its
freezing point for several days to weeks (Zoecklein et al., 1990). The
specific duration of low-temperature treatment varies depending on the
alcohol content of the wine, the experience of winemakers, and the
desired cold stability level of the production (Chen & Pan, 2009; Li &
Xia, 2020). If there is no crystallization after cold treatment, it indicates
that the tartaric acid in the wine tested is stable.

5.3.2. Conductivity micro-contact method
Conductivity is a measure of the ability of a substance to conduct

electricity, indicating how easily electrical charge moves through a
material (Zhang et al., 2020). The change in conductivity before and
after the tartaric acid stabilization treatment signals the changes in the
number of ions in the wine. Conductivity tests are conducted on the wine
before and after stabilization treatment, and significant differences
imply former instability of tartaric acid in the wine. Conversely, if the
change in conductivity is less than 100 μS/cm for red wine and 150 μS/
cm for white wine, the state of tartaric acid in wine is considered stable
(Bosso, Motta, Panero, Petrozziello, et al., 2020).

When the tartar stability of wine is determined by the conductivity-
micro-contact method, first, tartar seeds (the addition amount is usually
4 g/L and the crystal size is in the range of 50–100 μm) need to be added
to the wine at − 4-0◦C to induce KHT crystallization, thus reducing the
number of ions and the conductivity (Lasanta & Gomez, 2012; Li & Xia,
2020). If the tartaric stability is good, KHT does not easily reach the
supersaturated state and the conductivity changes little after liquor
treatment. On the other hand, if the tartaric stability is not good, KHT
will easily reach supersaturated state, the concentration of ions in the
liquor will obviously decrease, and the conductivity will change greatly
after treatment. Therefore, the tartaric stability of wine should be tested
by measuring the conductivity change of wine before and after treat-
ment with a conductivity meter (Bosso et al., 2016).

It should be noted that the solubility of tartrate in wine is also
affected by temperature, so the conductivity of wine should be measured
at the lowest possible temperature. If the test temperature is higher than
the storage temperature of the wines tested, it may still be unstable (Li&
Xia, 2020). Generally, the determination temperature of white wine is
0◦C and that of red wine is 4–5◦C (Xue, 2002). However, it has been
found that the conductivity-micro-contact method is suitable only for
the determination of tartaric stability at the initial stage of tartaric sta-
bilization treatment of wine, and is not suitable for the detection of
tartaric stability during aging, for reasons that have not yet been
explored (Bosso, Motta, Panero, Petrozziello, et al., 2020; Mislata et al.,
2021).

5.3.3. Saturation temperature method
The saturation temperature (TS) of wine is defined the critical tem-

perature at which tartrate reaches saturation (Benítez et al., 2003). For a
given wine, the higher the tartrate content, the higher the critical TS. It
is commonly accepted that tartaric acid is stable when the TS of white
wine is below 12.5◦C, and that of red wine is below 22◦C (dos Santos
et al., 2002).

The principle allows for the use of the conductivity-saturation tem-
perature method to assess the stability of tartaric acid in wine. The wine
undergoes division into two portions: one containing 4 g/L tartrate seeds
and the other without seeds. A conductivity meter is employed to track
the changes in conductivity of both samples as the temperature varies

Table 3
Advantages and disadvantages of tartaric acid stability testing methods.

Method Advantages Disadvantages

Cold
treatment

Freezing method
➢ Simple operation.
➢ Simple instruments.
➢ Short detection time.

➢ High energy consumption.
➢ Only suitable for wine processed by ‘subtraction’ strategy.
➢ Easily lead to false positive results.

Refrigeration
method

➢ Simple operation.
➢ Simple instruments.

➢ Long detection time.
➢ High energy consumption.
➢ Easily lead to false positive results.

Conductivity-micro-contact
➢ Short detection time.
➢ Wide application range.

➢ Poor reproducibility.
➢ The change of non-tartrate ion concentration will affect the conductivity, while some nonionic com-

ponents will affect the stability of tartar, but will not change the conductivity.

Saturation temperature

➢ Wide application range.
➢ Short detection time.
➢ Not influenced by

experimental parameters.

➢ Inconsistent standards of judgment in different wineries.

Ion concentration product ➢ Wide application range.
➢ Short detection time.

➢ Require high instrument configuration and testing personnel.
➢ The composition in wine can affect the acid-base balance and precipitation-dissolution balance of

tartaric acid and tartrate.
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from 5◦C to 25◦C. Subsequently, temperature and conductivity change
curves are plotted, and the TS of the sample is identified at the point of
clear divergence between the two curves (Li et al., 2020). Ultimately, the
stability of tartaric acid in wine is determined by the TS value of the
sample.

5.3.4. Ion concentration product method
For insoluble salts, the ion concentration product (CP) is the product

of the actual concentrations of the constituent ions, while the solubility
product (Ksp) is the product of the concentrations of the constituent ions
when the insoluble salt reaches equilibrium for precipitation and
dissolution in solution (Yang et al., 2024). And the CPs of KHT and CaT
are expressed as the two formulas respectively:

CP(KHT) = [K+]× [HT− ]. (3)

CP(CaT) =
[
Ca2+

]
×
[
T2− ]. (4)

where ‘[]’ represents the actual concentration of ions in g/L.
For a given solution matrix and temperature, the Ksp is a constant.

The CP can be compared with the Ksp to predict the direction of re-
actions, thus evaluating the difficulty of wine to produce tartar precip-
itation (Chattaraj et al., 2021).

In order to test the tartaric stability, it is necessary to determine the
concentrations of K+, Ca2+, HT− and T2− in the wine and calculate the
CP(KHT) and CP(CaT), respectively. Furthermore, the Ksp of two tartrates
can be determined by consulting the table according to the temperature
of the wine. If the CP is greater than the Ksp, precipitation will occur.
Conversely, if the CP is less than the Ksp, precipitation will not occur.

6. Effect of tartaric stabilization on the wine sensory

6.1. The turbidity of wine

Turbidity is a crucial indicator of the value of wine as a commodity.
As long as the quality of the wine remains uncompromised, a lower
turbidity value is indicative of superior quality. The efficacy of different
tartaric stability treatments on wine turbidity varies.

To evaluate the effect of each tartar stabilization treatment on the
wine turbidity, two control groups were established using Cabernet
Sauvignon dry red wine without a stabilizer and with 80 mg/L meta-
tartaric acid added, and the experimental groups were comprised of
wines with 50–200 mg/L gum arabic, 20–80 mg/L carboxymethyl cel-
lulose, and 50–200 mg/L potassium polyaspartate added. The control
and experimental groups samples were subjected to a 7-day treatment at
a temperature of − 4◦C, after which the turbidity of each sample was
analyzed (Fig. 4). The results demonstrated that, in comparison to the
two control groups, potassium polyaspartate exhibited a notable

reduction in wine turbidity, with a corresponding decrease in turbidity
observed with increasing potassium polyaspartate addition. Conversely,
the addition of carboxymethyl cellulose was found to elevate wine
turbidity, accompanied by an increase in turbidity with rising carbox-
ymethyl cellulose concentration. The addition of 50–150 mg/L gum
arabic was found to reduce the turbidity of wine, with the lowest
turbidity observed at 100 mg/L. However, an increase in gum arabic
concentration to 200 mg/L resulted in a significant increase in turbidity,
reaching 1.24 NTU, which was found to be significantly higher than the
two control groups (Zhang et al., 2019). Consequently, when employing
gum arabic as a stabilizer for tartar, it is imperative to consider the
impact of the addition amount on the turbidity of the wine.

The wine treated by electrodialysis will exhibit varying degrees of
turbidity and flocculent precipitation following a one-day period of
storage at − 4◦C. However, there is no evidence of crystal precipitation,
which may be caused by cold unstable pigmented substances. As the
storage period is extended, the turbidity of the wine will increase (Yan
et al., 2007). For wines with high tartrate saturation, it is necessary to
add a high concentration of mannoprotein to inhibit the formation of
tartrate crystals. However, the high concentration of mannoprotein is
prone to flocculation in the wine, which can result in cloudiness,
particularly when the addition amount of mannoprotein exceeds 200
mg/L (Gerbaud et al., 2010; Li et al., 2003). In addition to tartaric acid
salts, colloidal compounds such as proteins and pigments also cause
turbidity in wine. Consequently, when implementing a tartaric acid
stabilization treatment, it is essential to consider whether this method
will introduce additional turbidity substances and whether there are
other substances that will cause turbidity in the wine. In such instances,
it is necessary to perform the corresponding treatments.

6.2. The color of wine

Color is the most intuitive sensory characteristic and quality index of
wine, which directly affects acceptance of consumers, and is a pre-
liminary evaluation indicator of wine quality. The color of wine is
typically quantified by measuring its chromaticity.

The application of electrodialysis and gum arabic stabilizer can
enhance the color of wine. During electrodialysis, some of the sulfite
ions in the wine that are bound to the pigments are removed by the
electric field force, thus releasing the pigments and improving the color
of the wine (Yan et al., 2007). The chromaticity value of the wine in-
creases with the concentration of gum arabic added, although high
concentrations of gum arabic (200 mg/L) can result in increased
turbidity of red wines, which can have a detrimental effect on the wine
(Claus et al., 2014; Zhang et al., 2019).

The ion exchange resin method and the treatment of wines with
potassium polyaspartate stabilizer have no significant effect on the color
of the wines. Although ion exchange resins also adsorb anthocyanins,
which results in a reduction of anthocyanins in wine, the use of cation
exchange resins with H+ can lower the pH of the treated wines, thereby
increasing the chromaticity of anthocyanins and counteracting the effect
of anthocyanin loss on the sensory color of wines (Ibeas et al., 2015). The
addition of potassium polyaspartate stabilizer (50–200 mg/L), in
conjunction with cold stabilization treatment, ensures the stability of
tartaric acid in wine, while having no significant effect on the chroma-
ticity values of the wine. It can be observed that the potassium poly-
aspartate stabilizer exerts a protective effect on the color of red wine
(Zhang et al., 2019).

Both cold stabilization and carboxymethyl cellulose stabilizer treat-
ment result in a reduction of the chromaticity value of red wine. During
the cooling process of red wine subjected to cold stabilization, certain
color-forming substances precipitates. As the low-temperature treat-
ment time increases, the chromaticity value continues to decrease (Yan
et al., 2007; Zhang et al., 2007). As for the addition of carboxymethyl
cellulose, it may neutralize positively charged pigment substances,
resulting in the formation of larger colloidal particles that are

Fig. 4. Effects of different treatment methods on wine turbidity. The concen-
tration of each additive was the additive concentration that can reduce the
turbidity of wine to the minimum (Zhang et al., 2019).
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aggregated. As the concentration of carboxymethyl cellulose increases,
the chromaticity value decreases (Sommer et al., 2016; Zhang et al.,
2019).

6.3. The aroma of wine

The wine aroma is a crucial factor in the evaluation of wine quality.
The alcohol content, pH value, temperature, and wine matrix influence
the volatilization of aroma compounds and the perception of aroma
substances (Villamor & Ross, 2013). It is also the case that tartar sta-
bilization can affect the aroma intensity and aroma characteristics of
wine. However, related research is very limited, with only studies on the
effects of adding mannoprotein, electrodialysis and cold stabilization on
wine aroma.

The addition of mannoprotein alters the volatility of aroma com-
pounds, thereby enhancing the perceived fullness and aroma intensity of
wine (Li, 2000). Adding 0.25 g/L and 0.30 g/L mannoprotein to
Cabernet Sauvignon wine has been demonstrated to significantly
enhance the fruity aroma of the wine, with notable increases in the
concentrations of ethyl propionate, ethyl butyrate, diethyl succinate and
ethyl caprylate. Furthermore, the utilization of mannoprotein can also
elevate the concentration of phenethyl alcohol and hexanoic acid in
wine, and enhance the rose and cheese aromas of wine (Men, 2015).

The wines treated with cation exchange resins exhibited a lower pH.
A reduction in pH can facilitate acid-catalyzed esterification or hydro-
lysis reactions (Makhotkina et al., 2012; Makhotkina & Kilmartin, 2012;
Ramey & Ough, 1980). Therefore, the cation-exchanged Tempranillo
wines exhibited elevated concentrations of fragrant compounds
following six months of aging, when compared to the control group.
These compounds included hexyl acetate, isobutanol, 2-phenylethanol,
ethyl isovalerate, and diethyl succinate. Moreover, the concentrations
of ethyl isovalerate and diethyl succinate exhibited a gradual increase
with the enhancement of the penetration rate of the cation exchange
resin treatment. These indicate that the cation exchange resin method is
effective in increasing the content of aroma substances in red wines
during the aging process (Mislata et al., 2021). The wines that under-
went cold treatment exhibited analogous changes in their aroma com-
pounds, in a manner analogous to those observed in the wines treated
with cation exchange resin. The aroma compounds of Riesling wines
exhibited minimal changes following the conclusion of the cold treat-
ment. However, after 12 months of aging, the cold-treated group
exhibited a lower pH than the control group. Furthermore, the main
components, including esters, hypromellose, terpenes, furfural, and
others, exhibited a significant increase in the cold-treated wines,
particularly the characteristic aroma substance of Riesling wines, 1,1,6-
trimethyl-1,2-dihydronaphthalene (TDN). The content of TDN in the
wines exhibited a gradual increase with increasing cold treatment time.
It can be postulated that the lower pH contributed to the conversion of
some aroma precursors into volatiles in the wines (Xia et al., 2022).

6.4. The taste of wine

Tartaric acid, being the predominant organic acid in wine, signifi-
cantly impacts its tartness and acidity. If the content and composition of
other organic acids remain constant, a higher concentration of tartaric
acid leads to increased sourness in the wine. Regardless of the pH level,
elevating the tartaric acid concentration will elevate the perceived
acidity of the wine (Sowalsky & Noble, 1998). Subsequently, employing
cold treatment, electrodialysis, and ion exchange resin processes will
decrease the tartaric acid content in wine, leading to a simultaneous
reduction in sourness.

Simultaneously, variations in tartaric acid levels and resulting pH
changes can impact the astringency of wine. The astringency in wine
primarily results from the interaction between tannins and salivary
proteins, leading to sediment formation. Below 3.0 g/L tartaric acid,
increased tartaric acid concentrations elevate tannin-salivary protein

complexes, encouraging salivary protein sedimentation, leading to
enhanced granularity and oral friction, and increasing astringency.
Within the 3.0–7.0 g/L range of tartaric acid content, wine astringency
diminishes progressively, while heightened acidity masks astringency
perception in the mouth. pH primarily influences astringency by regu-
lating salivary layer removal. Reduced pH levels enhance the removal
process of salivary layer. Astringency intensifies with decreasing pH
levels. Therefore, the dynamics of tartaric acid concentration visibly
influence both acidity and astringency in wine (Zhao et al., 2023). A
notable pH reduction in cation exchange resin treatment may elevate
wine astringency. Furthermore, cold treatment can elevate the dissolved
oxygen content of wine, facilitating the interaction of oxygen with
tannins and tyrosine, which in turn reduces the perception of rawness,
greenness, and bitterness (Liu, Zhang, et al., 2008).

7. The development of new technologies for tartaric acid
stabilization

7.1. The combination of cold treatment and additive stabilizers

While stabilizers effectively stabilize tartaric acid, they are ineffec-
tive against cold-labile substances in wine. Hence, combining cold
treatment with adding stabilizers can compensate for the limitations of
the ‘addition’ strategy. Furthermore, the sequence of adding stabilizers
and conducting cold treatment impacts the efficacy of wine tartar sta-
bilization. Adding 200 mg/L mannoprotein to Chardonnay wine and
freezing it at − 4◦C for 7 days yielded a similar tartaric acid stabilization
effect as adding 40 mg/L of mannoprotein after freezing it at − 4◦C for 4
days. Similarly, introducing 150 mg/L of mannoprotein to Riesling wine
and freezing it at − 4◦C for 7 days resulted in a tartaric acid stabilization
effect equivalent to adding 30 mg/L of mannoprotein following freezing
at − 4◦C for 4 days (He et al., 2016). Evidently, incorporating man-
noprotein stabilizer post cold treatment in white wine efficiently reduces
cold stabilization duration and minimizes the required stabilizer quan-
tity, consequently reducing overall costs and stabilization time.

7.2. Plasma surface modification technology

Plasma surface modification technology involves applying nanoscale
coatings with chemically reactive functional groups to inert substrates.
This process enables these surfaces with specific chemical functionalities
to extract unwanted substances from wine (Vandenabeele & Lucas,
2020). Plasma surface modification technology is currently extensively
utilized across various industries like aerospace, semiconductors,
printing, packaging, and textiles (Zhang et al., 2023). Recently, this
technology has found application in eliminating protein haze in white
wines as well (Mierczynska-Vasilev et al., 2020).

Dabare et al. (2023) chose allylamine, acrylic acid, and 2-methyl-2-
oxazoline as the precursors for plasma polymerization to be applied to
the substrates of silicon wafers and stainless steel sheets. All three
plasma polymers demonstrated efficacy in eliminating KHT crystals
from white wines at a temperature of 15◦C, leading to an average
reduction of 22% in K+ concentration and 23% in tartaric acid con-
centration. The affinity of these plasma coatings for KHT was ranked as
allylamine >2-methyl-2-oxazoline > acrylic acid in cold and heat-
unstable white wines. Besides the composition of the plasma poly-
mers, the efficiency of this method in KHT crystal removal from wines
was associated with the duration of contact between the plasma poly-
mers and the wine. It was observed that only 8%–43% of surface crystals
were covered by the three plasma polymers after a week of contact;
however, the coverage could reach 60%–90% after a month, indicating
greater effectiveness in KHT crystal removal.

In comparison to conventional cold treatment, this technique effec-
tively eliminates protein haze from the wine without altering the wine's
phenolic content, in addition to stabilizing tartaric acid. It offers the
benefit of energy savings and cost reduction. Furthermore,
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functionalized surfaces fall under the category of processing aids, thus
potentially being exempt from ingredient labeling requirements that
apply to approved additives, indicating promising growth opportunities.

8. Conclusions

Tartaric acid stabilization treatment and testing are essential process
operations conducted prior to wine bottling to prevent the formation of
precipitates caused by tartar. This is crucial to maintain the quality of
the wine during storage and ensure its market value. This study provides
a comprehensive overview of research advancements concerning the
properties of wine tartaric acid, methods for stabilization, techniques for
stability assessment, and explores the impacts of various stabilization
methods on wine characteristics such as turbidity, color, aroma, and
taste. Despite this progress, there is a notable lack of research focusing
on how different stabilization methods influence wine quality attributes,
especially regarding aroma and taste profiles. Consequently, it is rec-
ommended that the development of tartaric stabilization processes
should aim to integrate diverse methods and explore innovative tech-
nologies to offer more choices in the winemaking process.
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