Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Chloro-3-fluoro-2-methylaniline-pyrrolidine-2,5-dione (1/1)

Benjamin A. Mayes, ${ }^{\text {a* }}$ Patrick McGarry, ${ }^{\text {a }}$ Adel Moussa ${ }^{\text {a }}$ and David J. Watkin ${ }^{\text {b }}$

${ }^{\text {a }}$ Idenix Pharmaceuticals, 60 Hampshire Street, Cambridge, MA 02139, USA, and ${ }^{\text {b }}$ Department of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
Correspondence e-mail: mayes.ben@idenix.com
Received 11 June 2008; accepted 20 June 2008
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.033 ; w R$ factor $=0.088$; data-to-parameter ratio $=18.9$.

Chlorination of 3-fluoro-2-methylaniline with N-chlorosuccinimide gave one major regioisomer whose structure was determined by X-ray crystallography. The product was found to have cocrystallized with succinimide, giving the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{ClFN} \cdot \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{2}$. The crystal structure is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding and $\pi-\pi$ stacking interactions with a centroid-centroid distance of 3.4501 (8) \AA.

Related literature

For related literature, see: Lazar et al. (2004); Marterer et al. (2003); Nickson \& Roche-Dolson (1985); Shapiro et al. (2006); Tukada \& Mazaki (1997); Zanka \& Kubota (1999); Görbitz (1999).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{ClFN} \cdot \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{2}$

$$
\begin{aligned}
& \alpha=73.1036(13)^{\circ} \\
& \beta=85.9336(12)^{\circ} \\
& \gamma=71.3703(14)^{\circ} \\
& V=575.53(3) \AA^{3} \\
& Z=2
\end{aligned}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

$$
\begin{array}{ll}
\mu=0.34 \mathrm{~mm}^{-1} & 0.75 \times 0.44 \times 0.41 \mathrm{~mm} \\
T=120 \mathrm{~K} & \\
& \\
\text { Data collection } & \\
\text { Nonius KappaCCD diffractometer } & 16689 \text { measured reflections } \\
\text { Absorption correction: multi-scan } & 2904 \text { independent reflections } \\
\quad(D E N Z O / S C A L E P A C K ; & 2610 \text { reflections with } I>2 \sigma(I) \\
\quad \text { Otwinowski \& Minor, } 1997) & R_{\mathrm{int}}=0.033 \\
T_{\min }=0.47, T_{\max }=0.87 &
\end{array}
$$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.087$
$S=0.88$
154 parameters
H -atom parameters constrained
2904 reflections

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N12-H1 $\cdots \mathrm{O}^{2} 6^{\mathrm{i}}$	0.85	2.11	$2.945(2)$	168
N8-H9 ${ }^{\mathrm{H}} \mathrm{O}^{\mathrm{i}}$	0.84	2.18	$2.915(2)$	147
N8-H11 \cdots O17	0.88	2.17	$3.030(2)$	166

Symmetry code: (i) $-x+2,-y,-z+1$.
Data collection: COLLECT (Nonius, 2001); cell refinement: DENZOISCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

We thank Dr Sarah F. Jenkinson, University of Oxford, for her assistance in the preparation of the manuscript.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2642).

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.
Lazar, C., Kluczyk, A., Kiyota, T. \& Konishi, Y. (2004). J. Med. Chem. 47, 6973-6982.
Marterer, W., Prikoszovich, W., Wiss, J. \& Prashad, M. (2003). Org. Process Res. Dev. 7, 318-323.
Nickson, T. E. \& Roche-Dolson, C. A. (1985). Synthesis, 6, 669-670.
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Shapiro, R., Taylor, E. \& Zimmerman, W. (2006). PCT Int. Appl. WO 2006 062978.

Tukada, H. \& Mazaki, Y. (1997). Chem. Lett., pp. 441-442.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.
Zanka, A. \& Kubota, A. (1999). Synlett, 12, 1984-1986.

supplementary materials

4-Chloro-3-fluoro-2-methylaniline-pyrrolidine-2,5-dione (1/1)

B. A. Mayes, P. McGarry, A. Moussa and D. J. Watkin

Comment

Chlorination of anilines with N-chlorosuccinimide (NCS) can provide access to poly-substituted aromatic compounds, useful as high-value synthetic intermediates (Lazar et al., 2004; Marterer et al., 2003; Nickson \& Roche-Dolson, 1985; Shapiro et al., 2006; Zanka \& Kubota, 1999). In the present example, treatment of 3-fluoro-2-methylaniline with NCS in polar solvents (e.g. N, N-dimethylformamide) resulted in chlorination para to the NH_{2} as the primary regioisomer in 10-fold excess relative to the undesired ortho isomer.

The sample was supplied in the form of large crystalline aggregates (4 mm across) coated with perfluoropolyether oil as a preservative. A large ($0.8 \times 0.8 \times 0.4 \mathrm{~mm}$) section was cut from the mass. The material did not have a strong cleavage - the crystals just fractured erratically. Because of the risk that further cutting might totally destroy the sample, an initial X-ray data set was measured from this large sample. The results confirmed the expected structure, but also showed a co-crystallized molecule of succinimide (Tukada \& Mazaki, 1997).

At the end of the initial data collection, the sample was further subdivided into an irregular block approximately $0.41 \times 0.44 \times 0.75 \mathrm{~mm}$. Prescans showed that the further cutting of the crystal had introduced fractures, but the sample was still amenable to analysis. Because of the degraded quality of the crystal, a data set with a target redundancy of 3 (as opposed to the usual 1) was collected. This highly redundant dataset would enable corrections to be made for the poor crystal quality.

Structure solution was slightly complicated because of the unexpected succinimide, but after that refinement and the location of all hydrogen atoms was normal. The two components are shown in Fig. 1. Fig. 2 shows the plane-to-plane alternate stacking of the components, with minimum inter-planar spacing of $3.37 \AA$ - presumable $\pi-\pi$ stacking. The columns of molecules are interconnected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds which form discreet centrosymmetric 4-component clusters (Fig. 3).

Experimental

3-Fluoro-2-methylaniline ($550 \mathrm{mg}, 4.40 \mathrm{mmol}$) was dissolved in N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA) or 1-methyl-2-pyrrolidinone (NMP) (5 ml) and cooled to $0-5^{\circ} \mathrm{C}$ under argon. N-Chlorosuccinimide ($586 \mathrm{mg}, 4.39$ mmol) was added and the mixture was allowed to warm to room temperature over 15 h (Fig. 4). Dilution with ethyl acetate, washing with water, drying (sodium sulfate), filtration and evaporation of the solvents gave a crude oil.

Crystals were grown from isopropyl ether by seeding and storing at $4^{\circ} \mathrm{C}$ for two weeks. The solvent was decanted and the crystals coated with 2 drops of FOMBLIN perfluoropolyether oil.

Additional methods of characterization were recorded: m.p. $75.5-76.0^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}(400 \mathrm{MHz}, \mathrm{d} 3-\mathrm{MeCN}): \delta=2.04(3 \mathrm{H}, \mathrm{d}$, $\left.J 2.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.62\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.32\left(2 \mathrm{H}\right.$, br-s, $\left.\mathrm{NH}_{2}\right), 6.46(1 \mathrm{H}, \mathrm{dd}, J 8.6 \mathrm{~Hz}, J 0.8 \mathrm{~Hz}), 7.00(1 \mathrm{H}$, a-t, $J 8.6 \mathrm{~Hz})$, $8.83(1 H, b r-s, \mathrm{NH}) .{ }^{13} \mathrm{C}(100 \mathrm{MHz}, \mathrm{d} 3-\mathrm{MeCN}): \delta=9.12,9.18\left(\mathrm{CH}_{3}\right), 30.26\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 107.99,108.19(\mathrm{C}-2), 111.16$

supplementary materials

($C-6$), 111.34, 111.37 (C-4), 127.97, $127.98(C-3), 147.76,147.82(C-5), 156.09,158.47(C-1), 179.33(2 x C=0)$ (using crystallographic numbering).

Refinement

The relatively large ratio of minimum to maximum corrections applied in the multiscan process $(1: 1.85)$ reflect the poor quality of the sample.

Difficulties in selecting an integration box suitable for all frames were taken into account (Görbitz, 1999) by the multiscan inter-frame scaling (DENZO/SCALEPACK, Otwinowski \& Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry ($\mathrm{C}-\mathrm{H}$ in the range $0.93-0.98, \mathrm{~N}-\mathrm{H}$ in the range $0.86-0.89 \mathrm{~N}-\mathrm{H}$ to $0.86 \AA$) and $U_{\text {iso }}(\mathrm{H})$ (in the range $1.2-1.5$ times $U_{\text {eq }}$ of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2. Plane-to-plane stacking of alternate molecules parallel to the a axis.

Fig. 3. The hydrogen bonds (dotted lines) in the $\pi-\pi$ stacks.

Fig. 4. Synthetic scheme.

4-Chloro-3-fluoro-2-methylaniline-pyrrolidine-2,5-dione (1/1)

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{ClFN} \cdot \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{2}$
$M_{r}=258.68$
Triclinic, $P \mathrm{~T}$
$a=7.3853$ (2) \AA
$b=7.4390$ (2) \AA
$c=11.5571$ (4) \AA
$\alpha=73.1036(13)^{\circ}$
$\beta=85.9336(12)^{\circ}$
$\gamma=71.3703(14)^{\circ}$
$V=575.53(3) \AA^{3}$

Data collection

Nonius KappaCCD
diffractometer
Monochromator: graphite
$T=120 \mathrm{~K}$
ω scans
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.47, T_{\text {max }}=0.87$
16689 measured reflections
2904 independent reflections
$Z=2$
$F_{000}=268$
$D_{\mathrm{x}}=1.493 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 2870 reflections
$\theta=5-29^{\circ}$
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Plate, colourless
$0.75 \times 0.44 \times 0.41 \mathrm{~mm}$

2610 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=28.7^{\circ}$
$\theta_{\text {min }}=5.4^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 9$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.087$
$S=0.88$
2904 reflections
154 parameters
Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
Method $=$ Modified Sheldrick $w=1 /\left[\sigma^{2}\left(F^{2}\right)+\right.$ $\left.(0.05 P)^{2}+0.35 P\right]$,
where $P=\left[\max \left(F_{\mathrm{o}}{ }^{2}, 0\right)+2 F_{\mathrm{c}}{ }^{2}\right] / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.37$ e \AA^{-3}
Extinction correction: None

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C11	$0.94307(16)$	$0.30918(17)$	$0.66142(11)$	0.0207
N12	$0.99166(15)$	$0.16670(15)$	$0.59934(9)$	0.0223
C13	$1.10284(16)$	$-0.01507(17)$	$0.66627(11)$	0.0205
C14	$1.14595(16)$	$-0.00013(17)$	$0.78815(10)$	0.0204
C15	$1.04097(16)$	$0.21516(17)$	$0.78494(11)$	0.0211
O16	$1.15499(13)$	$-0.16202(13)$	$0.62979(8)$	0.0275
O17	$0.83954(13)$	$0.47656(13)$	$0.62086(8)$	0.0280
H141	1.2797	-0.0325	0.7987	0.0245^{*}
H142	1.0987	-0.0916	0.8511	0.0240^{*}
H151	1.1221	0.2859	0.7939	0.0258^{*}
H152	0.9471	0.2271	0.8474	0.0263^{*}
H1	0.9510	0.1824	0.5287	0.0265^{*}
C1	$0.34402(16)$	$0.96277(18)$	$0.14329(10)$	0.0201
C2	$0.28607(16)$	$1.11710(17)$	$0.19551(11)$	0.0207
C3	$0.34232(16)$	$1.08204(17)$	$0.31427(11)$	0.0217
C4	$0.45586(16)$	$0.89539(17)$	$0.37673(10)$	0.0210
C5	$0.51642(16)$	$0.74038(17)$	$0.32214(10)$	0.0188
C6	$0.45694(16)$	$0.77380(17)$	$0.20237(10)$	0.0194
C7	$0.51289(19)$	$0.60873(19)$	$0.14308(12)$	0.0269
N8	$0.63360(16)$	$0.55949(16)$	$0.38422(10)$	0.0277
C19	$0.14163(4)$	$1.34735(4)$	$0.11329(3)$	0.0293
F10	$0.28435(11)$	$0.99849(12)$	$0.02806(6)$	0.0291
H31	0.3012	1.1851	0.3475	0.0277^{*}
H41	0.4953	0.8705	0.4581	0.0257^{*}
H71	0.6503	0.5518	0.1414	0.0420^{*}
H72	0.4641	0.5027	0.1863	0.0416^{*}
H73	0.4639	0.6536	0.0618	0.0429^{*}
H9	0.6698	0.4664	0.3519	0.0324^{*}
H11	0.6736	0.5392	0.4585	0.0317^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0199(5)$	$0.0202(5)$	$0.0235(6)$	$-0.0059(4)$	$0.0007(4)$	$-0.0088(4)$
N12	$0.0264(5)$	$0.0201(5)$	$0.0187(5)$	$-0.0024(4)$	$-0.0048(4)$	$-0.0072(4)$
C13	$0.0196(5)$	$0.0201(5)$	$0.0209(5)$	$-0.0039(4)$	$-0.0013(4)$	$-0.0064(4)$
C14	$0.0196(5)$	$0.0216(5)$	$0.0195(5)$	$-0.0049(4)$	$-0.0029(4)$	$-0.0061(4)$
C15	$0.0198(5)$	$0.0232(5)$	$0.0221(6)$	$-0.0066(4)$	$-0.0014(4)$	$-0.0090(4)$
O16	$0.0325(5)$	$0.0212(4)$	$0.0259(5)$	$0.0005(4)$	$-0.0056(4)$	$-0.0108(4)$
O17	$0.0302(5)$	$0.0206(4)$	$0.0305(5)$	$-0.0012(3)$	$-0.0058(4)$	$-0.0090(4)$
C1	$0.0196(5)$	$0.0262(6)$	$0.0156(5)$	$-0.0089(4)$	$-0.0015(4)$	$-0.0051(4)$
C2 $20.020 .023(4)$						
C3	$0.0180(5)$	$0.0187(5)$	$0.0228(6)$	$-0.0049(4)$	$-0.0023(4)$	$-0.0023(4)$
C4	$0.0217(5)$	$0.0206(5)$	$0.0237(6)$	$-0.0051(4)$	$0.0005(4)$	$-0.0094(4)$
	$0.0213(5)$	$0.0228(5)$	$0.0184(5)$	$-0.0043(4)$	$-0.0026(4)$	$-0.0074(4)$

sup-4

C5	$0.0165(5)$	$0.0190(5)$	$0.0196(5)$	$-0.0041(4)$	$0.0003(4)$	$-0.0050(4)$
C6	$0.0181(5)$	$0.0218(5)$	$0.0205(5)$	$-0.0081(4)$	$0.0020(4)$	$-0.0077(4)$
C7	$0.0290(6)$	$0.0277(6)$	$0.0276(6)$	$-0.0077(5)$	$0.0010(5)$	$-0.0144(5)$
N8	$0.0317(6)$	$0.0207(5)$	$0.0241(5)$	$0.0027(4)$	$-0.0051(4)$	$-0.0071(4)$
C19	$0.02920(17)$	$0.02088(16)$	$0.03136(17)$	$-0.00375(11)$	$-0.00674(12)$	$-0.00040(11)$
F10	$0.0341(4)$	$0.0346(4)$	$0.0175(3)$	$-0.0092(3)$	$-0.0072(3)$	$-0.0055(3)$

Geometric parameters (\AA, ${ }^{\circ}$)
C11-N12
C11-C15
C11-O17
N12-C13
N12-H1
C13-C14
C13-O16
C14-C15
C14-H141
C14-H142
C15-H151
C15-H152
C1-C2
C1-C6
C1-F10
N12-C11-C15
N12-C11-O17
C15-C11-O17
C11-N12-C13
C11-N12-H1
C13-N12-H1
N12-C13-C14
N12-C13-O16
C14-C13-O16
C13-C14-C15
C13-C14-H141
C15-C14-H141
C13-C14-H142
C15-C14-H142
H141-C14-H142
C14-C15-C11
C14-C15-H151
C11-C15-H151
C14-C15-H152
C11-C15-H152
H151-C15-H152
C2-C1-C6
C2-C1-F10
C6-C1-F10
C $14-\mathrm{C}$

1.3890 (14)	C2-C3	1.3885 (17)
1.5141 (16)	C2-C19	1.7335 (12)
1.2075 (14)	C3-C4	1.3826 (16)
1.3689 (15)	C3-H31	0.913
0.852	$\mathrm{C} 4-\mathrm{C} 5$	1.4075 (16)
1.5082 (16)	C4-H41	0.952
1.2235 (14)	C5-C6	1.4096 (16)
1.5309 (16)	C5-N8	1.3629 (14)
0.947	C6-C7	1.5076 (16)
0.970	C7-H71	0.968
0.943	C7-H72	0.963
0.968	C7-H73	0.955
1.3848 (17)	N8-H9	0.842
1.3826 (16)	N8-H11	0.882
1.3569 (13)		
107.80 (9)	C1-C2-C3	118.84 (11)
124.27 (11)	C1-C2-C19	119.74 (9)
127.93 (11)	C3-C2-C19	121.41 (9)
113.60 (10)	C2-C3-C4	119.37 (11)
125.7	C2-C3-H31	117.6
120.5	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 31$	123.1
108.74 (9)	C3-C4-C5	121.32 (11)
123.80 (11)	C3-C4-H41	119.8
127.46 (11)	C5-C4-H41	118.9
104.82 (9)	C4-C5-C6	119.65 (11)
109.5	C4-C5-N8	120.21 (11)
111.9	C6-C5-N8	120.13 (10)
109.2	C5-C6-C1	117.02 (10)
111.7	C5-C6-C7	120.92 (11)
109.5	C1-C6-C7	122.05 (11)
104.97 (9)	C6-C7-H71	111.7
114.0	C6-C7-H72	111.2
109.0	H71-C7-H72	106.7
112.8	C6-C7-H73	111.5
109.9	H71-C7-H73	108.1
106.2	H72-C7-H73	107.4
123.78 (11)	C5-N8-H9	120.4
118.07 (10)	C5-N8-H11	120.3
118.14 (10)	H9-N8-H11	119.3

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 12 — \mathrm{H} 1 \cdots \mathrm{O} 16^{\mathrm{i}}$	0.85	2.11	$2.945(2)$	168
$\mathrm{~N} 8 — \mathrm{H} 9 \cdots \mathrm{O} 16^{\mathrm{i}}$	0.84	2.18	$2.915(2)$	147
N8—H11 $\cdots \mathrm{O} 17$	0.88	2.17	$3.030(2)$	166
Symmetry codes: $(\mathrm{i})-x+2,-y,-z+1$.				

supplementary materials

Fig. 1

supplementary materials

Fig. 2

Fig. 3

supplementary materials

Fig. 4

