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1  | INTRODUC TION

The differential utilization of alternative energy sources can directly 
influence an organism’s growth, reproduction, behavior, and sur‐
vival (Heino & Kaitala, 2001). In organisms that can obtain carbon 
flexibly from multiple pathways, energetic dynamics can be partic‐
ularly complex. For example, corals harboring photosynthetic algal 

symbionts (Symbiodinium) can obtain energy through transfer of 
photosynthate from the endosymbiont or by predation on plankton 
(Grottoli, Rodrigues, & Palardy, 2006; Palardy et al., 2008). When 
obtaining energy via photosynthesis, the coral holobiont (host an‐
imal plus symbionts) is functioning as an autotroph, and when ob‐
taining its energy via predation, it is functioning as a heterotroph. 
However, corals often obtain energy through multiple sources 
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Abstract
For animals that harbor photosynthetic symbionts within their tissues, such as corals, 
the different relative contributions of autotrophy versus heterotrophy to organismal 
energetic	requirements	have	direct	impacts	on	fitness.	This	is	especially	true	for	fac‐
ultatively symbiotic corals, where the balance between host‐caught and symbiont‐
produced energy can be altered substantially to meet the variable demands of a 
shifting environment. In this study, we utilized a temperate coral–algal system (the 
northern star coral, Astrangia poculata, and its photosynthetic endosymbiont, 
Symbiodinium psygmophilum) to explore the impacts of nutritional sourcing on the 
host’s health and ability to regenerate experimentally excised polyps. For fed and 
starved colonies, wound healing and total colony tissue cover were differentially im‐
pacted by heterotrophy versus autotrophy. There was an additive impact of positive 
nutritional and symbiotic states on a coral’s ability to initiate healing, but a greater 
influence of symbiont state on the recovery of lost tissue at the lesion site and com‐
plete polyp regeneration. On the other hand, regardless of symbiont state, fed corals 
maintained a higher overall colony tissue cover, which also enabled more active host 
behavior (polyp extension) and endosymbiont behavior (photosynthetic ability of 
Symbiondinium). Overall, we determined that the impact of nutritional state and sym‐
biotic state varied between biological functions, suggesting a diversity in energetic 
sourcing for each of these processes.
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simultaneously, and there may be interactions between autotrophy 
and	heterotrophy.	Additionally,	as	colonial	organisms,	energy	must	
be translocated across individual polyps to maintain colony function 
(Fine,	Oren,	&	Loya,	2002;	Oren,	Rinkevich,	&	Loya,	1997).	As	such,	
energy budgeting within coral colonies is complex, dynamic, and not 
yet well understood.

For tropical corals in well‐lit, shallow environments, host col‐
onies can meet or exceed their metabolic needs through transfer 
of photosynthate from Symbiodinium spp. (Muscatine, 1990). It has 
been hypothesized that these corals prey on zooplankton mainly 
to supplement the energy they receive from the endosymbiont 
and to supply essential nutrients (such as phosphorus and nitro‐
gen;	 Johannes,	 Cole,	 &	 Kuenzel,	 1970;	 Tanaka,	 Miyajima,	 Koike,	
Hayashibara, & Ogawa, 2006) and that prolonged heterotrophic 
compensation may be a stress response that increases resilience 
under conditions unfavorable to autotrophy (Hughes & Grottoli, 
2013;	 Levas	 et	 al.,	 2015).	 Additionally,	 heterotrophic	 feeding	 can	
enhance growth rate, protein, and chlorophyll concentrations, as 
well as calcification rates in daylight and in darkness (Ferrier‐Pagès, 
Witting,	 Tambutté,	 &	 Sebens,	 2003;	 Houlbrèque,	 Tambutté,	 &	
Ferrier‐Pagès, 2003). However, the degree to which a colony can 
supplement lost photosynthetic resources appears to vary by spe‐
cies	(Anthony	&	Fabricius,	2000;	Grottoli	et	al.,	2006),	and	studies	
have suggested that the balance between energy sources might not 
be fixed (Piniak, 2002).

In the temperate realm, a highly variable environment can lead 
to a wide variety of flexible feeding strategies, such as those em‐
ployed by facultatively symbiotic corals like Astrangia poculata (= 
A. danae; Peters, Cairns, Pilson, & Wells, 1988, Figure 1), Oculina 
patagonica	 (Fine,	 Zibrowius,	 &	 Loya,	 2001),	 and	Oculina arbuscula 
(Leal	et	al.,	2014).	Heterotrophy	has	many	effects	on	the	metabolism	
and physiology of these facultatively symbiotic temperate corals: 
(a) It can mitigate thermally induced “bleaching” (a sharp reduction 

in symbiont density caused by exposure to elevated temperatures; 
Aichelman	et	al.,	2016);	 (b)	 it	 increases	nitrogen	uptake	and	excre‐
tion (Szmant‐Froelich & Pilson, 1984); (c) it increases calcification 
and	 growth	 (Jacques	 &	 Pilson,	 1980;	 Jacques,	Marshall,	 &	 Pilson,	
1983; Miller, 1995); and (d) it reduces damage from sedimentation 
(Peters & Pilson, 1985). Symbiotic state can impact the effects of 
heterotrophy, although the presence of photosynthetic symbionts 
does not preclude heterotrophy. For example, symbiotic colonies of 
A. poculata can retain more carbon (14C) from heterotrophic sources 
than aposymbiotic colonies (Szmant‐Froelich, 1981), and there is 
evidence for transfer of photosynthetic carbon to coral host tissue 
(Schiller,	 1993).	 Additionally,	 the	 endosymbiont	 in	 fed	 A. poculata 
colonies fix carbon more efficiently (but translocate less 14C) than 
their starved counterparts (Szmant‐Froelich, 1981). This suggests a 
potentially high degree of interconnectivity between energy strate‐
gies (Piniak, 2002) as well as a complex dynamic between simultane‐
ous autotrophy and heterotrophy.

The northern star coral A. poculata has an expansive range 
along	the	east	coast	of	North	America,	from	Florida	and	the	Gulf	
of Mexico to southern Massachusetts (Dimond & Carrington, 
2007;	 Dimond	 et	 al.,	 2013).	 In	 nature,	 these	 corals	 can	 exist	 in	
one of three basic symbiotic states with the endosymbiont, 
Symbiodinium psygmophilum	 (Lajeunesse,	 Parkinson,	 &	 Reimer,	
2012): Fully symbiotic corals appear brown; aposymbiotic corals 
harbor far fewer symbionts, and they appear white; symbiont den‐
sity can also vary from polyp to polyp, producing a mottled, mixed 
colony comprising both white and brown polyps (Cummings, 
1983). Unlike in tropical corals, in A. poculata, the aposymbiotic 
state is not the result of stress (i.e., bleaching); white colonies of 
A. poculata are as “healthy” as brown colonies and can persist in‐
definitely in nature (Grace, 2004). The relatively low density of 
S. psygmophilum is actively maintained by the regular expulsion 
of the symbiont (Dimond & Carrington, 2008). Regardless of 

F I G U R E  1   (a) Symbiont states 
in Astrangia poculata: With polyps 
contracted, fully aposymbiotic colonies 
appear white in color; fully symbiotic 
colonies appear brown in color. (b) [a] 
Aposymbiotic,	[m]	mottled,	and	[s]	
symbiotic colonies of A. poculata occur 
concurrently	in	the	field.	(c)	Adjacent	
polyps in a mottled colony demonstrate [a] 
aposymbiotic and [s] symbiotic densities. 
Photographs	by	E.M.	Burmester

(a) (b)

(c)
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symbiont state, temperate colonies rely heavily on heterotrophy 
(Farrant,	 Borowitzka,	 Hinde,	 &	 King,	 1987;	 Szmant‐Froelich	 &	
Pilson, 1984), with symbiont density only explaining an estimated 
23%	of	growth	in	the	field	(Dimond	&	Carrington,	2007).

This study investigates the interaction of feeding and symbiotic 
state on wound healing in Astrangia poculata. There is ample evi‐
dence to suggest that both lesion recovery and colony maintenance 
(i.e., maintaining a healthy layer of tissue cover) are energetically 
costly activities that are often in conflict with each other and in 
conflict with other critical physiological functions such as repro‐
duction,	 calcification,	 and	 growth	 (Anthony,	 Connolly,	 &	 Willis,	
2002;	Richmond,	1987;	Rinkevich,	1996;	Rotjan	and	Lewis,	2009;	
Ward,	1995).	 In	addition,	 the	process	of	 lesion	 repair	can	 require	
a high degree of colonial energy integration, which can vary by 
wound	and	colony	characteristics	(Oren,	Benayahu,	Lubinevsky,	&	
Loya,	2001;	Szmant‐Froelich,	Yevich,	&	Pilson,	1980).

Because of its flexibility and tractability, A. poculata makes an 
ideal study organism for investigating the dynamics between en‐
ergy sourcing and organismal health. This study uses (a) small‐scale 
wound lesion and total colony tissue recovery, (b) foraging behavior, 
and (c) symbiont density and photosynthetic efficiency metrics to 
assess colony health and stress response in the presence and ab‐
sence of both autotrophic and heterotrophic nutritional strategies in 
naturally occurring symbiotic and aposymbiotic A. poculata colonies.

2  | MATERIAL S AND METHODS

2.1 | Collection and husbandry

Colonies of Astrangia poculata in both symbiotic or aposymbiotic 
states were collected between 6 and 10 m depths at Fort Wetherill 
State	Park	in	Jamestown	RI	(41	28′40″N,	71	21′34″W)	in	Summer	
2014.	 Specimens	 were	 housed	 at	 the	 New	 England	 Aquarium	
and provided lighting in 10‐hr light cycles (14 hr dark) via T5 HO 
fluorescent	 lighting	 fixtures	 (Hamilton	 Technology,	Gardena,	 CA,	
Aruba	 Sun	 T5‐V	 Series)	 as	 well	 as	 filtered,	 UV‐treated	 seawa‐
ter	 from	 the	Boston	Harbor.	 Light	 levels	 (PAR)	 and	water	quality	
(pH, nitrate, ammonia, alkalinity) were measured weekly to ensure 
consistent	 water	 quality	 parameters.	 All	 experimental	 colonies	
were acclimated at 18°C for at least two weeks before the start 
of experimentation. During this acclimation period, colonies were 
given individualized, daily feedings of a frozen copepod slurry (50 g 
copepod/l;	JEHM	Co.,	Inc.).

2.2 | Experimental setup and nutrition manipulation

Symbiotic and aposymbiotic colonies were paired by approxi‐
mate	size	 (mass),	and	these	pairs	were	subsequently	sorted	ran‐
domly into one of four treatment groups: (a) fed/wounded, (b) 
fed/un‐wounded [control], (c) starved/wounded, (d) starved/un‐
wounded. No significant differences were found between groups 
in	 colony	 mass	 (ANOVA,	 F(3,220) = 1.3864, p	=	0.2478;	 average	

mass	−6.34	g	(±0.25	SEM)). Overall, 28 paired symbiotic and apo‐
symbiotic colonies were included in each treatment group (result‐
ing in a total of 224 corals). Specimens were housed on raised 
plastic grids with paired colonies located in adjacent positions at 
least 10 cm apart, to ensure consistent lighting and surrounding 
flow for both symbiont types without risk of intercolonial ag‐
gression.	All	 colonies	were	 acclimated	 to	 their	 nutritional	 treat‐
ment for three days prior to the start of the experiment so that 
starved colonies began the trial period with minimum potential 
benefit of stored nutrition from a previous feeding. During the 
60‐day experiment, the starved group received no food while the 
fed treatment continued to receive offerings of frozen copepod 
slurry	(50	g	L−1 feeding−1). Colonies were carefully observed dur‐
ing these feedings to ensure that each polyp on each colony (a) 
was given a direct feeding opportunity and (b) demonstrated con‐
traction due to food capture.

2.3 | Experimental wounding

Colonies were experimentally wounded after the 3‐day treat‐
ment acclimation period using a standardized wounding protocol 
(Burmester,	 Finnerty,	 Kaufman,	 &	 Rotjan,	 2017).	 A	 single	 polyp	
and the surrounding connective tissue (coenenchyme) were re‐
moved from the center of the colony (to control for wound position) 
using a scalpel before the wound site was cleaned with seawater 
via Waterpik®. Mean wound size was 34.28 mm2	 (±SEM	2.27)	with	
no	 statistical	 difference	 in	 wound	 size	 between	 groups	 (ANOVA,	
F(3,108) = 0.9400, p = 0.4).

2.4 | Assessing wound recovery

Colonies	were	photographed	using	a	Leica	M165FC	stereomicro‐
scope	 immediately	 after	wounding	 and	 at	 nine	 subsequent	 time	
points (5, 10, 15, 20, 25, 30, 40, 50, 60 days). The magnification 
and angle of the photograph were kept constant for each colony 
across all photographs. These photographs were used to assess 
wound	recovery	using	two	metrics	(Burmester	et	al.,	2017).	First,	
each colony was assigned to one of four recovery stages based 
on	 a	 qualitative	 assessment	 of	 the	 wound	 site	 at	 60	days	 post‐
wounding: (a) “incomplete occlusion”—the wound remains open 
or increases in surface area, with bare skeleton still exposed; (b) 
“full occlusion”—undifferentiated tissue covers a portion or the 
entirety of the wound site; (c) “tentacle eruption”—tentacle nubs, 
still incapable of contraction and prey capture, have formed; and 
(d) “full recovery”—a fully functional polyp capable of feeding has 
formed at the wound site. Second, we measured the final change 
in wound surface area (between days 0 and 60). Wound surface 
area	was	calculated	three	times	from	each	photograph	using	Leica	
M165FC software, and the resulting mean value was used as the 
representative wound surface area of that colony for each time 
point. Proportional final recovery (or tissue loss) was calculated 
as the difference between the initial wound area (day 0) and final 
wound area (day 60) divided by initial wound area.
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2.5 | Colony‐wide tissue surface area

Colonies were photographed against a size standard from 6 differ‐
ent angles (top, base, and four sides) at day 0 and day 60. Individual 
colonies were identified by attaching a honeybee tag (betterbee.
com) to the skeletal base using super glue, and the location of this 
tag was used to ensure consistent directionality to each of the col‐
ony’s 4 sides. The photographs were manually merged at the end 
of the experiment to generate a composite image of each colony at 
day 0 and day 60. To do this, photographs were carefully reviewed 
for regions of the colony that were photographed from multiple an‐
gles, and only the photograph that best represented a given region 
was retained in the merged images. For the base of the colony, only 
areas of live tissue growth (and not the entire surface area) were 
included. The composite area of best represented regions across 
all photographs was termed the “standard area” for a colony. Both 
the standard area and area of living tissue within the standard area 
(“live area”) were determined using ImageJ (NIH). We calculated the 
proportional live tissue cover (live/standard area) for each colony 
at day 0 and day 60 and the difference between the initial and final 
live tissue cover.

2.6 | Polyp activity

Once per week, polyp activity was scored using a seven‐stage scale 
(Figure	 2):	 A	 score	 of	 0	 indicated	 that	 all	 polyps	 were	 retracted	

(Figure 2a,d), while a score of 6 indicated the full extension of all 
polyps within a colony (Figure 2b,e). Scores between 0 and 6 speci‐
fied intermediate states of increasing polyp extension (Figure 2b,e). 
A	seven‐stage	scale	was	used	to	enable	visually	apparent,	quantita‐
tive distinction between minor, moderate, and major polyp exten‐
sion, which can be observed as a colony moves from inactive to 
active	 (Supporting	 Information	 Video	 S1).	 Polyp	 extension	 values	
were recorded twice for both fed and starved corals. For fed cor‐
als, polyp extension was measured before feeding and 30 min after 
feeding, to distinguish between basal activity and post‐stimulus ac‐
tivity. For starved corals, polyp extension was measured at the same 
time points; however, no food was given to this treatment group. 
Therefore, polyp extension values were recorded twice for both 
treatment groups, but only the activity of fed colonies was observed 
in response to a feeding stimulus. Throughout the experiment, all 
measurements were taken within the same two‐hour range (11:00 hr 
and 13:00 hr) for each time point to avoid confounds inflicted by diel 
behavioral cycles.

2.7 | Quantification of chlorophyll density

Polyp color was used as a proxy for chlorophyll density as previously de‐
scribed	(Dimond	&	Carrington,	2007;	Burmester	et	al.,	2017).	Colonies	
were photographed on day 0 and day 60 against red‐green‐blue (RGB) 
color standards. Photographs were analyzed using custom scripts 
(Supporting	Information	S11)	on	MATLAB	R2007b	(The	MathWorks,	

F I G U R E  2   Polyp extension matrix for Astrangia poculata. Scores ranged from 0 to 6, with 0 indicating all polyps were fully contracted (a, 
d) and 6 indicating all polyps are fully extended (c, f). Scores between 1 and 5 represent an intermediate state of polyp extension (b) where 
different proportions of polyps within a colony are fully contracted (d), active but not fully extended (e), and fully extended (f)

(a) (d)

(e)

(f)

(b)

(c)
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Natick,	MA),	whereby	the	average	of	five	randomly	chosen	polyps	in	a	
colony was used as the final measurement for each color (red, green, 
and	blue).	RGB	quantities	were	condensed	to	a	single	principle	com‐
ponent	(representing	overall	polyp	color)	via	PCA	using	a	correlation	
matrix	with	oblimin	rotation.	Component	loadings	were	0.917	for	red,	
0.721	for	green,	and	0.870	for	blue	at	Day	0	and	0.898	for	red,	0.774	
for	green,	and	0.858	for	blue	at	Day	60.	Color	PCA	values	were	multi‐
plied	by	−1	so	that	increasing	color	intensity	would	be	associated	with	
increasing	PCA	values,	and	the	absolute	value	of	the	lowest	value	was	
added to all color measurements to normalize the data for comparison. 
As	prescribed	by	Dimond	and	Carrington	(2007),	transformed	PCA	val‐
ues	were	converted	into	chlorophyll	density	proxies	using	the	equation	
y = 0.044x2 + 0.0335x(R2 = 0.89). Photographs for 60 corals on day 0 
and 35 colonies on day 60 were not used in the analysis due to lighting 
inconsistencies between colonies and the RGB standards, reducing the 
sample size to 164 specimens at Day 0 and 189 specimens at Day 60.

2.8 | Photosynthetic efficiency

Photosynthetic efficiency (Fv/Fm) was measured for three randomly 
selected polyps in each colony in weeks 0, 2, 4, 6, and 8 using a 
Walz	Junior‐PAM	pulse‐amplitude	modulated	fluorescence	meter	as	
described in DeFilippo, Burmester, Kaufman, and Rotjan (2016) and 
Burmester	et	al.	(2017).	Briefly,	after	a	thirty‐minute	acclimation	to	
darkness, minimal fluorescence (F0) was measured by exposing pol‐
yps	to	6	s	of	far‐red	illumination	while	dark	adapted;	subsequently,	
maximal fluorescence (Fm) was determined after exposing polyps to 
a 0.6 s saturating pulse of 10,000 μmol m−2	s−1.	Maximum	quantum	
yield (Fv/Fm, unitless) represents the change between maximal and 
minimal fluorescence over the maximal fluorescence (Suggett et al. 
(2010)). The resulting Fv/Fm values were averaged for each of the 
three polyps measured in a given colony at each time point to obtain 
a single representative value.

2.9 | Statistical analysis

All	 statistical	 analyses	 were	 performed	 using	 stepwise	 general‐
ized	linear	and	logistic	mixed	models	(GLMMs)	on	the	lme4	(Bates,	
Maechler, Bolker, & Walker, 2015) and nlme (Pinheiro, Bates, 
DebRoy,	&	Sarkar,	2017)	packages	in	R	(R	Core	Team,	2013).	Model	
selection	was	based	on	Akaike’s	 information	criterion	(AIC)	scores,	
where the decision to include a new fixed‐effect variable or accept 
one	 iteration	of	a	model	over	another	 required	a	 reduction	 in	AIC	
of	at	 least	2	(Burnham	&	Anderson,	2002).	The	simpler	model	was	
always	chosen	 in	the	case	of	equal	models	 (Burnham	&	Anderson,	
2002).	Additionally,	 linear	models	were	 compared	using	maximum	
likelihood tests. For logistic models, odds ratios were calculated 
using exponentiated estimates. In order to control for the potential 
impacts of pseudo‐replication that could result from housing multi‐
ple colony pairs in the same tank, we used tank as a random effect in 
all statistical analyses.

Healing initiation (measured as the proportion of colonies in healing 
stages 2–4 at the end of the study) and healing success (measured as 

the proportion of colonies that achieved stage 4 at the end of the study, 
i.e.,	regenerated	fully	functional	polyps)	were	tested	using	Laplace‐ap‐
proximated	logistic	GLMMs.	The	proportional	change	in	wound	surface	
area and total colony surface area were analyzed using restricted max‐
imum	likelihood	(REML)‐fitted	linear	GLMMs.	In	order	to	test	for	the	
impacts of the treatment‐dependent variables as well as independent 
variables such as lighting and morphological features of the colony and 
the wound itself, we used a stepwise analysis using nutritional state, 
symbiont	state,	mean	photosynthetically	active	radiation	(PAR),	initial	
mass, and initial wound size as fixed‐effect variables for wound recov‐
ery models. For total colony surface area: Nutritional state, symbiont 
state,	initial	mass,	PAR,	and	wounding	treatment	were	used	as	variables.

Chlorophyll density and polyp extension were analyzed using 
REML‐fitted	 linear	 GLMMs	 over	 time	 (week)	with	 PAR,	wounding	
treatment, nutritional state, initial mass, and symbiotic state as ad‐
ditional variables. In order to control for repeated measurements 
made on the same individuals over time, colony identity was nested 
within tank as a random effect. Photosynthetic efficiency was ini‐
tially tested similarly; however, since time bore no statistically sig‐
nificant	effect,	a	mean	maximum	quantum	yield	was	calculated	over	
time for each individual colony. Mean photosynthetic efficiency was 
analyzed	 using	 a	 REML‐fitted	 linear	 GLMM	 using	 PAR,	 symbiont	
state, and nutritional state as fixed‐effect variables.

3  | RESULTS

3.1 | Assessing wound recovery

Both nutritional state and symbiont state played a significant role on 
healing	 initiation.	After	accounting	 for	 tank	grouping	using	 random	

F I G U R E  3   Proportion of colonies in landmark recovery stages 
(full polyp, tentacle nubs, undifferentiated tissue, or no healing) 
after 60 days. Bars in all shades of gray collectively represent 
healing initiation, while bars in dark gray represent developmental 
healing success. Numbers in bars signify total number of colonies in 
each stage
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effects, symbiotic colonies (31 colonies or 55.3%) were 3.021 times 
more likely than aposymbiotic colonies (18 colonies or 32.1%) to 
reach any of the three landmark developmental stages (undiffer‐
entiated tissue, tentacle nubs, or full polyps; Figure 3, Supporting 
Information	Table	S1).	Likewise,	nutritional	state	had	a	strong	impact	
on	healing	success:	Fed	colonies	(34	colonies	or	60.7%)	were	4.692	
times more successful than starved colonies (15 colonies or 26.8%; 
Figure 3). Both symbiont state and nutritional state (but not their in‐
teraction,	PAR,	 initial	mass,	 and	 initial	wound	size)	were	significant	
predictors	of	healing	 initiation	 (AIC	141.1,	symbiont	state:	p < 0.01, 
nutritional state: p < 0.001, Supporting Information Table S1). Only 
symbiont state significantly impacted healing success (the formation 
of	fully	functional	tentacles)	according	to	GLMM	analysis	(AIC	58.1,	
p < 0.0001, Supporting Information Table S2). In order to adjust for 
the small sampling of aposymbiotic colonies with full polyp develop‐
ment	 (1/56	colonies,	Figure	3),	a	second	GLMM	was	performed	on	
only the subset of symbiotic colonies. However, this model did not 
find	nutritional	state	to	be	significant	(AIC	43.7,	p	=	0.07,	Supporting	
Information Table S3), which could potentially derive from a lack of 
statistical	power.	Accounting	for	the	tank	random	effect,	symbiotic	
(7/56)	colonies	were	8.013	times	more	likely	than	aposymbiotic	colo‐
nies (1/56) to successfully complete the developmental recovery pro‐
cess (Figure 3).

Symbiont state, but not any other fixed effects (nutritional 
state,	PAR,	initial	mass,	and	initial	wound	size	or	their	interactions),	
was a significant predictor of proportional wound surface area re‐
covery	 (AIC	152.4,	p < 0.01, Supporting Information Table S4). On 
average,	 only	 the	 symbiotic	 fed	 treatment	 group	 (mean	±	SEM: 
0.079	±	0.096	proportional	units)	exhibited	wound	recovery	via	a	re‐
duction in wound size (shown here as a proportional increase in live 
tissue surface area; Figure 5). Wound size increased over time for 
all	aposymbiotic	colonies	 (mean	±	SEM:	 starved,	−0.3416	±	0.0748;	

fed,	 −0.2183	±	0.0928)	 and	 starved,	 symbiotic	 colonies	
(−0.1836	±	0.0874;	Figure	4).	While	no	group	demonstrated	full	re‐
covery	across	all	colonies,	the	greatest	proportion	(16/28	or	57.14%)	
of colonies with wound closure was for the symbiotic, fed treatment 
group. In the remaining groups, less than half of the wounded colo‐
nies exhibited live tissue recovery at the wound site: 9/28 (32.14%) 
for	aposymbiotic	fed,	8/28	(28.57%)	for	symbiotic	starved,	and	4/28	
(14.29%) for aposymbiotic starved corals.

3.2 | Colony‐wide tissue surface area

Overall,	 starved	 colonies	 (mean	±	SEM,	 −0.1253	 +/0.0126)	 experi‐
enced a greater (nearly double) decline in proportional colony sur‐
face	 area	 than	 did	 fed	 colonies	 (mean	±	SEM,	 −0.0728	±	0.0138;	
Figure	5).	According	to	the	most	parsimonious	model,	there	was	no	
significant impact of wounding treatment, symbiotic state, initial 

F I G U R E  4   Mean proportional change in wound surface area 
60	days	after	lesions	were	induced.	Error	bars	signify	standard	
error

F I G U R E  5   Mean proportional change in total colony tissue cover proportion after 60 days for control (C) and wounded (W) fed and 
starved	colonies	of	different	symbiont	states	(aposymbiotic,	symbiotic).	Error	bars	signify	standard	error
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mass,	 or	 PAR;	 however,	 nutritional	 state	 did	 play	 a	 slight	 but	 sig‐
nificant	role	in	predicting	changes	in	total	colony	surface	area	(AIC	
−354.9,	p	=	0.0283),	Supporting	Information	Table	S5).	Additionally,	
fed treatment groups experienced a higher proportion of colonies 
with increased total colony live tissue surface area (8/44 or 18.18% 
for	 symbiotic	 colonies;	7/43	or	16.28%	 for	 aposymbiotic	 colonies)	
than did starved colonies (3/51 or 5.88% for symbiotic colonies; 
5/52 or 9.61% for aposymbiotic colonies).

3.3 | Polyp activity

Fed colonies consistently exhibited higher polyp extension scores 
than starved corals both before and after a stimulus was provided 
to fed colonies (Figure 6). For both pre‐ and post‐stimulus models, 
wounding	treatment,	symbiotic	state,	PAR,	and	initial	mass	had	no	
significant impact on polyp extension (Supporting Information Table 
S6:	AIC	5874.1;	Supporting	Information	Table	S7,	AIC	5611.4).	The	
best models for both stimulus regimes selected nutritional state, 
time, and the interaction of time and nutritional state as significant 
predictive fixed effects (p < 0.05, Supporting Information Tables 

S6)and	 S7).	 In	 order	 to	 test	 for	 the	 impact	 of	 applying	 a	 food‐re‐
lated	stimulus,	an	additional	REML‐fitted	GLMM	was	performed	on	
the subset of fed corals (pre‐ and post‐stimulus). This model found 
both time and applied stimulus to be significant predictors of polyp 
extension	 (AIC	5642.9,	p < 0.05, Supporting Information Table S8), 
whereby polyp extension varied over time but was consistently 
higher than pre‐stimulus colonies after food was supplied.

3.4 | Quantification of chlorophyll density

Throughout the experiment, regardless of symbiotic state, there 
was no significant difference between fed and starved colo‐
nies	 in	 chlorophyll	 density	 (Figure	 7).	 Symbiotic	 colonies	 had	
greater	 approximated	 chlorophyll	 density	 (ACD)	 (mean	±	SEM, 
0.837	±	0.016	µg/cm)	 than	 aposymbiotic	 colonies	 (mean	±	SEM, 
0.347	±	0.013	µg/cm)	at	all	time	points	and	under	all	experimen‐
tal	 conditions	 (Figure	7).	The	most	parsimonious	model	 selected	
three significant fixed effects (symbiotic state, time, and the inter‐
action of nutritional state and time) as well as one non‐significant 
predictor—nutritional	 state	 (AIC	 −239.93,	 p < 0.05, Supporting 

F I G U R E  6   Mean polyp extension scores across a 60 day (8 weeks) period both before (pre‐) and after (post‐) a food stimulus had been 
supplied to the fed treatment group. Starved (symbiotic and aposymbiotic) colonies were provided no food stimulus

F I G U R E  7  Mean	chlorophyll	density	as	determined	by	RGB	color	values.	Error	bars	represent	standard	error
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Information Table S9). This analysis is congruous with a variation in 
ACD	between	the	initial	(Day	0)	and	final	(Day	60)	measurements	
and	a	consistent	decline	in	ACD	over	time	among	fed	corals.	The	
strongest predictor (by estimate), however, was symbiotic state 
(Supporting Information Table S9).

3.5 | Photosynthetic efficiency

Because time was not found to be a significant predictor of pho‐
tosynthetic	 efficiency,	 we	 analyzed	 maximum	 quantum	 yield	
(Fv/Fm, unitless) averaged across all five time points. Symbiotic, fed 
colonies exhibited significantly greater photosynthetic efficiency 
(mean	±	SEM,	0.394	±	0.011)	than	all	other	groups	at	all	time	points	
(Figure	8).	Mean	maximum	quantum	yield	was	similar	among	starved,	
symbiotic	 colonies	 (mean	±	SEM,	 0.394	±	0.011)	 and	 aposymbiotic	
colonies	 (mean	±	SEM;	 fed:	 0.382	±	0.009,	 starved:	 0.364	±	0.007;	
Figure 8). Consistent with these results, the model with best sup‐
port found symbiont state (p < 0.0001) and the interaction between 
symbiotic state and nutritional state (particularly among symbiotic 
and not aposymbiotic colonies, p < 0.0001) to be the most signifi‐
cant	predictors	of	photosynthetic	efficiency	(AIC	486.8,	Supporting	
Information Table S10).

4  | DISCUSSION

Our findings highlight some of the dynamic pathways through which 
coral colonies might obtain, distribute, and utilize energetic resources 
during the process of recovering from physical abrasion. This study 
suggests that autotrophy plays an important role in wound recovery 
and that there may be an important interplay and feedback (both 
positive	 and	 negative)	 between	 autotrophy	 and	 heterotrophy.	 As	
previously found in A. poculata, symbiotic state had a significant role 
on healing initiation and success as well as proportional surface area 
recovery	to	wounds	(Burmester	et	al.,	2017;	DeFilippo	et	al.,	2016).	

However, symbiont state alone was not enough to maximize healing 
potential. Starved‐symbiotic and fed aposymbiotic healed compara‐
bly, while there was an additive negative feedback between starved 
aposymbiotic corals (no nutrition from either source; little/no heal‐
ing), and an additive positive feedback between fed symbiotic corals 
(nutrition from both sources; highest healing ability) (Figures 3 and 
4).

While nutritional state impacted healing initiation, it had no 
statistical effect on healing success or surface area recovery, 
presumably because there was some autotrophic compensation. 
On the other hand, only nutritional treatment (and not symbiont 
state) appeared to play a role in total colony tissue maintenance. 
These findings suggest that energy might not be regulated or dis‐
tributed uniformly across levels of body organization, which is to 
be expected in a colonial organism that can translocate resources. 
This is consistent with other studies, where branching growth 
tips of Stylophora pistillata had significantly less 14C products 
than	fragments	from	below	branch	tips	(Rinkevich	&	Loya,	1983).	
Additionally,	both	symbiotic	state	and	 lesion	 induction	can	alter	
the	quantity	 and	directionality	of	 carbon	 translocation	across	 a	
coral	colony	(Fine	et	al.,	2002;	Oren	et	al.,	1997).	In	O. patagonica, 
preferential translocation to recovering tissue proceeded from a 
distance of 4–5 cm, but this phenomenon does not occur in colo‐
nies that were fully or partially (30%–80%) bleached (Fine et al., 
2002). The pace and completion of wound recovery are subject 
to the impacts of several intrinsic and extrinsic factors (such as 
colony size, wound size, wound location, temperature, disease 
state, sedimentation [as reviewed by Henry & Hart, 2005 and 
for	example:	Van	Veghel	&	Bak,	1994,	Meesters,	Noordeloos,	&	
Bak, 1994, Meesters, Wesseling, & Bak 1996, Meesters, Pauchli, 
&	Bak,	1997,	Nagelkerken	&	Bak,	1998,	Nagelkerken,	Meesters,	
&	 Bak,	 1999,	 Kramarsky‐Winter	 &	 Loya,	 2000,	 Rotjan	&	 Lewis,	
2005,	Edmunds,	2009,	Denis	et	al.,	2011,	Cameron	&	Edmunds,	
2014]), which also have the potential to interact with energy 
sourcing and nutritional state. The type of damage inflicted may 
also play a role in how energy is regulated or redirected to re‐
covery and other biological processes (DeFilippo et al., 2016). 
Dislodged colonies of Pocillopora damicornis with edge damage 
experience a decrease in overall energy allocation, resulting in 
higher mortality rates and decreased growth and reproduction 
(Ward, 1995). Meanwhile, fragmentation bears no significant im‐
pact on growth and mortality, but results in higher overall energy 
allocation and increased reproduction (Ward, 1995). Therefore, it 
is likely that tissue maintenance and damage are regulated differ‐
ently for small‐scale local wounds (e.g., the single polyp removal 
demonstrated in this study) and across a coral’s total colony tissue 
cover (e.g., DeFilippo et al., 2016), potentially due to underlying 
compartmentalized nutritional gradients across an energetically 
integrated colony (Conlan, Humphrey, Severati, & Francis, 2018). 
Interestingly, our results indicate that symbiont state is more 
important to the regulation of tissue surface area at the wound 
level while overall maintenance of total colony tissue cover is 
more greatly impacted by the presence or absence of prey items. 

F I G U R E  8  Mean	maximum	quantum	yield	(Fv/Fm) across a 60‐
day	(8	weeks)	period.	Error	bars	signify	standard	error
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Therefore, there could be an added cost to lesion recovery during 
and after bleaching events that may not be fully supplemented 
via heterotrophy. This is consistent with tropical corals that rely 
more heavily on autotrophy; for example, wounded Orbicella col‐
onies recovered more slowly from bleaching compared to intact 
colonies	(Rotjan	et	al.,	2006).	Additionally,	this	added	cost	may	be	
compounded by the influence of other external disturbances to 
wound	 recovery,	 such	 as	 ocean	 acidification	 (Edmunds	&	Yarid,	
2017)	 or	 elevated	 sea	 surface	 temperatures	 (Bonesso,	 Leggat,	
&	 Ainsworth,	 2017).	 Since	 recent	 evidence	 also	 suggests	 that	
physiological integration (i.e., high integration) may increase risk 
of bleaching stress (Swain et al., 2018), understanding how cor‐
als utilize, store, and distribute energy from multiple nutritional 
sources may prove invaluable to conservation efforts.

Both the availability (stimulus) of prey items and the history of 
heterotrophic opportunity significantly influenced polyp foraging 
behavior. Fed colonies maintained a higher degree of polyp expan‐
sion than unfed colonies at all time points, and the introduction 
of food particles induced even greater expansion. In tropical, ob‐
ligate symbiotic scleractinians, symbiotic photosynthetic energy 
resources have been shown to influence heterotrophic activity. 
Colonies of Pocillopora damicornis maintained under dark conditions 
for 2 weeks ingested less Artemia nauplii than those in lighted con‐
ditions, suggesting a dependence on energy from photosynthesis 
to	meet	the	metabolic	needs	required	for	sustainable	foraging	be‐
havior	(Clayton	&	Lasker,	1982).	In	the	present	study,	there	was	no	
observed statistical difference in foraging activity between symbi‐
otic and aposymbiotic colonies. These results are similar to those 
found for other facultatively symbiotic corals. Piniak (2002) found 
that prey capture efficiency varied by prey type and flow rate, but 
observed no difference between (fed) symbiotic and aposymbi‐
otic colonies of Oculina arbuscula. Coral colonies may also forage 
advantageously regardless of photosynthetic activity, as even ob‐
ligate, tropical corals have been shown to seek heterotrophic nutri‐
tion	even	if	metabolic	carbon	requirements	are	met	via	autotrophy	
(Ferrier‐Pagès,	Allemand,	Gattuso,	&	Jaubert,	1998;	Grottoli	et	al,	
2006).	Additionally,	 the	 regular	 availability	 of	 heterotrophic	 food	
sources increased foraging activity in fed colonies both with and 
without a food stimulus. Therefore, colonies with stable nutritional 
inputs are better able to maintain a fuller, long‐term foraging effort, 
allowing them to not only respond to a food stimulus, but to also 
survey their environment. This suggests a heterotrophic, rather 
than autotrophic, mechanism for inducing appropriate behavior 
to meet metabolic demands in temperate, facultatively symbiotic 
corals.

In this study, while the photosynthetic efficiency (maximum 
quantum	 yield)	 of	 fed	 symbiotic	 colonies	 was	 significantly	 higher	
than that of all aposymbiotic (fed and starved) colonies, there was no 
difference between aposymbiotic colonies and starved‐symbiotic 
colonies. This phenomenon does not appear to derive from a loss 
of chlorophyll, which suggests an energetic cost to symbiont pho‐
tosynthesis that must be fulfilled via host heterotrophic means. In 
fact, zooxanthellae have been documented to exhibit heterotrophic 

behavior inducing a parasitic metabolic burden on the facultatively 
symbiotic anemone Aiptasia pulchella (Steen 1986; Baker, Freeman, 
Wong, Fogel, & Knowlton, 2018). Previous studies have docu‐
mented an enhancement to photosynthesis in temperate corals after 
feeding	 (Jacques	 &	 Pilson,	 1980).	 Similarly,	 rates	 of	 photosynthe‐
sis increased (2–10×) after the introduction of heterotrophic food 
sources to Stylopora pistilla	 (Houlbrèque	 et	 al.,	 2003).	 The	decline	
in photosynthetic efficiency for starved, symbiotic colonies could 
also potentially be attributed to their higher rates of polyp contrac‐
tion. A. poculata	go	 through	a	winter	quiescence	phase,	when	pol‐
yps	enter	a	state	of	metabolic	dormancy	(Jacques	et	al.,	1983)	and	
tentacles	no	 longer	elicit	 a	 tactile	 feeding	 response	 (Grace,	2017).	
Quiescence corresponds with wintertime food scarcity in New 
England	due	to	relatively	oligotrophic	waters	compared	to	summer	
nutrient conditions and corresponding plankton blooms (Grace, 
2017).	During	quiescence,	A. poculata	colonies	 in	New	England	ex‐
perience	a	decline	in	photosynthetic	efficiency	and	in	ACD	(Dimond	
&	 Carrington,	 2007).	 Although	 the	 cold	 wintertime	 temperatures	
have	assumed	to	be	a	driver	of	quiescence	behavior,	the	polyp	be‐
havior and photosynthetic efficiency of starved corals in our exper‐
iment	suggest	 that	quiescence	may	 instead	have	a	nutritional	cue,	
since ambient temperatures (18°C) were maintained throughout the 
experiment. Photoperiod and/or angle of incidence may also play a 
role, as Fabricius and Klumpp (1995) found reduced photosynthetic 
productivity	and	 increased	required	 levels	of	 irradiance	to	achieve	
photosynthetic compensation and saturation in contracted large‐
polyped	soft	corals.	Though	again,	PAR	was	maintained	throughout	
the 60 days of this experiment.

The dynamic relationship between Astrangia poculata and 
Symbiodinium psygmophilum is well‐documented, with both symbi‐
otic states characterized across its range (Dimond et al., 2013), and 
the potential for state‐switching under experimental conditions 
(Dimond	&	Carrington,	 2007).	 The	 aposymbiotic	 state	 is	 common	
in nature (Grace, 2004) despite relevant losses in recovery ability 
(Burmester	et	al.,	2017;	DeFilippo	et	al.,	2016)	as	well	as	resilience	to	
stress (Holcomb, Cohen, & McCorkle, 2012; Holcomb, McCorkle, & 
Cohen, 2010). It has been hypothesized that the persistence of the 
aposymbiotic life history may be due, in part, to the relative reduc‐
tion	in	polyp	loss	under	cold	temperatures	during	winter	quiescence	
(Dimond et al, 2013). Despite its thermal tolerance and resilience 
to chronic cold exposure (Thornhill, Kemp, Bruns, Fitt, & Schmidt, 
2008), S. psygmophilum experiences a rapid decline and cessation 
in	maximum	quantum	yield	at	winter	temperatures.	Combined	with	
metabolic dormancy and a lack of feeding response, the demon‐
strated decline in photosynthetic efficiency in the absence of het‐
erotrophy in implied energetic cost of these symbionts to the host 
coral could explain the reduced polyp loss (and correspondingly 
higher biomass compared to symbiotic corals) of aposymbiotic colo‐
nies under overwinter conditions.

While feeding behavior was ensured among all polyps for each 
colony,	 this	 study	 did	 not	 specifically	 determine	 the	 quantity	 of	
food	consumed	nor	the	amount	of	carbon	incorporated.	Likewise,	
while	 we	 recorded	 light	 availability	 (PAR)	 and	 photosynthetic	



10814  |     BURMESTER ET al.

efficiency (Fv/Fm), neither of these measurements provide accurate 
insight	 into	 photosynthetic	 carbon	 production	 for	 this	 coral.	 As	
such, it would be difficult to infer how specific pathways might be 
impacted by differences in symbiont state and experimental feed‐
ing	treatments	on	the	cellular	level.	Additionally,	these	results	rep‐
resent the nutritional dynamics of a single, facultatively symbiotic 
species that may not be directly applicable to tropical coral spe‐
cies with higher dependencies on autotrophic pathways. However, 
the results of this study demonstrate significant and predictable 
morphological and stress‐tolerant responses that influence key life 
history strategies in temperate corals and broadly highlight the im‐
portance in understanding the complexity of energy sourcing when 
establishing energy budgets for maintaining organismal health.
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