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Here, we adapt the concept of transformational thermodynamics, whereby

the flux of temperature is controlled via anisotropic heterogeneous diffusivity,

for the diffusion and transport of mass concentration. The n-dimensional,

time-dependent, anisotropic heterogeneous Fick’s equation is considered,

which is a parabolic partial differential equation also applicable to heat diffu-

sion, when convection occurs, for example, in fluids. This theory is illustrated

with finite-element computations for a liposome particle surrounded by a

cylindrical multi-layered cloak in a water-based environment, and for a

spherical multi-layered cloak consisting of layers of fluid with an isotropic

homogeneous diffusivity, deduced from an effective medium approach. Initial

potential applications could be sought in bioengineering.

1. Introduction
This report aims to target already-existing systems that could enable the use of

cloaking concepts in order to achieve control of three-dimensional processes,

using coated spheres consisting of concentric layers of homogeneous isotropic

diffusivity. Various applications already implicate the use of concentric bilayered

vesicles, one example being liposomes used for drug delivery [1]. Liposomes are

concentric bilayered vesicles in which an aqueous volume containing a water-sol-

uble drug is enclosed by a membranous lipid bilayer composed of natural or

synthetic phospholipids. One popular type of liposomes, known as the stealth

liposomes [2], are highly stable, long-circulating liposomes whereby polyethylene

glycol has been used as the polymeric steric stabilizer [3]. Stealth and other

liposomes use the concept of ‘invisibility’ in order to hide and evade the

immunosystem by coupling water-soluble polymers to the lipid heads. Therefore,

the polymer part of the molecule is dissolved in the aqueous environment, thus

masking the liposomes from immune cells in the blood [4]. Other alternative

applications to liposomes are nanoparticles based on solid lipids (SLNs).

These are composed of SLNs stabilized with an emulsifying layer in an aqueous

dispersion. This has benefits such as drug mobility. The release of the

drug-enriched core of SLN is based on Fick’s first law of diffusion [5–7].

Another similar idea to the one presented in this paper is the concept of

optical transparency, resulting from the use of preparative reagents for the

subcellular localization of fluorescently labelled tissues and organisms [8].

High-resolution imaging techniques, such as laser scanning microscopy, are

able to provide high-resolution images of biological samples. However, the res-

olution of imaging whole organisms, such as embryos by fluorescently labelling

certain components, becomes somewhat distorted owing to the biological

samples containing optically opaque regions. These opaque components are

able to transmit, reflect, scatter as well as absorb light, which can lead to

image distortions. Therefore, certain commercially or non-commercially avail-

able reagents are available that are known as optical-clearing reagents [8,9]

and can render tissues and organisms transparent.

Here, we suggest a novel application to the fast-growing research area of cloak-

ing, whereby a better control of light can be achieved through transformational

optics, following the pioneering theoretical works of Pendry et al. [10] and
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Figure 1. Two-dimensional simulation for diffusion of chemical species’ con-
centration: concentration is normalized to 1 mol m23 on the left boundary
with a flux boundary condition on right boundary with mass transfer coeffi-
cient of 5 m s21, and symmetry boundary conditions on top and bottom;
two time point (t ¼ 1 � 10 – 6 s (a,c); t ¼ 1.5 � 10 – 5 s (b,d )) simula-
tions of mass diffusion in surrounding medium with diffusion constant of
2.1 � 1029 m s22 (CO2 – water) of a circular nano-size particle (nanobody)
with a diameter of 1.5 � 1028 m of diffusion constant 1.9 � 10211 m s22

(POPC-dehydrated). (b,d) Application of a cloak, surrounding the nanobody,
which is of inner radius 1.5 � 1028 m and outer radius 3.0 � 1028 m
and consists of five concentric layers. The first, third and fifth layers from
the inside the cloak outwards have a diffusivity of 4.586 � 10210 m s22

(sucrose in water) and respective thicknesses 4.25 � 1029, 5.25 � 1029

and 4 � 1029 m. The second and fourth layers have diffusivities of
11 � 1026 m s22 (gas ethanol – air) and 8.4 � 1029 m s22 (liquid
CO2 – methanol) and identical thickness 7.5 � 10210 m. Note that in
(b,d ) isovalues of concentration (black curves) are bent around the nanobody,
whereas they remain aligned outside the cloak. (Online version in colour.)
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Leonhardt [11], to diffusion processes in biophysics. Pendry et al.
[10] demonstrate the possibility of designing a cloak that renders

any object inside it invisible to electromagnetic radiation (using

the covariant structure of Maxwell’s equations), whereas

Leonhardt [11] concentrates on the ray optics limit (using confor-

mal mappings in the complex plane for Schrödinger’s equation).

In both cases, the cloak consists of a meta-material whose

physical properties (permittivity and permeability) are spa-

tially varying and matrix-valued. This route to invisibility is

reminiscent of the work of Greenleaf et al. [12] in the context of

electrical impedance tomography. Interestingly, the isomor-

phism between the anisotropic conductivity and thermostatic

equations makes it possible to control the pathway of heat flux

in a stationary setting, as observed by Fan et al. [13] (see [14]

for analogous cloaking in electrostatics) and experimentally vali-

dated by Narayana & Sato [15]. However, time plays an essential

role in diffusion processes, and manipulation of heat flux

through anisotropic diffusivity requires greater care in a transi-

ent regime [16,17]. Interestingly, anisotropic diffusion is a well-

known technique in computer vision [18,19] aiming to reduce

image noise without removing significant parts of the image

content, typically edges, lines or other details that may be

important in the interpretation of the image [20]. Spatio-

temporal differential equations of a reaction–diffusion type

also appear in organogenesis models for the developments of

limbs, lungs, kidneys and bones [21].

The mathematical model described in this report is based

on Fick’s laws of diffusion, derived by Fick [22], which

describes diffusion processes governing various contexts (con-

duction of electricity, heat, concentration of chemical species,

etc., and even grey-scale image in computer vision). Here,

the diffusion coefficient is spatially varying (heterogeneous)

and matrix-valued (anisotropic). We show numerically that

control can be achieved in three-dimensional processes (with

a focus here on bioengineering applications), using coated

spheres consisting of concentric layers of homogeneous isotro-

pic diffusivity, which mimic certain anisotropic heterogeneous

diffusivity. Previous studies have only shown the control of

diffusion processes with two-dimensional transformational

thermodynamics [13,15,16]. Using a similar strategy, we extend

previous works to three-dimensional diffusion processes and

also discuss the issue of convection.
2. Results and discussion
Recent work used a change of coordinates in the time-dependent

heat equation [23] to achieve a marked enhancement in the

control of heat fluxes in two-dimensional media described

by an anisotropic heterogeneous conductivity [16]. However,

it has been known since the work of Fick [22] that there is a

deep analogy between diffusion and conduction of heat or

electricity: because of Fick’s work, diffusion can be described

according to the same mathematical formalism as Fourier’s

law for heat conduction, or Ohm’s law for electricity. We

would like to use similar analogies between diffusion of

heat and concentration of chemical species to propose an

original strategy towards cloaking in bioengineering/chemi-

cal engineering. A possible application is shown in figure 1,

through the creation of different layers. This concept has

already been used to a certain extent in multi-vesicular lipo-

somes that consist of bilayers of phospholipids. Using the

diffusivity values published for a certain lipid-conjugated
drug (1.9 � 10211 m s22 for dehydrated 1-palmitoyl-2-

oleoyl-sn-glycero-3 phosphocholine (POPC)) and coating

these nano-sized particles (30 nm) with different layers of

sucrose (diffusivity of 4.586 � 10210 m s22) and also thin

layers containing substances of higher diffusivities, results

in the initial particle becoming invisible in the chemical

environment (diffusivity value of 2.1 � 1029 �m s22),

which is used to represent an environment such as blood

whose main constituent plasma is essentially composed of

water [24,25]. This can be seen with the comparison of the

distribution of concentration without the cloak (figure 1a,c)

and with the cloak (figure 1b,d ). The consequences of the

additional layers are more prominent at longer time points

compared with shorter time points, t ¼ 1.5 � 10– 5 s (figure

1c,d ) compared with t ¼ 1 � 10– 6 s (figure 1a,b). Here, the

effect of the different layers aids in maintaining high and uni-

form concentrations of a substance in the centre of the

liposome for longer periods of time. This could have advan-

tages in increasing drug stability for longer circulation times.

Potential fabrication of this alternative liposome would

involve additional procedures to the classical liposome fabri-

cation steps currently used. More specifically, chloroform or

chloroform–methanol or mixing with the lipid and hydropho-

bic organic solvents could still be used for the formation of
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vesicles. The appropriate removal of solvents involving rotary

evaporation for extended time periods could still be used. This

could be followed by frozen storage before consequent steps.

Second, replacing the classical hydration step by using an aqu-

eous medium but with a higher concentration of sucrose

compared with traditional sucrose concentrations (with mix-

tures of glycine or alanine, which share the same diffusion

coefficients and are also traditionally used for coating drugs),

would allow the creation of sucrose layers during the for-

mation of micelles. Choosing appropriately sized vesicles

would involve sonication techniques and analysis using tech-

niques used for vesicular structures such as dynamic light

scattering equipment and transmission electron microscopy.

Layers containing the gaseous phase or an appropriate

replacement of a high diffusivity value (in the range of

1026 to 1025 m s22) would be the most complicated steps

in the fabrication process. In practice, it would be more feasi-

ble to replace the gaseous layers used in the numerical

stimulations by media of similar diffusivity values, owing to

difficulties in initial fabrication and stability or maintenance

of these layers.

It should be noted that the examples of specific substances

chosen for the simulations can easily be replaced by alternative

appropriate substances with the same diffusion coefficient

values. In addition, if potential cloaking applications are non-

objectionable to the use of chloroform, then it should be

noted that this replacement has already been calculated to be

a good substitute for the sucrose layers (layer one, three and

five). This is shown in the electronic supplementary material,

figure S1, wherein there is improved cloaking as the isovalue

curves for concentration outside the multi-layered structure

are nearly perfectly aligned (figure 1b,d) in contradistinction

to what can be observed in figure 1a,c for a microparticle not

surrounded by a cloak. Electronic supplementary material,

figure S2 shows that the maximum concentration within the

microparticle is always lower when it is surrounded by the

cloak (and that its variation is markedly reduced because of

the cloak). This is demonstrated by calculating the concentration

at all points along a line passing through the centre of the nano-

particle without (see the electronic supplementary material,

figure S2a,c) and with (see the electronic supplementary material,

figure S2b,d) a surrounding cloak. Note that this is achieved with

simply five concentric layers, three of which have same diffusiv-

ity. A similar type of profile for concentration can be observed in

the electronic supplementary material, figure S4, for a three-

dimensional cloak with 20 layers described in the electronic

supplementary material, figure 3, whose design requires a

detailed analysis of the n-dimensional-transformed Fick’s

equation. This is the object of §2.1.

2.1. n-Dimensional-transformed convection – diffusion
equation

We consider the convection–diffusion equation that is a para-

bolic partial differential equation combining the diffusion

equation and the advection equation. This equation describes

physical phenomena where particles or energy (or other

physical quantities) are transferred inside a physical system

owing to two processes: diffusion, which results in mixing

and transport of chemical species without requiring bulk

motion (it is a random walk of particles/molecules towards

certain equilibrium state, i.e. homogeneous distribution of

chemical species inside a region); and convection, whereby
collective movements of ensembles of molecules take place

(usually in fluid) which, in essence, use bulk motion to

move particles from one place to another place [26]. In its

simplest form (when the diffusion coefficient and the convec-

tion velocity are constant and there are no sources or sinks),

the convection–diffusion equation in a domain V (with a

chemical source outside) can be expressed as [27]

@c
@t
¼
X

i;j

@

@xi
kijðxÞ

@c
@xj

� �
�
X

i

@

@xi
vic; ð2:1Þ

where c represents the mass concentration (in biochemistry)

evolving with time t . 0, k is the chemical diffusion in

units of m3 s– 1 and v is the velocity field. We note that

Fick’s equation is written in a general form, where x ¼
(x1, . . . ,xn) is a variable in an n-dimensional space. Accord-

ingly, sums stretch from i, j ¼ 1, . . . n (here applications are

sought in two- and three-dimensional spaces, so n ¼ 2 or

3). It is customary to put matrix k in front of the spatial

derivatives when the medium is homogeneous. However,

here we consider a heterogeneous (possibly anisotropic)

medium; hence, the spatial derivatives of k might suffer

some discontinuity (mathematically, partial derivatives are

taken in distributional sense [28]; hence, transmission con-

ditions ensuring continuity of the heat flux krc are

encompassed in (2.1)). Physically, the diffusion flux �krc
measures the amount of substance that will flow through a

small volume during a short time-interval (mol m23 s– 1).

Upon a change of variable x ¼ (x1, x2, x3)! y ¼ (y1, y2, y3)

described by a Jacobian matrix J such that Jij ¼ @yi/@xj, (2.1)

takes the form:

1

detJij

@c
@t
¼
X
i;j;k;l

@

@yi

1

detJij
JikkklJ

T
jl
@c
@yj

� �
�
X

i;j

1

detJij
JT
ij
@

@yi
vic;

ð2:2Þ

where k0 ¼ JkJT detðJÞ�1 and v0 ¼ det(J)21JTv are the trans-

formed diffusivity and velocity, respectively.

2.2. Jacobian matrix and transformed diffusivity for
cloaking

Let us now consider the following transform [12]

FðxÞ ¼ 1þ 1

2
jxj

� �
x
jxj ; ð2:3Þ

where jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ � � � þ x2

n

q
: This function is smooth

except at point O ¼ (0, . . . ,0). It blows up the point O to the

hypersphere of radius jxj ¼ 1, while mapping the hyper-

sphere of radius jxj ¼ 2 to itself. Moreover, F(x) ¼ x at the

boundary jxj ¼ 2.

Defining the Jacobian matrix J as Jij¼ @Fi/@xj, we find

J ¼ 1þ 1

2
jxj

� �
I� 1

jxj x̂x̂T; ð2:4Þ

where I is the n � n identity matrix and x̂ ¼ x=jxj: This

Jacobian is well defined everywhere except at x ¼ 0.

We note that J is symmetric, x̂ is an eigenvector with

eigenvalue 1/2 and x̂? is an n 2 1 dimensional eigenspace

with eigenvalue 1/2 þ 1/jxj in a space of dimension n.

The determinant of the Jacobian follows easily:

detðJÞ ¼ 1

2
1þ 1

2
jxj

� �n�1

¼ ðjxj þ 2Þn�1

2njxjn�1
: ð2:5Þ
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There are two cases of practical importance: n ¼ 2, for

which writing r ¼ jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
¼ 2ðjyj � 1Þ ¼ 2ðr0 � 1Þ

with obvious notations, one can see that the eigenvalues

of the matrix of transformed diffusivity k0 behave like

r and r21 as r! 0; n ¼ 3 for which writing r ¼ jxj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

q
¼ 2ðjyj � 1Þ ¼ 2ðr0 � 1Þ; one can see that the

matrix of transformed diffusivity k0 has one eigenvalue that

behaves like r2 and two behave like r0 as r! 0. Interestingly,

for n � 4, one eigenvalue of k0 behaves like rn21 and the

remaining n 2 1 behaves like rn23. This might be of use

in computer vision [18]. This shows that only the case

n ¼ 2 leads to a singular matrix of diffusivity k0 at the inner

boundary of the cloak (the circumferential eigenvalue becomes

infinite), a fact already noticed in the context of cloaking for

electric impedance tomography [12,29]. However, this matrix

is always degenerate at the inner boundary of the cloak, irre-

spective of the space dimension. Similarly, v0 is a null vector

on the inner boundary of the cloak only in space dimension

2. This analysis provides evidence that spherical cloaks

should be easier to construct than circular cloaks.

The parameters of the biocloak need to be further analysed

in both polar and spherical coordinates in order to simplify the

cloak’s design and the numerical implementation.
2.3. On the choice of reduced parameters for a biocloak
in polar and spherical coordinates

We first note that if we multiply both sides of (2.2) by detJij

and let detJij inside the partial space derivatives, then we

retrieve the usual form of the convection–diffusion equation,

albeit with anisotropic coefficients. We realize this is not

legitimate in general as by doing so we add an extra termP
i;j;k;l JikkklJT

jl ð@=@yiÞðdetJij@c=@yjÞ in (2.2), but we numeri-

cally checked that this term can be sufficiently small that

it does not significantly affect the solution of the transformed

equation (2.2). Physically, this manipulation results in preser-

ving the direction of the diffusion flux �k0rc (because detJij

is a scalar). However, it affects its continuity (because it is

heterogeneous). Such a manipulation is known in the

transformational optics community to lead to transformed

equations with reduced parameters [30]. We now observe

that from the function F(r) ¼ R1 þ r(R2 2 R1)/R2 counterpart

of (2.3), wherein R1 ¼ 1 and R2 ¼ 2, in polar (r, u) (resp.

spherical (r, u, f )) coordinates, which blows up a point O
to the disc (resp. the sphere) of radius R1 and maps the disc

(resp. the sphere) of radius R2 to itself in polar (r’, u’) (resp.

spherical (r’, u’, f0 )) coordinates, the transformed diffusivity

can be expressed for a cylindrical cloak as:

k0r0 ¼
R2

R2 � R1

� �2 r0 � R1

r0

� �2

and k0u 0 ¼
R2

R2 � R1

� �2

;

ð2:6Þ

and for a spherical cloak as

k0r0 ¼
R2

R2 � R1

� �4 r0 � R1

r0

� �4

and k0u 0 ¼ k0
f0
¼ R2

R2 � R1

� �4 r0 � R1

r0

� �2

;

9>>>=
>>>;

ð2:7Þ

where R1 and R2 are the interior and the exterior radii of the

cloak so designed. One can note that when r0 tends to R1, k0r0
goes to zero and k0

u0 remains constant in (2.6), whereas k0r0 , k
0
u0

and k0
f0

all go to zero in (2.7), albeit with different speeds.
This means that thanks to the reduced coefficients the

matrix of transformed diffusivity k0 now has one eigenvalue

that behaves like r2 and one like r0 as r! 0 in the cylindrical

case, i.e. we no longer have an eigenvalue that blows up on

the inner boundary of the cloak. Likewise, we now have

one eigenvalue that behaves like r4 and two like r2, instead

of one behaves like r2 and two like r0 when r tends to zero,

if we use reduced parameters in the spherical case. Thus,

reduced parameters are an obvious choice in the cylindrical

case, because k0u 0 is a constant in (2.6), and were implemented

for thermal cloaks in [16,17]. However, in spherical case,

k0u 0 ¼ k0
f0

are no longer constant in (2.7). Nevertheless, we

need to use such reduced coefficients to get rid of the coeffi-

cient sitting in front of the time derivative in (2.2), since the

physical meaning of such a heterogeneous coefficient is

unclear in Fick’s equation (in the heat equation, it would be

a heterogeneous product of density by specific heat capacity).

These heterogeneous anisotropic parameters can be approxi-

mated by piecewise constant isotropic coefficients, making use

of an effective medium approach, as detailed in the supplemen-

tary material, which justifies the implementation of multi-

layered cylindrical and spherical cloaks with concentric isotropic

homogeneous thin layers. The choice of reduced parameters led

in Guenneau et al. [16] to a multi-layered thermal cloak with pie-

cewise constant and high-contrast diffusivity, and we refer to

values of diffusivity and computations therein for the cloaking

effect for a concentration of chemical species in two-dimensional

setting with 20 layers (there is a one-to-one correspondence

between Fourier’s heat equation and Fick’s equation, the

unknown being either the temperature or the concentration).

However, figure 1 of the current paper clearly shows cloaking

can be achieved with simply five layers with moderate contrast

in diffusivity. Moreover, in the spherical case, the choice of

reduced parameters leads to a different set of parameters (see

the electronic supplementary material) for the multi-layered

biocloak, which we now study numerically.
2.4. Numerical illustration
For illustrative purposes, we focus here on a spherical

cloak consisting of 20 concentric layers with diffusivity

ranging from 2.5 � 1026 to 1.7 � 1022 m2 s21, which has

been designed for a surrounding medium of diffusivity

1 � 1025 m2 s21. The inner sphere inside the cloak is also of

diffusivity 1 � 1025 m2 s21. Further details can be found in

the supplementary material. In order to emphasize the

power of the approach, we consider a cloak substantially

larger than that in figure 1. Indeed, as observed in Schittny

et al. [17] in the context of the transformed heat equation, if

we rescale the coordinate system as x! bx and the time vari-

able t! b2t with a dimensionless factor b, the transformed

Fick’s equation (2.2) remains unchanged, provided we

assume velocity is ruled out. More precisely, the cloak of

figure 1 has been scaled up by a factor b ¼ 102, i.e. its inner

radius 1.5 � 1026 m and its outer radius 3.0 � 1026 m in

figure 2. Accordingly, time should be scaled up by a factor

b2 ¼ 104. We show the distribution of concentration for a selec-

tion of time points ranging from t ¼ 5 � 1023 s to t ¼ 2.5 �
1022 s in figure 2. Moreover, in figure 2, the cloak is in the pres-

ence of a chemical species with concentration normalized to

1 mol m23 for the sake of simplicity (taking any other concen-

tration C will simply lead to a colour scale in figures 2 and 3

ranging from 0 to C mol m23), which is set on the right-hand
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Figure 2. Three-dimensional plot of concentration (mol m23): (a) t ¼
0.005 s; (b) t ¼ 0.01 s; (c) t ¼ 0.015 s; (d ) t ¼ 0.025 s. It has been
checked that three-dimensional plots are as in (d ) for t . 0.025 s (steady
state). Spherical cloak of inner radius 1.5 � 1026 m and outer radius
3.0 � 1026 m consists of 20 concentric layers with diffusivity ranging
from 2.5 � 1026 to 1.7 � 1022 m2 s21. The core and outer medium
have same diffusivity 1.5 � 1025 m2 s21. (Online version in colour.)
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Figure 3. Two-dimensional plot of concentration (mol m23) corresponding to a
slice of three-dimensional plot in figure 2 in the horizontal plane passing
through the centre of the cloak: (a) t¼ 0.005 s; (b) t ¼ 0.01 s; (c) t ¼
0.015 s; (d ) t ¼ 0.025 s. It has been checked that two-dimensional plots are
as in (d ) for time steps t . 0.025 s (steady state). (Online version in colour.)
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side of the computational domain (a cube of sidelength 8.0 �
1026 m). Note that the cloaking mechanism is preserved if

we scale up or down the diffusivities in the inner region, the

cloak and the surrounding medium by the same parameter.

On the opposite (left-hand) side, we set the usual flux condition

(krc) . n ¼ N0 þ kc(cb 2 c) (with c the, as yet unknown, sol-

ution to (2.1) and n the unit outward normal to each side of

the cube), where k varies within the range given in the caption

of figure 2 inside the layers of the cloak (for more detail, see the

electronic supplementary material), and k ¼ 1 m2 s21 in the

inner core and in outside the spherical cloak, and kc is

the mass transfer coefficient, N0 is the inward flux and cb

is the bulk concentration of chemical species in the

cubic domain. Here, we consider kc ¼ 5 mol s21, N0 ¼

0 mol m22 and cb ¼ 0 mol m23 s21. Finally, we set insulation

(or equivalent symmetry) conditions ðkrcÞ � n ¼ 0 on the

four remaining sides of the cube. More detail on implemen-

tation of such diffusion models in finite elements may be

found in Morton [31], wherein cases of isotropic and anisotro-

pic conductivity are considered (however, this predates

transformational optics, so no cloaking is studied there).

This phenomenological model of a biocloak exhibits the

following features: the concentration of chemical species

nearly vanishes inside the inner sphere of the biocloak at

time point t ¼ 0.005 s (figure 2a). In the optical setting, such

a sphere is called invisibility region, as no scattering obstacle

placed inside this region can be detected [10–12]. In a bio-

physical setting, this zone may act as a protection from any

potential chemical attack. However, the concentration of

chemical species within the inner sphere steadily increases

over time until it reaches half the value of the concentration

which is set on one side of the cubic computational domain

(figure 2d ). The value of this threshold reached at steady

state (from time point t ¼ 0.25 s onwards), depends upon

the distance from the centre of the cloak to the source: the

nearer the cloak from the source, the larger the value of the

threshold. We note that the concentration is always uniform

inside this inner sphere at any time point (figure 2a–d).
Such a biocloak might therefore offer some kind of protection

from attack of chemical species because the concentration is

uniform in its inner sphere at any time point and the concen-

tration therein at any time point is always smaller than it

would be without a cloak (see the electronic supplementary

material, figure S4). Moreover, it never exceeds a value,

which in our configuration is half the applied concentration

(it can be seen that this is due to the fact that the cloak has

its origin in the centre of the cubic domain).
3. Conclusion
In conclusion, in this report, we introduce a coordinate

transformation approach to control diffusion processes via ani-

sotropy with an emphasis on concentration of chemical species

for potential applications in biophysics or bioengineering. Not

only does the form of the transformed convection–diffusion

equation involve an anisotropic heterogeneous diffusivity,

but it also requires a spatially varying coefficient in front of

the time derivative, as well as an anisotropic heterogeneous

velocity field. In order to be able to design a structured cloak

for such diffusion processes, we have simplified this trans-

formed equation by introducing the so-called reduced

coefficients, which preserve the direction of the diffusion flux

(but create an impedance mismatch between the cloak and sur-

rounding medium) and by further assuming a small velocity in

a homogenization approach. Our theoretical results are

exemplified with numerical simulations in two- and three-

dimensional settings. It should be emphasized that the issue

of convection, which is of particular importance for diffusion

in fluids, such as in living organisms, will require further

comprehensive studies.
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