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Objective: To develop and evaluate a sepsis prediction model for the general ward

setting and extend the evaluation through a novel pseudo-prospective trial design.

Design: Retrospective analysis of data extracted from electronic health records (EHR).

Setting: Single, tertiary-care academic medical center in St. Louis, MO, USA.

Patients: Adult, non-surgical inpatients admitted between January 1, 2012 and June

1, 2019.

Interventions: None.

Measurements and Main Results: Of the 70,034 included patient encounters,

3.1% were septic based on the Sepsis-3 criteria. Features were generated from the

EHR data and were used to develop a machine learning model to predict sepsis

6-h ahead of onset. The best performing model had an Area Under the Receiver

Operating Characteristic curve (AUROC or c-statistic) of 0.862 ± 0.011 and Area Under

the Precision-Recall Curve (AUPRC) of 0.294 ± 0.021 compared to that of Logistic

Regression (0.857 ± 0.008 and 0.256 ± 0.024) and NEWS 2 (0.699 ± 0.012 and 0.092

± 0.009). In the pseudo-prospective trial, 388 (69.7%) septic patients were alerted on

with a specificity of 81.4%. Within 24 h of crossing the alert threshold, 20.9% had a

sepsis-related event occur.

Conclusions: A machine learning model capable of predicting sepsis in the general

ward setting was developed using the EHR data. The pseudo-prospective trial provided

a more realistic estimation of implemented performance and demonstrated a 29.1%

Positive Predictive Value (PPV) for sepsis-related intervention or outcome within 48 h.

Keywords: sepsis, electronic health records, machine learning, prediction, general ward

INTRODUCTION

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response
to infection (1). In 2017, sepsis was responsible for 5.8% of all hospital stays and $38.2 billion in
hospital costs (2). Moreover, sepsis has a high mortality rate and was found to be implicated in
about one in every three inpatient deaths (3).

Early and effective therapy is critical in the management of patients with sepsis, as prolonged
recognition and delayed treatment increase mortality (4, 5). As a result, there is an abundance of
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literature focusing on the early detection and prediction of sepsis
through traditional or newly developed scoring systems such as
the Systemic Inflammatory Response Syndrome (SIRS) score,
National Early Warning Score (NEWS), or quick Sequential
Organ Failure Assessment (qSOFA) score; or more recently
through the use of machine learning models (6–8). Most of these
efforts focus on the Emergency Department (ED) or Intensive
Care Unit (ICU) settings which are data-rich and have a higher
prevalence of sepsis compared to the general ward setting (9–
11). However, patients who develop sepsis in the general ward
setting have worse outcomes compared to those who develop
sepsis in the ED or ICU (12). Because general ward patients
are observed less closely than in the ED or ICU setting with
fewer vital signs documented and laboratory tests performed,
they represent a proportionally more vulnerable population that
could benefit more from an augmented sepsis early warning
system. Therefore, the objective of this study was to develop a
machine learning model for predicting sepsis in the general ward
setting, compare its performance to commonly used instruments
for sepsis surveillance such as SIRS and NEWS, and extend the
model evaluation using a novel simulated pseudo-prospective
trial (13, 14).

MATERIALS AND METHODS

Study Design, Data Sources, and
Population
The model was developed and validated using the Electronic
Health Record (EHR) data from Barnes-Jewish Hospital /
Washington University School of Medicine in St. Louis, a large,
academic, tertiary-care academic medical center. All patients
≥18 years of age that were admitted to the hospital between
January 1, 2012 and June 1, 2019 were eligible for inclusion.
Patients were excluded if they were admitted to the Psychiatry
or Obstetrics services, due to highly variable rates of physiologic
data collection. Encounters were excluded if there were no
billing code, vital signs, laboratory, service, room, or medication
data to indicate a complete patient stay. Encounters were
also excluded if the total length of stay was below 12 h or
exceeded 30 days. After the assignment of index time and
prediction time, further exclusion criteria were applied based
on that index time (Supplementary Methods 3). To focus on
patients most likely to benefit from a risk prediction model,
the following populations were excluded: patients who had
cultures procured or received antibiotics within 48 h prior to
prediction time; patients who had sepsis present on admission
(by admission International Classification of Diseases (ICD)
code); patients who were in the ICU within 24 h prior to the
prediction time. To avoid the conflation of post-surgical care
with sepsis care, patients were ineligible if they had surgery
within 72 h prior to the prediction time. To avoid predicting
on patients with excessive missingness, encounters were also
required to have at least 3 of each vital sign and at least
one complete blood count, and one basic or comprehensive
metabolic panel test within 24 h prior to the prediction time
(Supplementary Figure 1).

This project was approved with a waiver of informed consent
by the Washington University in St. Louis Institutional Review
Board (IRB #201804121).

Sepsis Definition
Sepsis was defined using the Sepsis-3 implementation based
on Suspicion of Infection (SOI) determined by concomitant
antibiotics and cultures, Sequential Organ Failure Assessment
(SOFA) score in the ICU setting, and qSOFA elsewhere
(Supplementary Methods 3) (8, 15). The anti-infectives for SOI
was limited to intravenous anti-infectives except oral vancomycin
and metronidazole. In accordance with the Sepsis-3 criteria, SOI
required either having antibiotics within 72 h of culture collection
or culture collection within 24 h of having antibiotics (8). The
time of Suspicion of Infection (TSOI) was the time either before
antibiotic order start time or culture collection time (15). Tomeet
sepsis criteria, the patient must have had a SOFA or qSOFA score
≥ 2, depending on the location, between 48 h prior to and 24 h
after TSOI. For sepsis cases, the time of sepsis onset (TSepsis) was
the same as TSOI.

To facilitate the model development, each encounter was
assigned an index time (TIndex), which for sepsis encounters
was TSepsis, and for non-sepsis encounters was 6-h prior to the
maximum of either (1) the midpoint between admission and
discharge, or (2) 12 h into admission. The time of prediction
(TPrediction) was 6-h prior to the index time (eMethods 3).

Feature Generation and Engineering
Features were generated from the demographics, locations,
medications, vital signs, and laboratory data available until the
time of prediction (Supplementary Methods 2). Medications
were mapped to classes and subcategories of the Multum
MediSource Lexicon by Cerner (Denver, CO). Comorbidities
were determined using ICD codes only from prior admissions
and were mapped using the Elixhauser comorbidity system (16).
The time series data were summarized as various univariate
statistics (max, mean, etc.) over multiple time horizons (3 h, 6 h,
etc.). Measures of variance such as SD were only computed if
there were at least 4 measurements within the time horizon.
Missing values, especially results of non-routine lab tests, were
likely not missing at random but as a result of clinical judgment,
thus, were kept as is (Supplementary Table 2). Features with
>75% missingness, however, were excluded as they are unlikely
to improve performance. For models that required fully non-null
input, mean-imputation was used.

Model Development
Patient encounters were split at the patient level to avoid “identity
confounding” into the train (75%) and test sets (25%) (17).
Data transformation parameters were generated based on the
training set, then applied to both sets. Random search with
repeated cross-validation on the training set was used to tune the
hyperparameters of an eXtreme Gradient Boosting (XGBoost)
model, and the optimal combination was used for training on the
full training set (Supplementary Methods 4) (18). The feature
importance for the optimized XGBoost model (XGB opt) was
estimated using the well-validated SHAP approach, a method
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of credit attribution based on coalitional game theory with
useful properties such as additivity and the ability to provide
explanations for individual predictions (19). To condense the
model into one that is easier to transport and implement, a “lite”
version of the XGBoost model (XGB lite) was created using
a small subset of features based on the sum of the absolute
SHapley Additive exPlanations (SHAP) values across the training
set (Supplementary Figure 2). For comparison, an XGBoost
model with default parameters (XGB unopt) was trained, as
was a logistic regression model with l2 regularization (LogReg;
Supplementary Figure 3).

Model Performance
The trained models were compared against the SIRS score,
National Early Warning Score 2 (NEWS2), and qSOFA score
(6–8, 20). Using the data from within the 24-h time window
preceding prediction time, SIRS was calculated as the highest
score occurring within a 1-h sliding window; NEWS2 was
calculated using the last available measurements; qSOFA was
calculated using the most abnormal measurements. For SIRS,
NEWS2, and qSOFA, the lack of measurements was interpreted
as normal.

The performance of the model was evaluated on bootstrap
samples of the test set. Evaluated metrics include the Area
Under the Receiver Operating Characteristic curve (AUROC)
and the Area Under the Precision-Recall Curve (AUPRC). Model
calibration was assessed by binning the test set into deciles
of predicted risk and comparing their predicted probability
of sepsis with the actual proportion of sepsis cases. The
impact of threshold selection was visualized by plotting
performance metrics (specificity, sensitivity, etc.) against the
probability threshold.

Pseudo-Prospective Trial
While the model was trained and evaluated on a single time point
per encounter, real-world implementation would likely involve
continuous risk prediction throughout patient encounters. To
better understand the implemented performance of the best
performing sepsis prediction algorithm, the model was applied
hourly to patient encounters in the test set spanning full
admission duration. Patients whose model prediction crossed the
threshold maximizing F1 score (harmonic mean of precision and
recall) will hereby be referred to as having been “alerted on,” and
for those, “alert time” was defined as the first alert instance for
the encounter. For each patient hour, time-sensitive exclusion
criteria (e.g., not in the general ward or already on anti-infectives)
were applied again to remove inappropriate alerts. First, the
cross-tabulation of sepsis status and alert status was generated.
Then, among those who were alerted, we assessed the proportion
of encounters with the following sepsis-related interventions and
outcomes: sepsis-relevant culture collection, sepsis-relevant anti-
infective administration, ventilator initiation, ICU transfer, sepsis
onset, or death.

Statistical Analysis
Variables were summarized using frequencies and proportions
for categorical data or medians and interquartile ranges (IQR) for

continuous data. Statistical comparisons were performed using
the Chi-square andMann–WhitneyU tests where appropriate. A
p-value < 0.01 was considered statistically significant. Analysis
and figure generation were performed with Python version
3.7.1 (Python Software Foundation, Beaverton, OR) using the
following packages: scipy, numpy, pandas, matplotlib, sklearn,
xgboost, and shap (18, 21–26).

RESULTS

Patient Population
From the initial inpatient population of 401,235 encounters,
331,201 met exclusion criteria, leaving 70,034 encounters in
the final cohort (Supplementary Figure 1). Application of the
Sepsis-3 criteria identified 2,206 (3.1%) patient with sepsis
encounters. Patients with sepsis were slightly older [65.6 (56.3–
74.3) vs. 60.8 (49.4–71.2), p < 0.01], more likely to be white
(71.3 vs. 61.8%, p < 0.01), had a higher Elixhauser comorbidity
score [19 (10–29) vs. 9 (1–17), p < 0.01], a longer length
of stay [12.9 (8.0–19.3) vs. 3.9 (2.3–6.7), p < 0.01], and
higher inpatient mortality (16.6% vs. 0.8%, p < 0.01) (Table 1,
Supplementary Table 3).

Model Performance
The optimized XGBoost model (XGB opt) using all 1,071
features had the highest AUROC (0.862 ± 0.011) and AUPRC
(0.294 ± 0.021), compared to the unoptimized XGBoost model
(XGB unopt), logistic regression (LogReg), and the lite XGBoost
model (XGB lite), all of which had similar performances only
slightly worse than XGB opt (Figure 1, Supplementary Table 4).
The scoring systems, however, had a significantly lower
performance with a loss in AUROC over 0.150.

The top five most impactful features for the optimized
XGBoost model were found to be: time from admission
to prediction time, NEWS2 score, age, qSOFA score, and
maximum respiratory rate within 48 h prior to prediction time
(Figure 2). The calibration curve yielded an r2 value of 0.837
(Supplementary Figure 4). The threshold plot demonstrates the
tradeoff between precision and recall and revealed the highest F1
score (0.346) to be at a threshold of around 0.137 (Figure 3).

Pseudo-Prospective Trial
The EHR data of the 17,441 encounters in the test set (557
sepsis encounters and 16,884 non-sepsis encounters) were binned
hourly into 2,387,482 patient hours. After exclusions, 3,532
encounters were alerted upon, of which 388 met the sepsis
criteria (11.0% PPV) (Supplementary Table 4). Of the 557
sepsis encounters, 388 were alerted upon (69.7% sensitivity).
Of the 13,740 non-sepsis encounters, 3,144 were alerted upon
(81.4% specificity).

Of the 3,532 alerted encounters, from the time of the first alert,
within 48 h, 23.9% had sepsis-relevant cultures drawn, 13.2%
received sepsis-relevant anti-infectives, 2.5% had ventilator
initiated, 6.9% experienced sepsis onset, 4.7% were transferred
to ICU, and 0.6% died (Table 2, Supplementary Table 5).
Altogether, 29.1% experienced a sepsis-related intervention or
outcome within 48 h of the first alert.
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TABLE 1 | Cohort characteristics.

Variable Total

[n = 70,034

(100.0%)]

Sepsis

(n = 2,206

[3.1%])

Non-sepsis

(n = 67,828

[96.9%])

pa

<0.01*

Age (years), median (IQR) 61.0

(49.6–71.3)

65.5

(56.3–74.3)

60.8

(49.4–71.2)

<0.01*

Sex (female), n (%) 32,751

(46.8%)

992 (45.0%) 31,759

(46.8%)

0.090

Race, n (%) <0.01*

White, n (%) 43,516

(62.1%)

1,573 (71.3%) 41,943

(61.8%)

<0.01*

Other/unknown, n (%) 3,787 (5.4%) 129 (5.8%) 3,658 (5.4%) 0.378

Black, n (%) 22,285

(31.8%)

487 (22.1%) 21,798

(32.1%)

<0.01*

Asian, n (%) 446 (0.6%) 17 (0.8%) 429 (0.6%) 0.505

BMI, median (IQR) 27.6

(23.5–33.0)

27.2

(23.1–33.4)

27.6

(23.5–33.0)

0.252

Admitted through ED,

n (%)

33,364

(47.6%)

747 (33.9%) 32,617

(48.1%)

<0.01*

LOS (days), median (IQR) 3.9 (2.4–7.0) 12.9

(8.0–19.3)

3.9 (2.3–6.7) <0.01*

Discharge disposition <0.01*

Home, n (%) 59,367

(84.8%)

1,185 (53.7%) 58,182

(85.8%)

<0.01*

Hospice, n (%) 854 (1.2%) 88 (4.0%) 766 (1.1%) <0.01*

Acute care facility,

n (%)

436 (0.6%) 17 (0.8%) 419 (0.6%) 0.447

Nonacute care facility,

n (%)

8,234 (11.8%) 539 (24.4%) 7,695 (11.3%) <0.01*

In-hospital death,

n (%)

889 (1.3%) 367 (16.6%) 522 (0.8%) <0.01*

Other, n (%) 254 (0.4%) 10 (0.5%) 244 (0.4%) 0.589

Sepsis discharge ICD

codeb
<0.01*

Sepsis, n (%) 1,049 (1.5%) 543 (24.6%) 506 (0.7%) <0.01*

Severe sepsis, n (%) 510 (0.7%) 358 (16.2%) 152 (0.2%) <0.01*

Septic shock, n (%) 378 (0.5%) 293 (13.3%) 85 (0.1%) <0.01*

30-day readmission,

n (%)

14,817

(21.2%)

440 (19.9%) 14,377

(21.2%)

0.165

Elixhauser comorbidity

score, median (IQR)c
9 (1–18) 19 (10–29) 9 (1–17) <0.01*

BMI, body mass index; ED, emergency department; LOS, length of stay; ICD, International

Classification of Diseases.
aComparison of variables between sepsis and non-sepsis cohort was performed using

Mann–Whitney U test for continuous variables, and χ
2 for categorical variables. Statistical

significance (p < 0.01) is denoted by *.
bBased on sepsis discharge ICD code list from (27).
cBased on Elixhauser comorbidity weights from (28).

Visualizations of the sample patient trajectories alongside
hourly predicted sepsis risk scores facilitated inspections of
model successes and failures (Supplementary Figure 5).

DISCUSSION

The objective of this study was to develop a machine learning
model capable of predicting sepsis 6-h ahead of clinical onset

using one of the largest inpatient EHR datasets. Unlike most
sepsis prediction studies which focus on the data-rich ICU or
ED setting, this study focused on the general ward setting where
the prediction task is made especially challenging due to the
sparsity of data and low prevalence (29). Moreover, the cohort
criteria excluded patients who were already suspected of, or
were being treated for sepsis, as a clinical prediction model is
unlikely to benefit these patients. The resultant cohort represents
patients who were not captured by clinical judgment and thus
could benefit from clinical decision support. Further, this study
provides a novel way of better estimating real-world performance
through the assessment of a pseudo-prospective trial.

Excluding patients who were suspected of or were already
being treated for sepsis, alongside several other exclusion criteria,
resulted in the elimination of the majority of inpatients from
the initial population (Supplementary Figure 1). As a result, the
retained sepsis cohort are likely cases of hospital-acquired sepsis
or community-acquired sepsis with delayed recognition. Though
the restrictive exclusion criteria may limit generalizability, the
resultant cohort is more likely to benefit from an automated
warning system.

We compared the performance of several machine learning
models as well as traditional scoring systems and found the
optimized XGBoost to have the best AUROC and AUPRC for
detecting sepsis ahead of meeting traditional diagnostic criteria.
The “lite” model was used with 25 features and had a similar
diagnostic performance.

Of the important features, as determined by SHAP, time from
admission to prediction time was the most important, indicating
that prolonged length of stay is both a risk factor and outcome
for sepsis. The qSOFA and NEWS2 scores were also important
predictors, demonstrating the utility of these scores as features
though deficient on their own. Admission through the ED was
associated with a lower probability of sepsis, likely due to the
emphasis on sepsis screening in the ED setting. Interestingly,
while most medication information was not important for the
model, anticonvulsants had a surprisingly high SHAP value
with sepsis patients receiving “anticonvulsants” about 10% more
frequently than non-sepsis patients (46.6 vs. 36.6%, Figure 2).
However, the Multum classification for anticonvulsants included
medications such as magnesium sulfate and lorazepam which are
not always used as anticonvulsants, thus, more work is needed
on automated feature generation from medication data. Another
unexpectedly important feature was the Coombs test, which is
unlikely to be related to sepsis, but had noticeably different rates
of missingness between sepsis and non-sepsis patients (60.1%
for sepsis vs. 70.3% for non-sepsis, Figure 2). Comorbidities
from prior admissions were noticeably absent from the list of
important features, likely because 46.3% of all encounters were
first encounters and did not have any prior admissions. It’s
possible that the importance of comorbidities as features may
rise with time, with larger populations with longer histories being
collected in the electronic health record and the ability to retrieve
information cross-sites.

The pseudo-prospective trial demonstrated a novel approach
to better estimating real-world model performance and showed
that 29.1% of the alerted patients required sepsis-related
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FIGURE 1 | Model performance: Receiver Operating Characteristic curve and Precision-Recall curve. The solid lines represent the 50th percentile curves based on 20

bootstraps (full resampling with replacement) iterations of the test dataset, and the shaded regions represent the area between the 25th and 75th percentiles.

AUROC, area under receiver operating characteristic curve; AUPRC, area under precision recall curve; XGB opt, optimized XGBoost model; XGB lite, simple XGBoost

model; XGB unopt, unoptimized, out-of-the-box XGBoost model; LogReg, logistic regression; NEWS2, National Early Warning Score 2; qSOFA, quick Sequential

Organ Failure Assessment; SIRS, Systemic Inflammatory Response Syndrome.

FIGURE 2 | SHapley Additive exPlanations (SHAP) feature importance. Comparison of variables between the sepsis and non-sepsis cohort was performed using the

Mann–Whitney U test for continuous variables, and χ
2 for categorical variables. Statistical significance (p < 0.01) is denoted by *. qSOFA, quick sequential organ

failure assessment; NEWS2, national early warning system 2; SBP, systolic blood pressure; WBC, white blood cell count; MAP, mean arterial pressure.
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FIGURE 3 | Threshold plot for the optimized XGBoost model. The test set was bootstrapped (full resampling with replacement) 20 times and various performance

metrics (recall, precision, specificity, and F1) were plotted against the threshold value. For each metric, the line and shaded area represent the median and IQR. A

vertical black line was drawn at the threshold maximizing the F1 score.

intervention or had a sepsis-related outcome within 48 h
(Table 2).While the algorithmwas capable of identifying patients
who ultimately required cultures (39.0%) and anti-infectives
(28.1%), the actual incidence of Sepsis-3 onset after the patients
were alerted on was relatively low (11.0% at any point after and
6.9% within 48 h). This may be due to problems in labeling—
despite our attempt to exclude surgical patients from the cohort,
they are not capable of being excluded on a prospective basis

and frequently meet the sepsis criteria. Moreover, alerted patients
may be critically ill and treated for sepsis but not meet the
Sepsis-3 criteria. Also, many patients who are in the ED have
higher scores which improve through interventions, but then
have scores that rise again later during their stay at the hospital.
Since this only evaluated the first time a patient crossed the
sepsis threshold, the subsequent and potentially more important
clinical changes would be missed. The pseudo-prospective trial

Frontiers in Digital Health | www.frontiersin.org 6 March 2022 | Volume 4 | Article 848599

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Yu et al. Sepsis Prediction in General Ward

TABLE 2 | Pseudoprospective trial, outcomes for alerted subjects.

Intervention or outcome Within 24 h Within 48 h Within 72 h

Sepsis-relevant cultures 600 (17.0%) 843 (23.9%) 1,018 (28.8%)

Sepsis-relevant anti-infectives 286 (8.1%) 466 (13.2%) 591 (16.7%)

Ventilator initiation 51 (1.4%) 87 (2.5%) 119 (3.4%)

Sepsis onset 182 (5.2%) 245 (6.9%) 291 (8.2%)

ICU transfer 112 (3.2%) 167 (4.7%) 209 (5.9%)

Death 8 (0.2%) 21 (0.6%) 36 (1.0%)

Total 739 (20.9%) 1,028 (29.1%) 1,237 (35.0%)

Of the patients who crossed the set threshold in the pseudoprospective trial, and of those

whowere not already suspected of or being treated for sepsis, sepsis-related interventions

and outcomes within various time horizons were identified.

highlights some of the anticipated challenges of translating a
diagnostic scoring method from a retrospective data set to a
prospective population, which necessitates further investigation.

Impressively, the unoptimized XGBoost solution had a
median AUROC just 5% lower than the optimized version,
and similar performance to the optimized logistic regression
model and the lite XGBoost model. The relatively small benefit
conferred by the more complex model compared to logistic
regression is consistent with prior literature (30). If the added
complexity is problematic—for interpretability, debugging, or
implementation—then it could be argued that the simpler
logistic regression model is preferred despite the performance
loss. Though NEWS2 and qSOFA were very important features
in XGBoost, the gap between traditional scoring systems and
machine learning models was noticeable with the worst ML
model conferring a 15.1% AUROC improvement over the best
traditional scoring system.

This study has limited generalizability as a single institution
study. The study used an interpretation of the Sepsis-3 definition
and is likely to generalize poorly to sites using alternate
definitions (1, 8, 15). By design, the study was focused on
the general ward setting, and the results are not applicable to
other settings. Many of the excluded subpopulations (children,
surgical, etc.) warrant further investigation. While a pseudo-
prospective trial was performed, a true prospective study
is needed to gauge real-world performance. The pseudo-
prospective trial could be further improved by investigating
repeated alerts, incorporating alert lock-out periods, accounting
for measurement-to-documentation time gap, etc. For the
pseudo-prospective trial, a threshold was assigned to maximize
the F1 score. However, further work is necessary to define an
operationally meaningful threshold. For the calculation of the
qSOFA score, GCS was missing in our dataset and assumed
normal, which may negatively impact the sepsis label assignment

process. However, Seymour et al. found that the lack of GCS in
the VA dataset did not significantly reduce the predictive validity
of qSOFA (8). As is typical of studies using electronic health
records data, there were and likely remain problems concerning
missingness and accuracy of clinical data.

CONCLUSION

Amachine learningmodel designed to predict sepsis 6-h ahead of
meeting diagnostic criteria yielded an AUROC of 0.862 ± 0.011
and an AUPRC of 0.294 ± 0.021. Pseudo-prospective evaluation
of the model revealed relatively good clinical performance,
despite a large class imbalance.
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