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Mesenchymal stromal cells (MSCs) are spindle-shaped, plastic-adherent cells in vitro with
potent immunosuppressive activity both in vitro and in vivo. MSCs have been employed as
a cellular immunotherapy in diverse preclinical models and clinical trials, but most
commonly as agents for the prophylaxis or therapy of graft versus host disease after
hematopoietic cell transplantation. In addition to the oft studied secreted cytokines,
several metabolic pathways intrinsic to MSCs, notably indoleamine 2,3-dioxygenase,
prostaglandin E2, hypoxia-inducible factor 1 a, heme oxygenase-1, as well as energy-
generating metabolism, have been shown to play roles in the immunomodulatory activity
of MSCs. In this review, we discuss these key metabolic pathways in MSCs which have
been reported to contribute to MSC therapeutic effects in the setting of hematopoietic cell
transplantation and graft versus host disease. Understanding the contribution of MSC
metabolism to immunomodulatory activity may substantially inform the development of
future clinical applications of MSCs.

Keywords: kynurenine, PGE2, heme oxygenase-1, hypoxia-inducible factor 1 a, indoleamine 2,3-dioxygenase, graft
versus host disease, mesenchymal stromal cell, aerobic glycolysis
INTRODUCTION

First identified in bone marrow in 1968 (1, 2), mesenchymal stromal cells (MSCs) are spindle-
shaped, adherent in cell culture conditions, and widely investigated for their immunoregulatory
properties and ability to contribute to tissue regeneration (3, 4). MSCs have been identified in a
variety of tissue sources including bone marrow, adipose tissue, amniotic membrane and fluid,
placental and fetal tissues, umbilical cord tissues, endometrium, blood, and synovial fluid (3). MSCs
are present in relatively low numbers in any given tissue, and thus, prior to research or clinical use,
are isolated and expanded ex vivo in cell culture media (3). Since MSCs may display several
morphological and physiological characteristics in culture (3, 5), the minimum necessary criteria for
MSC definition have been outlined by the International Society for Cellular Therapy (6, 7).
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Indeed, MSCs are known to differentiate into chondrocytes,
adipocytes, and osteocytes in vitro, suggesting that perhaps
MSCs perform stem-like functions (8–12). Although tissue
repair and regeneration has been reported after intravenous
infusion of MSCs in a variety of disease settings (e.g., and late-
onset hemorrhagic cystitis) (13–17), there are currently no in
vivo data demonstrating that MSCs are true stem cells,
differentiating to resident cells; however, it is possible that
MSCs indirectly mediate endogenous tissue regeneration and
repair mechanisms, perhaps by secreting soluble factors, via
paracrine mechanisms or metabolic activity (18).

MSCs have also been shown to modulate adaptive and innate
immunity in vitro and in vivo, usually after cytokine activation (e.g.,
IFN-g) (4). MSCs may suppress both T and B cell proliferation as
well as T cell effector activity (19–23), and MSCs are reported to
inhibit proliferation by arresting T cells in the G0/G1 phases of the
cell cycle or by promoting lymphocyte apoptotic pathways (24–28).
Mechanistically, MSCs likely contribute to immunomodulation
through cell-to-cell contact or paracrine and metabolic
mechanisms (e.g., TGF-b, hepatocyte growth factor, prostaglandin
E2; PGE2, and indoleamine 2,3-dioxygenase; IDO pathways), as
immunosuppression has been reported in co-cultures and when
cells are separated by a Transwell (26, 27, 29–32). Regarding the
innate immune system, MSCs activated by monocytes or cytokines
signal macrophages to promote pro- or anti-inflammatory
pathways, by inducing the polarization of M2 macrophages (30,
32, 33). Moreover, inactive or apoptotic MSCs, those engulfed by
phagocytic cells, or suppressed by host cytotoxic cells contribute to
immunosuppression in in vitro and in vivo (34–36).
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On account of this immunosuppressive activity, MSCs have
been identified as promising candidates for immunosuppressive cell
therapies and have been especially studied in the context of treating
and preventing acute graft versus host disease (aGVHD) during
hematologic cell transplantation (HCT), which occurs when donor
immune cells attack recipient tissue (usually liver, gut, and skin) (37,
38). MSC-based cell products have been approved or conditionally
approved for the treatment and prophylaxis of aGVHD in pediatric
patients in Japan (TEMCELL), Canada, and New Zealand
(Prochymal) (39). Recently, Mesoblast conducted a phase III
clinical trial using a donor-derived bone marrow MSC cell
therapy (RYONCIL™) to treat pediatric steroid refractory
aGVHD (40). Notwithstanding these approved and pre-approved
MSC-based cell products for treatment and prophylaxis of GVHD,
many clinical trials have generated mixed results (40–44).

Although cell contact-dependent and secretory mechanisms
have been established as the primary immunoregulatory modes
of action of MSCs, recently, metabolic stress and activity have
been shown to be involved in MSC immunomodulatory
functions. Indeed, a great many metabolic pathways are known
known to be involved in MSC physiologic mechanisms.
However, the IDO, PGE2, hypoxia-inducible factor 1 a
(HIF1a), heme oxygenase-1 (HO-1), and energy metabolic
pathways have been especially implicated in the literature to
play key roles in the immunosuppressive activity of MSCs
(Figure 1). Herein, we review recent and notable scientific
advances that indicate how the aforementioned metabolic
pathways endogenous to MSCs, among others, may contribute
to immunomodulation in the context of HCT and GVHD.
FIGURE 1 | Schematic of proposed MSC-mediated metabolic immunomodulatory mechanisms reviewed herein. Dotted lines indicate incompletely understood
mechanisms. Tryp, tryptophan; Kyn, kynurenines; CO, carbon monoxide; AA, arachidonic acid; mito, mitochondria; met, metabolism.
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IDO: IFN-g AND THE KYNURENINE
PATHWAY

The metabolic activity of IDO seemingly plays a key role in the
immunosuppressive activity of MSCs on T cells and other
lymphocytes (45, 46). Naïve MSCs do not normally synthesize
IDO; however, after cytokine activation (usually by IFN-g or
TNF-a), MSCs express high levels of IDO (22, 47) The
enzymatic activity of IDO acts on the kynurenine pathway of
tryptophan metabolism. An essential amino acid, tryptophan is
recruited by the cell for protein synthesis, or may be metabolized in
the serotonin or tryptamine pathways (48, 49). After induction of
IDO expression, the kynurenine pathway is activated and L-
tryptophan is metabolically converted into kynurenine, which
may be further metabolized into biologically-active kynurenine
derivatives including kynurenic acid, 3-hydroxyanthranilic acid,
picolinic acid, quinolinic acid (48, 49). Notably, quinolinic acid and
3-hydroxyanthranilic acid are known to target lymphocytes and
contribute to suppression of T cell proliferation (50, 51), and
kynurenic acid may also modulate the immune system by
agonizing aryl hydrocarbon receptor, G-protein-coupled receptor
35, and promoting anti-inflammatory cytokines (e.g., TNF-a, IL6,
IL1b, and IL10) (52). Moreover, the addition of tryptophan
significantly restores allogeneic T-cell proliferation (53), while
adding kynurenine suppresses allogeneic T-cell proliferation (46).
Although IDO-mediated catabolism of tryptophan contributes to
the MSC-induced immunosuppression, additional investigation is
needed in order to uncover the mechanism of action, especially
in vivo.
IDO: IMMUNOMODULATION AND GVHD

It is known that MSCs elicit immunosuppressive effects when
first primed with IFN-g or a combination of IFN-g with TNF-a,
IL-1a or IL-1b (22, 47). Given that the IDO pathway is
significantly upregulated with IFN-g treatment, IDO expression
and tryptophan metabolism has been implicated in suppressing
T cells and controlling GVHD (54). Kim et al. recently
demonstrated that compared to naïve MSCs, human MSCs
primed with IFN-g significantly upregulated IDO expression,
increased immunosuppressive activity in vitro, and reduced
GVHD symptoms and mortality a NOD-SCID PBMC-
transplanted mouse model (55). In addition, the investigators
showed that downregulating IDO in IFN-g-primed MSCs
decreased this activity, and IDO expression was driven by the
JAK/STAT1 signaling pathway. In another recent study, human
gingival MSCs stimulated were reported to inhibit T cell and
PBMC proliferation in vitro and improve survival in a xenogenic
GVHD model in the NOD/SCID mice via a combination of
CD39, CD73, adenosine, and IDO signals (56).

Inhibition of T cell proliferation by IFN-g-licensed MSCs is
widely believed to be IDO-dependent. However, there is additional
evidence that IDO metabolism and signaling may not be involved
with MSC activity on effector T cell effector functions (e.g.,
cytokine production). Chinnadurai et al. have shown, for
Frontiers in Immunology | www.frontiersin.org 3
example, that IFN-g-primed MSCs inhibit T cell (Th1) effector
production of IFN-g, TNF- a, and IL-2 independent of IDO.
Inhibition of T cell effector function was instead mediated by
B7H1 and B7DC/PD1 pathways (23). In an analysis of a MSC-
based off-the-shelf cell product, intravenous infusions of
Cymerus™ MSCs (Cynata Therapeutics) ameliorated disease
and prolonged survival in a humanized GVHD mouse model
after treating cells with IFN-g (57). Although activating
Cymerus™ MSCs with IFN-g increased IDO expression 5-fold
after a 48 h incubation, upregulation of the immune checkpoint
inhibitor PD-L1, which contributes to the PD1-PDL1 signaling
axis was also observed (26, 58). Therefore, while IDO-meditated
metabolic activity plays a role in the immunomodulatory
properties of IFN-g-primed MSCs, other factors such as PD1
signaling and IDO-independent T cell effector activity seem to also
be involved in immunosuppression induced by MSCs. Moreover,
the relative contributions of each mechanism have yet to
be determined.

Despite the potent immunosuppressive activity observed in
IFN-g-primed MSCs, largely due to the IDO pathway, no clinical
trials to date have employed IFN-g-primed MSCs for the
treatment and prophylaxis of GVHD. However, Horwitz and
colleagues have recently registered a phase I clinical trial with the
NIH aimed at using IFN-g-primed MSCs as prophylaxis for
aGVHD after patients with hematologic malignancies and
myelodysplasia have received HCT (NCT04328714).
PROSTAGLANDIN E2

PGE2 metabolic activity has been implicated in MSC-based
immunosuppressive activity. PGE2 is an arachidonic acid
derivative synthesized by cyclooxygenases COX1, COX2, and
prostaglandin synthetase (59). MSC secretion of PGE2 correlates
with suppression of lymphocyte proliferation (60), and PGE2 is
known to promote induction of immunosuppressive interleukins
(IL4, IL10, and IL6), proliferation and cytotoxicity of natural
killer cells, and differentiation of Treg cells, and suppress
differentiation of dendritic cells and naive T cells to Th17 cells
(61–64),. Additionally, IL6 may contribute to PGE2-mediated
immunomodulation in MSCs by positively regulating the COX2
function and synthesis of PGE2 (65, 66). IL6-dependent PGE2
has also been shown to promote immunosuppression via
changing Th1 and Th2 ratios, inhibiting maturation of
dendritic cells and stimulating of Treg cells (67, 68). Thus,
synthesis and secretion of PGE2 contributes to MSC
immunomodulation and have immunosuppressive potential in
the context of GVHD.

In vivo, MSC infusions significantly increase secretion of
PGE2 both before and after the onset of GVHD (69). Auletta
et al. reported that of indomethacin (IM), a COX inhibitor which
decrease PGE2 synthesis, and direct pharmacologic inhibition of
PGE2-EP receptor interaction reversed T cell suppression
induced my BM MSCs in vitro (70). In an allogeneic BMT
mouse model, the investigators show that the survival advantage
of animals treated with intravenous BM MSC injections was also
December 2020 | Volume 11 | Article 609277

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Burnham et al. Metabolism in MSC-Mediated Immunomodulation
reversed with a 7-day dose of IM. Similar results have been
reported with MSCs isolated from other tissue sources, such as
umbilical cord tissue (71). More recently, Kim et al. showed that
treating BM MSCs with IM or downregulating expression of
prostaglandin E synthetase (PGES) via siRNA reduced
proliferation of human PBMCs, and PGES knock down MSCs
were unable to reduce mortality in mice with GVHD (72). These
studies present evidence that PGE2 may be a key effector of
immunosuppression in GVHD and HCT clinical settings.
HEME-OXYGENASE-1

Heme oxygenase intracellularly metabolizes heme to biliverdin,
CO, and free divalent iron, and HO-1 is reported to have anti-
inflammatory and immunosuppressive properties (73–75).
Chabannes et al. (76). were the first to demonstrate that HO-1
may play a role in MSC-mediated immunosuppression, and
report a reversal of PBMC suppression after adding the HO-1-
specific inhibiter tin protoporphyrin (SnPP) (76). Reduced T cell
suppression in vitro and improved survival in vivo was also
observed after inhibiting rat MSC HO-1 in combination with
nitric oxide synthase (NOS). Human MSCs displayed similar
results in vitro, but were not tested in vivo. Interestingly, the
nitric oxide synthesizing pathway, which, like the IDO pathway,
may also be stimulated in MSCs by IFN-g, is implicated in rodent
rather than human systems (77–79). Infusion of murine MSCs
transduced with murine HO-1 have also been shown to increase
the number of Treg cells in spleen and lymph nodes, and
significantly reduce severity of clinical aGVHD in mice (80).

In contrast, Galipeau and colleagues have reported that
human BM MSCs express low levels of HO-1 both before and
after priming with IFN-g, TNF-a, and/or TGF-b, and MSCs
treated with SnPP had no effect on T cell suppression, possibly
due to the notion that the IDO pathway may require heme as a
cofactor (81). Therefore, the role of HO-1 in MSC-mediated
immunomodulation, notably in the context of suppressing the
immune system, is inconsistent in the literature. It is possible that
this inconsistency may be an in vitro artifact, or a result of mixing
experimental approaches. For example, studies described herein
that reported an effect of HO-1 on MSC-mediated immune
suppression, largely studied animal MSCs, while Galipeau et al.
investigated humans MSCs. In any case, additional investigation
is required in order to understand the role of HO-1 in MSC-
mediated immunomodulation, especially in vivo.
HYPOXIA-INDUCIBLE FACTOR 1 a

In vivo, MSCs are thought to be located in perivascular niches
under relatively hypoxic conditions, where oxygen tension is low.
Hypoxia plays a crucial role in maintaining homeostasis
throughout the body from early stages of embryonic
development, and the metabolic regulatory mechanisms of
hypoxia are largely driven by oxygen-sensitive transcription
Frontiers in Immunology | www.frontiersin.org 4
factors, including hypoxia-inducible factor 1 (HIF-1) (82).
HIF-1 is a heterodimer consisting of an oxygen-regulated a-
subunit and a constitutively expressed b-subunit. Under hypoxic
conditions, hydroxylation of HIF-1 a by prolyl hydroxylase is
suppressed, leading to the accumulation and nuclear
translocation of HIF-1 a (83, 84). Activation of HIF-1 a has
been shown to regulate transcription of genes necessary for
carbohydrate, fatty acid, and other metabolic pathways
involved with energy production (85). Metabolic activity and
regulation of HIF-1 a in MSCs has been implicated in MSC
differentiation potential (86–89), migration and chemotactic
localization (90), the inflammatory response (91), tissue repair,
and angiogenesis (92–94)

Hypoxia and HIF-1 ametabolism in MSCs may also play a role
in immunomodulation. In response to hypoxia, it has been shown
that MSCs produce an increased level of anti-inflammatory
cytokines (e.g., IL-10), decreased pro- inflammatory cytokines
(e.g., TNF a), and demonstrate enhanced suppression of PBMCs
(95–97). Recently, Kim and colleagues have shown that human
MSCs expanded under hypoxia, promoted T cell suppression, and
when IV-administered to a humanized mouse GVHD model,
improved survival and reduced symptoms of GVHD were also
observed (97). These data support the notion that hypoxia priming
or increased expression HIF-1 a in MSCs could be a viable strategy
to promote donor and host immunomodulation and reduce GVHD
during HCT. However, hypoxia- and HIF-1 a-mediated
immunoregulation by MSCs is a relatively new avenue of
research, and this transcription factor regulates many
metabolically active genes. Thus, additional studies aimed at
uncovering a mechanism of action are needed.
ENERGY METABOLISM

Energy-generating metabolic pathways (i.e., lipid and
carbohydrate metabolism) have also been implicated in MSC-
mediated immunomodulation. Contreras-Lopez et al. recently
demonstrated that metabolism of peroxisome proliferator-
activated receptor (PPAR) b/d, which plays and key role in
lipid and glucose metabolism and homeostasis, may be
important for MSC immunomodulation of T cells (98). The
investigators reported that PPARb/d knock out MSCs had
enhanced suppression of Th1 and Th17 proliferation via
enhancement of glycolysis, and inhibition of mitochondrial
generation of ATP promoted aerobic glycolysis in WT MSCs
and consequentially improved immunosuppressive activity.
Similarly, Lui et al. recently demonstrated that priming MSCs
with IFN-g induces a metabolic switch towards aerobic glycolysis
and strengthens T cell suppression (99). Moreover, oxidative
glucose and lipid metabolism have been shown to contribute
only 3% of ATP production in MSCs, while glycolysis generates
97% of cellular ATP (100). The studies together suggest that
regulation of energy metabolism in MSCs, notably by
reprogramming a switch from mitochondrial activity towards
glycolysis, promotes immunosuppression.
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CONCLUSION

MSCs contribute to adaptive and innate immunomodulation
through cell-to-cell contact, secretory and paracrine signaling
mechanisms, as well as intracellular metabolic pathways. IFN-g,
IDO and kynurenine, PGE2, HIF1a, HO-1, as well as energy-
generating metabolic pathways have been implicated in MSC-
mediated immunosuppression. Some studies have reported
conflicting results, particularly regarding specific mechanisms of
action and downstream targets. Moreover, the role of HO-1 in
immunomodulation by MSCs remains an open question. IDO-
kynurenine metabolism presents one of the most compelling
mechanisms by which MSCs suppress the immune system.
However, given that IDO is only expressed after MSCs are
primed with IFN-g or other cytokine combinations, which may
regulate expression and activation of other factors (e.g., PDL-1),
IDO may be only one of many contributors of MSC-based
immunoregulation. Interestingly, aerobic glycolytic pathways,
rather than oxidation of energy-generating substrates via
mitochondria, have recently been hypothesized to play a key role
inMSC immunomodulation, adding to the studies that promote the
importance of IDO and kynureninemetabolism via IFN-g licensing.
Understanding how MSC metabolism modulates immune cell
Frontiers in Immunology | www.frontiersin.org 5
activity may have significant applications in the development of
MSC-based therapeutics, especially in the context of HCT
and aGVHD.
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74. Chauveau C, Rémy S, Royer PJ, Hill M, Tanguy-Royer S, Hubert FX, et al.
Heme oxygenase-1 expression inhibits dendritic cell maturation and
proinflammatory function but conserves IL-10 expression. Blood (2005)
106:1694–702. doi: 10.1182/blood-2005-02-0494

75. Vijayan V, Wagener FADTG, Immenschuh S. The macrophage heme-heme
oxygenase-1 system and its role in inflammation. Biochem Pharmacol (2018)
153:159–67. doi: 10.1016/j.bcp.2018.02.010

76. Chabannes D, Hill M, Merieau E, Rossignol J, Brion R, Soulillou JP, et al. A
role for heme oxygenase-1 in the immunosuppressive effect of adult rat and
human mesenchymal stem cells. Blood (2007) 110:3691–4. doi: 10.1182/
blood-2007-02-075481

77. Albina JE, Abate JA, Henry WL. Nitric oxide production is required for
murine resident peritoneal macrophages to suppress mitogen-stimulated T
cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-
synthesizing pathway. J Immunol (1991) 147:144–8. doi: 10.1161/
01.HYP.21.2.185

78. Ren G, Su J, Zhang L, Zhao X, Ling W, L’Huillie A, et al. Species variation in
the mechanisms of mesenchymal stem cell-mediated immunosuppression.
Stem Cells (2009) 27:1954–62. doi: 10.1002/stem.118
Frontiers in Immunology | www.frontiersin.org 7
79. Su J, Chen X, Huang Y, Li W, Li J, Cao K, et al. Phylogenetic distinction of
iNOS and IDO function in mesenchymal stem cell-mediated
immunosuppression in mammalian species. Cell Death Differ (2014)
21:388–96. doi: 10.1038/cdd.2013.149

80. Yu M, Wang J, Fang Q, Liu P, Chen S, Zhe N, et al. High expression of heme
oxygenase-1 in target organs may attenuate acute graft-versus-host disease
through regulation of immune balance of TH17/Treg. Transpl Immunol
(2016) 37:10–7. doi: 10.1016/j.trim.2016.05.002

81. Patel SR, Copland IB, Garcia MA, Metz R, Galipeau J. Human mesenchymal
stromal cells suppress T-cell proliferation independent of heme oxygenase-1.
Cytotherapy (2015) 17:382–91. doi: 10.1016/j.jcyt.2014.11.010

82. Stamati K, Mudera V, Cheema U. Evolution of oxygen utilization in
multicellular organisms and implications for cell signalling in tissue
engineering. J Tissue Eng (2011) 2:1–12. doi: 10.1177/2041731411432365

83. Weidemann A, Johnson RS. Biology of HIF-1a. Cell Death Differ (2008)
15:621–7. doi: 10.1038/cdd.2008.12

84. Dengler VL, Galbraith MD, Espinosa JM. Transcriptional regulation by
hypoxia inducible factors. Crit Rev Biochem Mol Biol (2014) 49:1–15.
doi: 10.3109/10409238.2013.838205

85. Gaspar JM, Velloso LA. Hypoxia inducible factor as a central regulator of
metabolism ⇓ implications for the development of obesity. Front Neurosci
(2018) 12:813. doi: 10.3389/fnins.2018.00813

86. Keith B, Simon MC. Hypoxia-Inducible Factors, Stem Cells, and Cancer. Cell
(2007) 129:465–72. doi: 10.1016/j.cell.2007.04.019

87. Zhang C, Yang F, Cornelia R, Tang W, Swisher S, Kim H. Hypoxia-inducible
factor-1 is a positive regulator of Sox9 activity in femoral head osteonecrosis.
Bone (2011) 48:507–13. doi: 10.1016/j.bone.2010.10.006

88. Robins JC, Akeno N, Mukherjee A, Dalal RR, Aronow BJ, Koopman P, et al.
Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells
in association with transcriptional activation of Sox9. Bone (2005) 37:313–22.
doi: 10.1016/j.bone.2005.04.040

89. Wagegg M, Gaber T, Lohanatha FL, Hahne M, Strehl C, Fangradt M, et al.
Hypoxia Promotes Osteogenesis but Suppresses Adipogenesis of Human
Mesenchymal Stromal Cells in a Hypoxia-Inducible Factor-1 Dependent
Manner. PloS One (2012) 7. doi: 10.1371/journal.pone.0046483

90. Hung SC, Pochampally RR, Hsu SC, Sanchez CC, Chen SC, Spees J, et al.
Short-term exposure of multipotent stromal cells to low oxygen increases their
expression of CX3CR1 and CXCR4 and their engraftment in vivo. PloS One
(2007) 2. doi: 10.1371/journal.pone.0000416

91. Wang GL, Semenza GL. Purification and characterization of hypoxia-
inducible factor. J Biol Chem (1995) 270:1230–7. doi: 10.1074/jbc.270.3.1230

92. Razban V, Lotfi AS, Soleimani M, Ahmadi H, Massumi M, Khajeh S, et al.
HIF-1a overexpression induces angiogenesis in mesenchymal stem cells.
Biores Open Access (2012) 1:174–83. doi: 10.1089/biores.2012.9905

93. Shi X, Zhang G, Sun H, Bai Y, Liu Y, ZhangW, et al. Effects of over-expression
of HIF-1alpha in bone marrow-derived mesenchymal stem cells on traumatic
brain injury. Eng Life Sci (2018) 18:401–7. doi: 10.1002/elsc.201800015

94. Noronha Nc NDC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM,
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