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Abstract 

Background  Propensity Score Matching (PSM) stands as a widely embraced method in comparative effectiveness 
research. PSM crafts matched datasets, mimicking some attributes of randomized designs, from observational data. 
In a valid PSM design where all baseline confounders are measured and matched, the confounders would be bal-
anced, allowing the treatment status to be considered as if it were randomly assigned. Nevertheless, recent research 
has unveiled a different facet of PSM, termed “the PSM paradox”. As PSM approaches exact matching by progressively 
pruning matched sets in order of decreasing propensity score distance, it can paradoxically lead to greater covariate 
imbalance, heightened model dependence, and increased bias, contrary to its intended purpose.

Methods  We used analytic formula, simulation, and literature to demonstrate that this paradox stems from the mis-
use of metrics for assessing chance imbalance and bias.

Results  Firstly, matched pairs typically exhibit different covariate values despite having identical propensity scores. 
However, this disparity represents a “chance” difference and will average to zero over a large number of matched pairs. 
Common distance metrics cannot capture this “chance” nature in covariate imbalance, instead reflecting increasing 
variability in chance imbalance as units are pruned and the sample size diminishes. Secondly, the largest estimate 
among numerous fitted models, because of uncertainty among researchers over the correct model, was used 
to determine statistical bias. This cherry-picking procedure ignores the most significant benefit of matching design-
reducing model dependence based on its robustness against model misspecification bias.

Conclusions  We conclude that the PSM paradox is not a legitimate concern and should not stop researchers 
from using PSM designs.

Keywords  Sample average treatment effect, Population average treatment effect, Imbalance, Model misspecification, 
Bias

Background
Propensity Score Matching (PSM) stands out as one of 
the most well-established and widely used strategies 
for exploring the comparative effectiveness of com-
peting interventions in observational studies, such as 

comparing active treatment (referred to as “treated”) 
to placebo control (referred to as “untreated”) [1]. The 
propensity score (PS) represents the probability that 
a subject will receive the active treatment, given their 
baseline covariates [2]. Throughout this discussion, 
we assume that all baseline variables are measured, 
which is crucial for a valid PSM design. By capitaliz-
ing on the ignorability and balancing properties of PS, 
matching subjects based on their exact PSs ensures that 
the distribution of baseline variables becomes identi-
cal between treated and untreated individuals, and 
the treatment assignment for matched subjects can be 
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regarded as essentially random. PSM effectively enables 
us to extract an approximate randomized experiment 
from observational data, facilitating robust compara-
tive analyses.

While numerous studies have meticulously examined 
and validated the properties of PSM through simulations 
and theoretical investigations [3–9], a more recent study 
by King and Nielson presents a contrasting view on PSM 
[10]. This study contends that PSM should not be used, 
as it paradoxically “increases imbalance, inefficiency, 
model dependence, research discretion, and statistical 
bias at some point in both real-world data and data tai-
lored to adhere to PSM theory”, a phenomenon they term 
the “PSM paradox”. In the context of a one-to-one PSM 
design, the study illustrates that as study subjects were 
progressively pruned (e.g., by reducing the caliper size) 
and PSM was approaching exact matching, there was 
an initial improvement in balance. This progress contin-
ued until a specific point was reached, where covariates 
became nearly balanced, and PSM approximated a com-
pletely randomized design (CRD). However, it was at this 
juncture that the PSM paradox manifested itself, lead-
ing to a subsequent deterioration in balance, ultimately 
resulting in an increased bias in the effect estimation. 
Their findings have prompted researchers from various 
fields to cast widespread doubt on the validity of PSM 
[11–13].

Nevertheless, there are certain issues within their study 
that challenge the validity of their recommendation:

First, demonstrating the PSM paradox requires exces-
sive pruning. After achieving initial balance with a rea-
sonable caliper (observed confounding is minimized and 
a randomized design is mimicked), one must continue 
pruning instead of stopping at this point. Only then, 
using Mahalanobis distance and a drastically reduced 
sample size, does a jump in imbalance appear. It remains 
unclear why there is a need to further narrow the caliper 
width, potentially leading to the exclusion of valuable 
data, especially when baseline characteristics are already 
balanced using a reasonably sized caliper. For example, 
previous research has shown that using a caliper width of 
0.2 times the standard deviation of logit PS can effectively 
eliminate over 90% of confounding bias [14].

Second, the study chose the sample average treat-
ment effect or on sample effect on the treated (SATE or 
SATT) as the causal interest. While SATE or SATT rep-
resents the treatment effect for the specific study sample, 
it may diverge significantly from the population aver-
age treatment effect or population effect on the treated 
(PATE or PATT), especially when individual treatment 
effects exhibit heterogeneity, and the study sample is not 
randomly selected from the target population. Our pri-
mary interest often lies in estimating population-level 

quantities and the application of PSM for estimating pop-
ulation effects has been extensively investigated [3, 4].

Third, the study concludes that PSM mimics completely 
randomized designs (CRD), implying that every observa-
tion is independent. However, this contradicts previous 
recommendations advocating for matched-pair analyses 
in PSM designs [15]. Prior research [8] has demonstrated 
that exactly matched PSM designs can exhibit varying 
levels of within-pair intraclass correlation, indicating that 
PSM more closely resembles a randomized block design 
(RBD). The intraclass correlation quantifies the degree of 
similarity between individuals within the same block.

Fourth, the chosen imbalance metric, which calculates 
the average “pairwise” absolute distance in covariate 
space from each treated subject to the closest untreated 
unit, raises concerns. This metric’s limitations are two-
fold: i) Even when PSs are identical, treated and untreated 
subjects in a matched pair typically exhibit covariate mis-
matches-a point already extensively discussed by Rosen-
baum [16]. ii) These mismatches occur randomly, with 
negative and positive mismatches having a similar occur-
rence. As the number of matched pairs increases, the 
distributions of matched covariates eventually become 
similar between the treated and untreated groups, and 
the between-group imbalance becomes negligible, 
despite individual units within each matched pair having 
different covariate values. These are key implications of 
the balancing score and the strongly ignorability proper-
ties of PS. Common multivariate distance metrics, such 
as the Mahalanobis distance, may not fully capture the 
random nature of covariate imbalance in PSM designs. 
However, these metrics are valuable in covariate match-
ing (CM) designs for assessing imbalance when matching 
is inexact, as this imbalance mainly contributes to resid-
ual confounding.

Lastly, Since the balancing score and the strongly 
ignorability properties of PS ensure that any mismatches 
in covariate values between matched pairs are random 
occurrences and don’t lead to residual confounding, these 
mismatches can not bias the effect estimation. To demon-
strate the increased statistical biases in the PSM paradox, 
the study adopts a biased approach for effect estimation, 
which involves the use of a well-known biased estima-
tor: selecting the largest estimate from among hundreds 
of competing linear models. This rationale is based on 
the assumption that researchers may be uncertain about 
the correct model and should explore all possible mod-
els in post-matching analysis, potentially cherry-picking 
the best estimate. However, this approach neglects one of 
the most significant benefits of the matching design - its 
resilience against model misspecification. Importantly, 
this bias doesn’t stem from imbalances in confounders 
between comparison groups.
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In light of these uncertainties, our study examines 
whether the PSM paradox is a valid concern, whether 
the properties of PS apply in matching designs, and 
whether researchers should avoid using PSM in com-
parative effectiveness research. This study does not 
focus on comparing the advantages and disadvantages 
of PSM with other methods or designs.

Methods
Definitions and assumptions
The Rubin Causal Model (RCM), introduced by Rubin 
in 1974, is a widely used framework for defining causal 
effects [17]. In this model, we denote the binary treat-
ment status as A, where 1 represents the treatment of 
interest, and 0 represents a control condition. Addi-
tionally, let X represent a p× 1 vector of p confound-
ers at baseline, and Y denote a continuous outcome 
variable. Y(a) denote the potential outcome that would 
have been observed for an individual if the treatment A 
had been set to level a, where a ∈ {0, 1} . For simplicity, 
we assume that confounders X = �X1,X2, · · · ,Xp�T  are 
mutually independent, i.e., Xk ⊥⊥ Xj for all k  = j.

We further make the following assumptions for 
causal inference:

Assumption 1  The Stable Unit Treatment Value 
Assumption (SUTVA), which consists of two 
sub-assumptions: 

	(i)	 The potential outcomes for any unit do not vary 
with the treatment assigned to other units (no 
interference between units).

	(ii)	 For each unit, there are no different versions of 
each treatment level (no hidden versions of treat-
ments).

Under SUTVA, the potential outcomes of each indi-
vidual i depends only on the treatment assigned to this 
unit, not the treatments assigned to other units. For each 
individual i, Yi(1) represents the potential outcome that 
would have been observed if individual i received the 
treatment of interest, while Yi(0) represents the potential 
outcome if individual i received the control. The observed 
outcome is denoted as Yi = AiYi(1)+ (1− Ai)Yi(0).

Assumption 2  The conditional ignorable treatment 
assignment assumption

Conditional on observed confounders, the treatment sta-
tus can be considered as randomly assigned.

{Yi(1),Yi(0)} ⊥⊥ Ai|Xi

We also impose the Positivity assumption as follows:

Assumption 3  For all observed covariates X where 
P(X) > 0 , 0 < P(A = 1|X = x) < 1

This is also known as the common support or overlap 
assumption because it entails that the conditional distri-
butions P(A = 1|X = x) and P(A = 0|X = x) must share 
a common support.

Population and sample causal estimand
It’s important to note that for any given individual i, only 
one potential outcome from the pair {Yi(0),Yi(1)} can be 
observed. As a result, individual-level treatment effects 
Yi(1)− Yi(0) cannot be identified, leading researchers to 
often focus on average treatment effects (ATE). In the lit-
erature, there are two types of ATEs: one at the popula-
tion level and the other at the sample level.

We assume there is a population of N units in the 
super-population, from which we draw a sample S with 
n individuals. The population average treatment effect 
(PATE) is defined as

which is the difference in potential outcomes averaged 
across the N units in the super-population. The sam-
ple average treatment effect (SATE) for our sample S is 
defined as

which is the difference in the potential outcomes aver-
aged across the n units in the sample S. SATE could vary 
from sample to sample if the individual treatment effect 
Yi(1)− Yi(0) is not constant. If S is sampled randomly 
from the super-population, SATE is an unbiased estimate 
for PATE.

Similarly, we assume the number of treated subjects in 
the population and sample are N1 and n1 . We can define 
the population and sample treatment effect among the 
treated as

τPATE = E(Y (1)− Y (0))

= 1

N

N

i=1

(Yi(1)− Yi(0))

τSATE = E(Y (1)− Y (0)|S = 1)

= 1

n

n
∑

i=1

(Yi(1)− Yi(0))

τPATT = E(Y (1)− Y (0)|A = 1)

= 1

N1

N1
∑

i=1

Ai

(

Yi(1)− Yi(0)
)
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PSM commonly targets the averaged treatment effect 
among the treated (ATT). Under the assumption that indi-
vidual treatment effects are constant, i.e., Yi(1)− Yi(0) = τ , 
τPATE = τSATE = τPATT = τSATT . Under SUTVA and the 
conditional ignorable treatment assignment assumption, we 
can identify PATE with observed outcome.

The relationship between Y, A, and X was previously 
described using the following linear model [10]:

where ǫi is a random error and E(ǫi) = 0 , β1 repre-
sents the conditional exposure effect. g(·) is some 
arbitrary function. When the effects of Xi on Yi 
are linear additive, g(Xi) = βT

2 Xi , where β2 rep-
resents the p× 1 vector of regression coeffi-
cients for X. It follows that β1 = Yi(1)− Yi(0) and 
τPATT = τSATE = τPATT = τSATT = β1 . King and Nielsen 
[10] stated that their causal interest lies in either SATE or 
SATT. However, model (1) implies a constant individual 
treatment effect. In this context, there is no distinction 
between population and sample causal estimands, nor 
between ATT and ATE. We adopted the same setting pri-
marily to demonstrate that covariate imbalance in PSM 
occurs by chance and does not bias effect estimation, 
contrary to the findings of the prior study. We are not 
evaluating a novel estimation approach in more general 
settings. Finally, we focus on estimating the population 
effect, rather than the sample treatment effect, within our 
simulation design.

Propensity score
The PS, denoted as e(X) , is formally defined as the condi-
tional probability of receiving an active treatment given 
the baseline covariates X. It serves as a summary score of 
X. The PS e(X) has two key properties:

Property 1. (Balancing score) The PS e(X) balances 
the distribution of X between the treatment groups: 

 When pairing two subjects, denoted as i and j, where 
one is treated and the other is untreated, such that 

τSATT = E(Y (1)− Y (0)|A = 1, S = 1)

= 1

n1

n1
∑

i=1

Ai

(

Yi(1)− Yi(0)
)

τPATE = E(Yi(1)− Yi(0))

= E(E(Yi(1)− Yi(0)|Xi))

= E(E(Yi|Ai = 1,Xi)− E(Yi|Ai = 0,Xi))

(1)Yi = E(Yi|Ai,Xi)+ ǫi = β0 + β1Ai + g(Xi)+ ǫi

A ⊥⊥ X|e(X)

Aki + Akj = 1 , and they possess identical PSs in the 
kth matched pair, it’s possible for these two subjects 
to exhibit different values for the observed covari-
ates, Xki  = Xkj , despite having precisely the same 
PSs, e(Xki) = e(Xkj) . However, this discrepancy 
or mismatch in X within each matched pair can be 
attributed to chance and therefore cannot predict 
the treatment assignment [16]. The crucial aspect of 
these within-pair mismatches is that the disparity in 
covariate values between treated and untreated sub-
jects can fluctuate randomly, resulting in both posi-
tive and negative differences from one matched pair 
to another, occurring with equal frequency. In  situ-
ations where the number of matched pairs is small, 
we can anticipate moderate imbalance between the 
treated ( A = 1 ) and untreated ( A = 0 ) groups. How-
ever, as the number of matched pairs increases, the 
between-group imbalance becomes negligible. This 
distinctive phenomenon of PS can also be elucidated 
within the conventional regression framework [18]. 
Confounding bias emerges when confounders, which 
are correlated with both the outcome and treatment 
variables, are excluded from the regression model 
of Eq. (1). By adjusting for PS rather than directly 
including confounders as covariates, confounders 
are effectively decomposed into two components: 
the PS itself and a residual term. Conditioning on 
the PS, this residual term becomes orthogonal to the 
treatment variable and can be considered as random 
noise. Omitting such random noise no longer biases 
the estimation of treatment effect in a regression 
model.

	 It’s important to note that successfully balanc-
ing the observed variables X by matching on e(X) 
doesn’t guarantee the balance of unmeasured vari-
ables. In practical applications, it is common to 
utilize the rule of thumb that considers a stand-
ardized mean difference (SMD), in absolute value, 
not exceeding 0.1 as a criterion to evaluate the bal-
ance of baseline variables individually between the 
treated and untreated groups. SMD of a confounder 
Xj , j = 1, 2, · · · , p , is defined as: 

where X̄1j , X̄0j , S21j , and S20j are the sample means 
and sample variances of Xj in treated and untreated 
groups. SMD can capture both direction and size of 
the between-group imbalance in Xj.

dj =
X̄1j − X̄0j
√

S21j+S20j
2
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Property 2. (Strongly ignorable treatment assign-
ment (SITA)) If A is unconfounded given X, then A is 
unconfounded given e(X) . Formally, 

 SITA requires that there are no unmeasured con-
founding variables and that there should be sufficient 
overlap in the PSs between the treated and untreated 
groups. If it suffices to match on X for a matching 
design, it also suffices to match on e(X) . Matching on 
a single variable e(X) is more practical than matching 
on X when X is high-dimensional.

In summary, two properties of PS ensure that any 
imbalance in baseline confounders between two com-
parison groups in an exactly matched PSM design 
occurs by random chance and cannot result in residual 
confounding that can lead to biased estimation of treat-
ment effect. Conversely, if covariate imbalances are sys-
tematic rather than random, property 2 will not hold 
due to residual confounding. It is important to note that 
a correctly specified PS model is required to estimate 
the PS unbiasedly. Otherwise, the estimated PS may not 
possess the balancing score and SITA properties, lead-
ing to biased results in subsequent methods, including 
PSM [19].

Finally, we assume e(X) takes the following logit form:

where α1 is the p× 1 dimensional coefficient vector. We 
will use formula (2) in simulation study.

Results
The issues with the PSM paradox
Increase in imbalance
Instead of confirming the balancing property of the PS in 
matching designs, King and Nielsen [10] demonstrated 
that as PSM approaches exact matching by eliminat-
ing the worst-matched pairs, the imbalance initially 
decreases. However, it subsequently increases beyond 
a certain threshold, deviating from continual improve-
ment. Since this observation contradicts the balancing 
property of the PS, we need to carefully examine whether 
the metrics used in previous studies can adequately cap-
ture the chance imbalance. King and Nielsen [10] used 
the following imbalance metric:

Here I(X) represents the average pairwise distance 
between treated subject i with covariates Xi , and the 
closest untreated subject j with covariates Xj(i) . d(·) is a 

{Y (1),Y (0)} ⊥⊥ A|X → {Y (1),Y (0)} ⊥⊥ A|e(X)

(2)e(X) = P(A = 1|X) = eα0+αT
1
X

1+ eα0+αT
1
X

I(X) = meani∈{i}d(Xi,Xj(i))

distance function. For example, the Mahalanobis distance 
is a popular choice, which is defined as the following:

where � represents the sample covariance matrix of the 
original data. Ripollone et  al. [20] found a similar pat-
tern of increasing imbalance after progressive pruning 
of worst matched pairs in real epidemiological data sets. 
Instead of using the average individual distance between 
matched subjects, Ripollone et al. [20] measured imbal-
ance using two different metrics: 1) the Mahalanobis 
distance between the covariate means in the treated and 
untreated groups, as follows:

Here X̄1 and X̄0 are the vectors of covariate means 
in the treated and untreated groups. Larger values of 
the Mahalanobis balance metric suggest worse covariate 
balance. 2) C statistic for the discriminatory power of the 
logistic model predicting the treatment indicator in the 
matched data set. Higher C statistic values suggest worse 
covariate balance.

The balancing property of the PS suggests that as the cal-
iper size shrinks and PSM approaches exact matching, the 
distribution of X becomes the same between the treated 
and untreated groups. Any mismatches in X between 
treated and untreated subjects in matched pairs are ran-
dom occurrences. However, we need to understand that 
the balancing of X between the two groups is a large sam-
ple property. To better understand this concept, consider a 
small two arm CRD trial. In such cases, one might expect 
to observe significant mean differences in baseline covari-
ates between treatment groups, even though treatments 
are randomly assigned. For instance, suppose a baseline 
variable X in the treated and untreated groups in a rand-
omized trial follow a normal distribution ∼ N (µ, σ) . In 
this scenario, the group means of n subjects, denoted as X̄1 
and X̄0 , follow a normal distribution ∼ N (µ, σ√

n
) . SMD 

d = X̄1−X̄0
σ

∼ N (0, 2√
n
) . When the sample size is small, the 

variance of d becomes large, making it more likely to 
observe a significant imbalance between two groups even 
in a randomized trial. Thus, in a PSM design with a large 
number of matched pairs, we would expect the between-
group imbalance to be negligible when averaging out these 
within-pair mismatches. In repeated samples with a finite 
sample size (e.g., simulation studies), chance imbalance 
implies that the between-group imbalance can be positive 
in one matched sample and negative in another. However, 
when averaged across all matched samples, it converges to 
zero.

d(Xi,Xj(i)) =
√

(Xi − Xj(i))
′
�−1(Xi − Xj(i))

d(X̄1, X̄0) =
√

(X̄1 − X̄0)
′
�−1(X̄1 − X̄0)



Page 6 of 16Wan ﻿BMC Medical Research Methodology           (2025) 25:25 

The issues with prior findings regarding the even-
tual increase in the between-group imbalance as PSM 
approaches exact matching are twofold: 

	(i)	 The distance metrics used in previous stud-
ies [10, 20] fail to capture the inherent “chance” 
aspect of observed imbalance in a PSM design. 
The Mahalanobis balance metric and C statistics, 
employed in these studies, measure the absolute 
distance and consistently yield positive values with-
out considering the directions of either within-pair 
or between group imbalances. Consequently, when 
the number of matched pairs increases, the within-
pair Mahalanobis distances [10] cannot average 
towards zero, and when averaged over repeated 
samples, the between-group Mahalanobis dis-
tances and C statistics [20] fail to converge towards 
zero as well.

	(ii)	 Previous studies also demonstrated the PSM para-
dox by pruning the worst-matched pairs in a single 
dataset. However, balancing is a large sample prop-
erty and the between-group imbalance in a PSM 
design tends to converge to zero with an increasing 
number of matched pairs, rather than a decreasing 
one from progressive pruning. When sample size is 
finite, this convergence towards zero occurs when 
averaged over repeated samples, not within a sin-
gle sample. Instead, the noted rise in imbalance, as 
observed in prior studies [10, 20], reflects the grow-
ing variability in chance imbalance as the sample 
size decreases through progressive pruning. Once 
PSM reaches the initial balance of X with an appro-
priate caliper (i.e., the point where PSM approxi-
mates a randomized design), further reduction 
in matched pairs results in a smaller sample size, 
thereby increasing the likelihood of large chance 
imbalances between two groups. Consequently, 
this leads to large Mahalanobis distances or C sta-
tistics, as observed in previous studies [10, 20].This 
trend is akin to small trials where the likelihood of 
observing significant baseline covariate imbalances 
is higher.

Bias and model dependence
 

(i)	Bias

As further revealed in the previous study [10], increas-
ing imbalance has consequences that include a rise in 
bias. However, chance imbalance does not predict treat-
ment status and should not bias the estimation of PATT 
when PSM approaches exact matching, even when 
using the sample mean difference, one of the simplest 

effect estimators [2]. So, where does this bias originate? 
It turns out that the bias observed in King and Nielsen’s 
study [10] stems from an unconventional source - their 
choice of a generally biased estimator for the treatment 
effect. Consider a scenario in which an analyst has tried 
a set of different models m1,m2, · · · ,mJ for estimating 
the treatment effect, resulting in corresponding estimates 
τ̂1, τ̂2, . . . , τ̂J from each model. In such cases, research-
ers often opt for the maximum estimate among these, 
denoted as τ̂0 = max(τ̂1, τ̂2, . . . , τ̂J ) . As stated in the pre-
vious study[10], this maximum coefficient τ̂0 is typically 
biased, even when individual estimates are unbiased.

King and Nielsen [10] provided some reasons behind 
the use of this biased estimator in assessing PSM: The 
data generation process and the true model are unknown, 
which may lead analysts to explore various models, a 
practice commonly referred to as cherry-picking. In one 
of their examples, King and Nielsen fitted 512 different 
models for a simple PSM design with only two match-
ing factors - an extreme case of post-matching analysis. 
Researchers often select the maximum estimate, which, 
according to order-statistics theory, is typically biased. 
Notably, this bias does not result from confounding, 
which arises from systematic imbalances in confounders. 

	(ii)	 Model dependence

King and Nielsen[10] also argue that human choices dur-
ing cherry-picking in a PSM design can worsen model 
dependence. Previous works[10, 21] have attempted to 
define model dependence. Ho et al. [21] explained that the 
absence of model dependence means that the choice of a 
functional form does not significantly affect the results; 
the results remain consistent regardless of the selected 
functional form. King and Nielsen [10] further stated that 
the analysts encounter model dependence  (i.e., different 
causal estimates from multiple equally well-fitting mod-
els) when exploring all plausible models. They proposed 
a formal metric to measure model dependence in match-
ing designs by calculating the variance of effect estimates 
from all fitted models: σ̂ 2 = var(τ̂1, τ̂2, . . . , τ̂J )[10]. This 
metric, based on the similarity of individual estimates 
from distinct effect estimators derived from competing 
models, primarily reflects a combination of design effi-
ciency and the variance of each effect estimator, which 
inherently depends on the specific model fitted. However, 
it omits the critical bias component. This variance met-
ric differs from the mean squared error (MSE) of a single 
estimator, which measures the average squared difference 
between estimated values and the true value, combining 
both variance and bias components for this estimator. 
Note that even two unbiased models can produce dif-
ferent individual estimates, depending on their variance 
estimators and sample size. We will use the following 
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examples to illustrate the potential issues with this vari-
ance metric:

Example 1: Consider two competing designs, A and 
B, where all individual regression models produce unbi-
ased estimates: τ̂a1, τ̂a2, . . . , τ̂aJ and τ̂b1, τ̂b2, . . . , τ̂bJ , and 
E(τ̂aj) = E(τ̂bj) = τ ,∀j = 1, 2, · · · , J . Thus, unbiased esti-
mation in both designs is independent of model specifica-
tion, and any misspecified model can still yield unbiased 
estimates. Furthermore, let τ̂a0 = max(τ̂a1, τ̂a2, . . . , τ̂aJ ) and 
τ̂b0 = max(τ̂b1, τ̂b2, . . . , τ̂bJ ) , σ̂ 2

a = var(τ̂a1, τ̂a2, . . . , τ̂aJ ) , 
and σ̂ 2

b = var(τ̂b1, τ̂b2, . . . , τ̂bJ ) . If τ̂a0 < τ̂b0 and σ̂ 2
a < σ̂ 2

b  , 
can we then reverse the previous conclusion and claim that 
design A is less model-dependent than design B? Certainly 
not, as we know that unbiased effect estimation does not 
rely on model specification in either design.

Example 2: Consider two competing designs, A and 
B, where individual regression models produce unbi-
ased estimates in design A but in design B only the 
correctly specified model yields unbiased estimates: 
E(τ̂aj) = τ ,∀j = 1, 2, · · · , J  , and E(τ̂bj) = τ for j = k , 
while E(τ̂bj) �= τ ,∀j �= k . If σ̂ 2

a = σ̂ 2
b  , can we conclude 

that both designs have the same level of model depend-
ence? Certainly not reasonable, as we know unbiased 
effect estimation in design B depends on correct model 
specification.

In a randomized study, both CRD and RBDs allow 
unbiased estimation of treatment effects using sample 
mean differences without modeling the outcome-covar-
iate relationship. With appropriate variance estima-
tors, valid statistical inference can be achieved in either 
design, though the variance estimator in CRDs may 
be larger than in RBDs. However, lower efficiency does 
not compromise the validity of a design. In an observa-
tional study setting, both exactly matched PSM and CM 
designs can rely on the sample mean difference for unbi-
ased effect estimation, as both designs effectively balance 
confounders. Similarly, with correct variance estimators, 
valid inference can be made in either design [22], without 
relying on a correctly specified outcome model. Although 
PSM could be less efficient than other CM designs given 
the same number of matched pairs, as it matches on a 
summary score rather than directly on covariates, using 
less information. However, it provides a practical solu-
tion to the curse of dimensionality, the key limitation of 
CM designs.

We propose that model dependence in matching 
designs is more appropriately defined by whether unbi-
ased effect estimation relies on correct model specifica-
tions, as this property is a defining advantage of good 
matching designs. It is important to note that not all 
matching designs can reduce model dependence, such 
as matched case-control designs [23–25]. Using cherry-
picking approaches to quantify bias or model dependence 

in randomized designs, or in valid matching designs that 
emulate randomization, is both invalid and unnecessary. 

	(iii)	 A good matching design eliminates the need for 
cherry-picking analysis and reduces the depend-
ence of unbiased effect estimation on model speci-
fication

Regression analysis with confounders adjusted as covari-
ates in the original unmatched data is commonly used by 
applied researchers to estimate the treatment effect due 
to its relative simplicity compared to a matching design. 
The primary issue associated with regression analysis is 
model dependence, where the outcome model must be 
fitted correctly (e.g., considering nonlinear forms of con-
founders and interaction terms). A misspecified model 
can lead to biased estimates. In contrast, when using 
matching design, one must navigate a complex matching 
algorithm and may have to discard valuable unmatched 
observations. If, after all these painstaking efforts, 
researchers continue to grapple with the challenge of 
selecting the correct outcome model amidst the explora-
tion of numerous candidate models during post-match-
ing analysis, they should question the benefit of using 
matching design over regression adjustment in original 
data.

Researchers should note that matching in a cohort 
study can serve as a nonparametric preprocessing tool. 
When exact matching is achieved, it can either elimi-
nate or reduce reliance on correct model specifications 
in the post-matching analysis, as discussed by Ho et al.
[21]. In cases of exact matching, a simple linear regres-
sion that includes only the treatment indicator, essen-
tially representing the sample mean difference between 
the treatment and control groups, or a model adjusted 
for covariates, can both yield unbiased estimates. This 
is true even if these models happen to be misspecified 
[26]. In situations where exact matching is not possible, 
the required adjustments are far less burdensome, less 
reliant on specific model assumptions than they would 
without matching. These informal claims find theoreti-
cal support in the work of Guo and Rothenhäusler [26]. 
They also demonstrated that when exact matching is 
unattainable, additional linear regression adjustments 
become necessary. Nonetheless, matching makes para-
metric analyses less sensitive to the correct model spec-
ification. These findings align with the earlier assertion 
that a well-designed matching process, coupled with 
subsequent regression adjustment, generally yields the 
least biased estimates [27]. Instead of experimenting 
with numerous models for post-matching analysis, we 
can use a predefined approach with commonly used 
misspecified models, such as simple linear regression 
or multiple linear regression including linear terms for 
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all matching factors. The ultimate goal of comparative 
effectiveness research is unbiased effect estimation, not 
selecting results that appear most favorable. In the next 
section, we will assess the unbiasedness of these mis-
specified models using simulation.

The type of randomized design PSM emulates
PSM is suggested to mimic a CRD, whereas CM aims 
to replicate the randomized complete block design 
(RCBD) [10]. In general, CRD is less efficient than RBD. 
However, we show that PSM, rather than mimicking a 
CRD, emulates a form of RBD, where blocks are partial 
information of matched confounders e(X) , and the rela-
tive efficiency of exactly matched PSM versus CM also 
depends on the number of matched pairs.

For a 1:1 exact CM on confounders X, M matched 
pairs are formed on Xm , m = 1, 2, · · · ,M . The variances 
of the sample means Ȳi. =

∑

M

m=1
Yim

M
 , for i = 0, 1 , and the 

mean difference Ȳ1. − Ȳ0. are:

and

Here, �X denotes the p× p variance-covariance 
matrix of X in the matched population under CM. The 
intraclass correlation within pairs is:

For a 1:1 matching design on exact logit PS, N 
matched pairs are formed on PSs Zn , n = 1, 2, · · · ,N  . 
While X1n  = X0n , their PSs satisfy e(X1n) = e(X0n) . The 
variance of the sample mean difference Ȳ1. − Ȳ0. in this 
design is:

where σ 2
ν = sin(θ)2βT

2
�̃Xβ2 and �̃X represent the p× p 

variance-covariance matrix of X in the matched popula-
tion under PSM. Since Z = α0 + αT

1
X , the intraclass cor-

relation within pair is

Var(Ȳ1.) = Var(Ȳ0.) =
βT
2
�Xβ2 + σ 2

ǫ

M
,

Var(Ȳ1. − Ȳ0.) =
2σ 2

ǫ

M

ρ1 =
βT
2
�Xβ2

βT
2
�Xβ2 + σ 2

ǫ

= 1

1+ σ 2
ǫ /β

T
2
�Xβ2

Var(Ȳ1. − Ȳ0.) =
2(σ 2

ν + σ 2
ǫ )

N

Here θ is the angle between two coefficient vectors β2 
and α1 . The sine distance, sin(θ) , measures the relation-
ship between these vectors. When θ = 0 or θ = π , α1 and 
β2 are parallel, and the sine distance is minimized at 0. In 
this case, ρ2 reaches its maximum:

When θ = π/2 , α1 and β2 are perpendicular, and the 
sine distance is maximized at 1. Here, ρ2 reaches its 
minimum:

As θ increases from 0 to π/2 (or equivalently, from π 
to π/2 ), ρ2 decreases from ρ2,max to ρ2,min , transitioning 
from a RBD with a strong intraclass correlation to one 
with weak correlation. All the details are provided in sup-
plemental material (Web Appendix 1).

We can make the following conclusions regarding rela-
tive efficiency of PSM compared to CM and the type of 
randomized design it mimics: 

(1)	 PSM generally mimics a RBD. The intraclass cor-
relation within pairs depends on the sine distance 
between β2 and α1 , with smaller distances yield-
ing higher correlations. When the distance is large 
(i.e., sin(θ) = 1 ) and βT

2
�̃Xβ2 + σ 2

ǫ  is substantial, 
ρ2 becomes very small, making PSM approximate 
a CRD. However, upon closer examination of the 
settings in the previous study [10], the effects of 
confounders on the outcome and treatment appear 
parallel. Consequently, PSM essentially mimics a 
RBD with a high intraclass correlation within pairs 
( ρ2 > 0.7 ), rather than a CRD, which would exhibit 
nearly zero intraclass correlation. Further details 
will be provided in the next section.

(2)	 The relative efficiency of the treatment effect esti-
mator Ȳ1. − Ȳ0. under PSM compared to CM can be 
expressed as: 

ρ2 = γ 2αT

1
�̃Xα1

γ 2αT

1
�̃Xα1 + σ 2

ν + σ 2
ǫ

= 1

1+
(

sin(θ)2βT

2
�̃Xβ2 + σ 2

ǫ

)

/

(

(

�β2�
�α1� cos(θ)

)2

αT

1
�̃Xα1

)

ρ2,max =
1

1+ σ 2
ǫ /

(

(

�β2�
�α1�

)2
αT
1
�̃Xα1

)

ρ2,min = 1

1+
(

βT
2
�̃Xβ2 + σ 2

ǫ

)

relative efficiency = σ 2
ǫ

(σ 2
ν + σ 2

ǫ )

N

M
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 If N ≅ M , σ 2
ǫ

σ 2
ν +σ 2

ǫ
< 1 , indicating that PSM is less effi-

cient. This can be explained by the fact that PSM 
only use partial information of X-“e(X) ” as the 
blocking factor. However, when the number of 
matching variables is large, CM faces the curse of 
dimensionality, resulting in significantly fewer 
matched pairs compared to PSM ( M ≪ N  ). In such 
cases, the variance gains from CM may not offset 
the data loss, making PSM more efficient.

Simulation
Simulation design
We conducted simulation studies to achieve the follow-
ing objectives: (a) Assessing Systematic Imbalance: Our 
first inquiry aimed to determine whether there exists a 
systematic imbalance and a corresponding bias in effect 
estimation as we tightened the matching caliper size. (b) 
Evaluating Model Misspecification Sensitivity: Our sec-
ond inquiry focused on assessing whether PSM reduces 
sensitivity to model misspecification. (c) Re-assessing the 
previous simulation study: we will use the same data gen-
eration scheme used in previous simulation study [10] to 
show that PSM actually mimic a RBD in previous study, 
not a CRD.

In order to generate the simulation data, we followed 
the methodology used in our previous studies [8, 28], as 
detailed below: 

	(i)	 We created two coefficient vectors, β2 and α1 , each 
containing five elements in the outcome and treat-
ment models (Eqs. (1) and (2)). For β2 , we initiated 
the elements of the coefficient vector by randomly 
sampling values from the range of 1 to 9. Subse-
quently, we normalized this coefficient vector to be 
a unit vector. The sign of each element was deter-
mined using a Bernoulli distribution with a prob-
ability of 0.5. Finally, we set β2 equal to k multiplied 
by its normalized factor, with the value of k being 
fixed at 1.2. The same procedure was then repeated 
to generate α1 , with α1 set to 1 multiplied by the 
normalized vector. Among all generated pairs of 
coefficients, we specifically selected two pairs of 
coefficients with their the sine distances falling 
within the intervals [0, 0.2] and (0.8, 1] respectively 
(Details in supplemental table  1 in Web Appen-
dix  3). The sine distance measures the dissimilar-
ity between two vectors, and it ranges from 0 to 1, 
with a larger value indicating a greater dissimilarity 
between the vectors [18]. When the sine distance 
falls within the range of (0.8, 1], it signifies that 
there is a weak within-pair correlation among the 
matched subjects. In this context, the PSM design 
closely resembles a CRD. Conversely, when the sine 

distance is within the range of [0, 0.2], it suggests 
that the within-pair correlation among matched 
subjects is strong. In such instances, the PSM 
design approximates a RBD. Our approach intends 
to avoid the extreme results from using propor-
tional coefficient sets of α1 and β2 in prior studies 
[29].

	(ii)	 For every pair of β2 and α1 , we generated five 
independent confounding variables, denoted as 
X1,X2, . . . ,X5 , from a normal distribution with 
mean 0 and standard deviation 1, each with a sam-
ple size of n = 1500 . The treatment variable A was 
created using the treatment model (2), with the 
intercept α0 set to −0.9. Thus, approximately 30% 
of the simulated subjects received the treatment. 
The outcome variable Y was generated using the 
linear model outlined in Eq. (1), incorporating an 
error term ∼ N (0, 1) . β1 was set at 0.5 in “Imbal-
ance and bias” section and 1 in “Model depend-
ence” section.

	(iii)	 In each simulated data set, we computed the PS 
for every subject using a logistic regression model. 
We then applied a nearest-neighborhood match-
ing algorithm to pair each treated subject with a 
control subject based on the logit of the PS. This 
matching was performed without replacement, uti-
lizing a caliper width equal to c times the standard 
deviation of the logit PS, where c was selected from 
the set of values {20, 1, 0.2, 0.02, 0.002, 0.0002} . 
Matching algorithm was implemented in 
R/MatchIt.

Imbalance and bias
At each matching caliper size, we calculated various 
metrics for assessing imbalance, including the number 
of the matched pairs, SMD of confounder X3 , and the 
multivariate Mahalanobis distance between group means 
of all confounders in the treated and untreated groups. 
This analysis was conducted on 5000 randomly gener-
ated samples, with the same calculations repeated in each 
sample. Subsequently, we averaged these measurements 
across the 5000 replicates. Additionally, we computed 
the proportion of SMDs of X3 that exceeded 0.1 in the 
absolute values. We anticipated that the averaged SMD 
of X3 would effectively capture any chance imbalance and 
thus converge toward 0 after the initial balancing was 
achieved. In contrast, we anticipated that the average of 
Mahalanobis metrics would initially decrease until a cali-
per size of 0.2 × the standard deviation of the logit PS was 
reached, after which they would increase. The proportion 
of absolute SMDs of X3 larger than 0.1 was also expected 
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to follow this trend. These increasing trends reflect the 
increasing likelihood of observing substantial chance 
imbalances due to a continued decrease in sample size 
after the initial balancing was established.

In addition to calculating these imbalance metrics 
at each caliper size, we performed regression analyses. 
Three different models were fitted: an unadjusted model 
with the treatment indicator A (referred to as “ M(A)”), 
a multiple regression model including A, linear terms of 
X4 , and X5 (referred to as the “ M(A,X4,X5)”), a model 
including A, linear terms of X1 through X5 (referred 
to as the “ M(A,X1,X2,X3,X4,X5)”), and finally, we 
extracted estimates of the treatment effect from each 
model, along with model-based standard errors and 
robust sandwich standard errors. These effect estimates 
and variance estimates were then averaged across 5000 
replicates. Additionally, we computed the empirical vari-
ance estimate for each effect estimator by calculating 
the variance of 5000 effect estimates. We anticipate that 
M(A,X1,X2,X3,X4,X5) would outperform both M(A) 
and M(A,X4,X5) , displaying the smallest bias and vari-
ance estimates. When considering the commonly recom-
mended caliper size of 0.2 × the standard deviation of the 
logit PS, we expected that even though both M(A) and 
M(A,X4,X5) were misspecified, they will still produce 
nearly unbiased effect estimations.

Model dependence
We used a new set of coefficients and a more com-
plex outcome model that incorporates quadratic and 
interaction terms to generate the outcome Y (refer to 
the Web  Appendix  3 for details). Within the frame-
work of this complex outcome model, we evaluated the 
performance of misspecified models for effect estima-
tion. Two different models were employed: M(A) and 
M(A,X1,X2,X3,X4,X5) . We then extracted estimates of 
the treatment effect from each model, along with model-
based standard errors. These effect estimates and vari-
ance estimates were subsequently averaged across 5000 
replicates. Additionally, we computed the empirical vari-
ance estimate for each effect estimator by calculating the 
variances of the 5000 effect estimates. We anticipate that 
with a caliper size of 0.2 times the standard deviation 
of the logit PS, both M(A) and M(A,X1,X2,X3,X4,X5) 
would yield nearly unbiased effect estimates. To examine 
the claim that even inexact matching can still make para-
metric analyses less sensitive to model misspecification, 
we also fitted M(A,X1,X2,X3,X4,X5) in unmatched data 
and computed the averaged estimate of β1.

Re‑assessing the type of randomized design PSM emulates 
in previous study
We follow the same data generation approach outlined 
in section (5.2) in the previous study [10]. We first gen-
erate 5000 treated and 5000 untreated subjects (i.e., 
A ∼ Binom(0.5) ). For each of two covariates X1 and X2 , 
we randomly and independently draw control units from 
Uniform(1, 6) and treated units from Uniform(0, 5). We 
generate the outcome as Yi = 2A+ X1 + X2 + ǫ1 , where 
ǫi ∼ N (0, 1) . Thus, the effects of X1 and X2 on the treat-
ment are expected to be  the same and proportional to 
their effects on the outcome. i.e., sin(θ) = 0 . We repeat 
the simulation 5000 times and in each simulation, we 
performed the same analyses as outlined in Imbalance 
and bias section. For each matched data, we used gener-
alized estimation equation method to compute the intra-
class correlation coefficients within the matched pairs. 
The simulation code is provided in supplemental material 
(Web Appendix 2).

Simulation results
Figure  1 illustrates the simulation results for imbalance 
and biases in the scenario involving low within-pair cor-
relation, where the sine distance exceeds 0.8 and PSM 
approximates a CRD. Firstly, as the caliper size dimin-
ishes, the Mahalanobis distance initially decreases until it 
reaches the optimal caliper size ( 0.2× the standard devi-
ation of logit PS), and then increases as the caliper size 
continues to shrink, and the sample size decreases (see 
Fig.  1A). The proportion of absolute SMD greater than 
0.1 for X3 follows a similar pattern (Fig. 1B). SMD of X3 
decreases until reaching the optimal caliper size and then 
stabilizes near zero thereafter (Fig.  1C). This confirms 
that metrics like the Mahalanobis distance only reflects 
the increasing variability in chance imbalance and a 
higher likelihood of observing larger chance imbalance 
as the sample size decreases. Only metrics that retain 
the direction of differences, such as SMD, can accurately 
measure this chance imbalance. Secondly, we can also 
observe that M(A) and M(A,X4,X5) produce biased 
estimates until confounders are balanced at the optimal 
caliper size, and PSM approximates a randomized design 
(Fig. 1D). Given that the true outcome model includes lin-
ear terms for five confounders, M(A,X1,X2,X3,X4,X5) 
consistently produces unbiased results at all caliper sizes. 
When either the regression model is correctly specified 
or matching is performed correctly (even with incor-
rect models), we can consistently obtain unbiased results 
(Fig.  1D). Lastly, it’s worth noting that the model-based 
standard errors for both M(A) and M(A,X4,X5) do 
not align precisely with their empirical standard errors, 
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and robust sandwich estimators do not show significant 
improvement (Fig. 1E). The model-based standard errors 
from M(A,X1,X2,X3,X4,X5) align well with its empirical 
standard errors (Fig. 1F).

Figure  2 illustrates the simulation results for imbal-
ances and biases in a scenario where the within-pair 
correlation is high (i.e., the sine distance is less than 0.2 
and PSM approximates a randomized blcok design). 
We observe a consistent pattern of imbalance and bias 
across different aspects (Fig.  2A-D). Both M(A) and 
M(A,X4,X5) exhibit bias until the caliper size reaches 
the optimal level. In contrast, the correctly specified 
M(A,X1,X2,X3,X4,X5) remains unbiased through-
out the process. Notably, robust sandwich standard 
error estimates for M(A) and M(A,X4,X5) perform bet-
ter than model-based standard error estimates after the 
caliper size reaches the optimal level (Fig. 2E and Table 2 
in Web Appendix 4). The model-based standard errors of 
M(A,X1,X2,X3,X4,X5) closely align with their empirical 
standard errors (Fig. 2F).

Figure  3 illustrates the sensitivity of PSM to 
model misspecification in our simulation results. 
We observe a consistent pattern in imbalance met-
rics (Fig.  3A-C). Both misspecified models show bias 
until the matching caliper size reaches its optimal 
level (Fig.  3D). Notably, model-based standard errors 
for M(A,X1,X2,X3,X4,X5) closely match empirical 
standard errors across all caliper sizes. However, this 
alignment is poor for M(A) , although the robust sand-
wich variance estimator improves the alignment at 
and after the optimal caliper size (Fig.  3  E and F and 
Table  3 in Web Appendix  4). Moreover, the averaged 
estimate of β1 obtained using M(A,X1,X2,X3,X4,X5) 
in the unmatched dataset is 1.37, indicating a consid-
erably higher bias compared to when the same model 
is applied in a poorly matched PSM design, employ-
ing a large caliper size of 20 × the standard deviation 
of the logit PS (Fig.  3D). This reaffirms the previous 
conclusion [26] that matching, even an imperfect one, 
can effectively reduce the sensitivity of parametric 

Fig. 1  Imbalance and Bias for the sine distance > 0.8 . A The trend of the mahalanobis distance with shrinking caliper size; (B) The trend 
of the proportion of absolute SMD of X3 larger than 0.1; (C) The trend of SMD of X3 ; (D) The trend of estimators of PATT; (E) The concordance 
between empirical standard error and model-based/Robust Sandwich estimators for M(A) and M(A, X4, X5) ; (F) The concordance 
between empirical standard error and model-based estimators for M(A, X1, X2, X3, X4, X5)



Page 12 of 16Wan ﻿BMC Medical Research Methodology           (2025) 25:25 

modeling to model misspecification. We further exam-
ined imbalance, bias, and model dependence using 3 
correlated normally distributed X1,X2,X3 ( ρ = 0.5 ) and 
2 correlated binary X4,X5 ( ρ = 0.3 ) and the results are 
consistent (details in Web Appendix 5).

Figure  4 illustrates the simulation results for the set-
ting used in the previous study [10]. A consistent pattern 
of imbalance and bias is observed across various met-
rics (Fig. 4A-D). Firstly, as the caliper size decreases, the 
Mahalanobis distance initially declines until reaching the 
optimal caliper size ( 0.2× the standard deviation of the 
logit PS). Beyond this point, it increases due to reduced 
sample size (Fig. 4A). The proportion of absolute SMDs 
exceeding 0.1 for X1 follows a similar trajectory (Fig. 4B). 
The SMD for X1 decreases up to the optimal caliper size 
and then stabilizes near zero (Fig.  4C). This indicates 
that metrics like the Mahalanobis distance reflect the 
growing variability in chance imbalance and the height-
ened likelihood of observing larger chance imbalances 

as sample size decreases. The unadjusted effect estima-
tor M(A) exhibits bias until the caliper size reaches its 
optimal value (Fig.  4E). Furthermore, Fig.  4D demon-
strates a strong within-pair intraclass correlation coeffi-
cient ( ρ2 > 0.7 ) for PSM. Thus, under this setting, PSM 
mimics a RBD rather than a CRD as claimed. The esti-
mated coefficients α1 ≅ 〈0.47, 0.47〉 are proportional to 
β1 = �1, 1� , yielding a sine distance of 0. As discussed in 
The type of randomized design PSM emulates  section, 
the proportionality of these coefficient sets and the zero 
sine distance are linked to strong intraclass correlation.

In summary, in line with the balancing score property 
of PS, the observed imbalance in PSM primarily arises 
due to chance, which cannot be adequately captured by 
absolute distance metrics like the Mahalanobis distance. 
This chance-driven imbalance eventually averages to zero 
when the matching caliper size is optimal, thereby not 
biasing effect estimation when using misspecified mod-
els. PSM reduces sensitivity to model misspecification in 

Fig. 2  Imbalance and Bias for the sine distance < 0.2 . A The trend of the mahalanobis distance with shrinking caliper size; (B) The trend 
of the proportion of absolute SMD of X3 larger than 0.1; (C) The trend of SMD of X3 ; (D) The trend of estimators of PATT; (E) The concordance 
between empirical standard error and model-based/Robust Sandwich estimators for M(A) and M(A, X4, X5) ; (F) The concordance 
between empirical standard error and model-based estimators for M(A, X1, X2, X3, X4, X5)
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post-matching analysis. Under PSM, model-based stand-
ard errors for misspecified models generally fail to align 
with empirical standard errors, except for those from 
M(A,X1,X2,X3,X4,X5) . It’s essential to note that selec-
tively choosing the best result from a multitude of regres-
sion models is not only biased but also unnecessary.

Discussion
In this study, we have successfully validated the theoreti-
cal properties of PS in the context of matching designs. 
Specifically, when PSM approaches exact matching, 
it effectively balances confounding variables between 
comparison groups, and any observed imbalances are 
merely due to chance. Additionally, our findings confirm 
that PSM design mitigates the sensitivity to model mis-
specification in post-matching analysis, a characteris-
tic described by Guo and Rothenhäusler for a matching 
design [26]. Both a simple group mean difference and 
regression adjustment using linear terms of matching 

factors can accurately estimate PATT. Our findings stand 
in contrast to the previously identified PSM paradox 
[10]. This paradox suggests that model dependence and 
statistical bias should increase as units are pruned. We 
conclude that this discrepancy primarily arises from the 
use of inappropriate metrics for assessing imbalance and 
bias in the previous study [10]. Consequently, there is no 
valid concern that should deter us from employing PSM 
in comparative effectiveness research.

Differing from other highly cited studies that empha-
size population treatment effect [4], King and Nielsen 
[10] have stated that sample treatment effect is the causal 
interest. SATE or SATT represents the treatment effect 
exclusively within the context of the available sample 
data, rather than being applicable to the broader target 
population. Upon closer examination of their simula-
tion design, it becomes evident that King and Nielsen are, 
in fact, targeting a population treatment effect. In their 
simulation study, the causal parameter is represented by 

Fig. 3  Sensitivity to Model Dependence. A The trend of the mahalanobis distance with shrinking caliper size; (B) The trend of the proportion 
of absolute SMD of X3 larger than 0.1; (C) The trend of SMD of X3 ; (D) The trend of estimators of PATE; (E) The concordance between empirical 
standard error and model-based estimators for M(A) ; (F) The concordance between empirical standard error and model-based estimators 
for M(A, X1, X2, X3, X4, X5)
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the coefficient of the treatment indicator in an additive 
model that does not include treatment-by-confounder 
interactions. This is a conventional approach for repre-
senting a homogeneous population treatment effect, and 
they draw different random samples to calculate the aver-
age effect estimate. This approach aligns with the typi-
cal methodology for computing the expected value of an 
effect estimator for a population treatment effect, similar 
to what we have done in this study and other studies [4]. 
Therefore, it is important to note that the previous study 
[10] has not formally demonstrated the bias in estimating 
sample treatment effects in a PSM design. Even if such 
a demonstration was made, it would not be sufficient 
grounds to dismiss the utility of PSM because PSM was 
initially proposed to target population treatment effects 
and has been substantiated through simulation studies in 
this context [3, 4].

We have also demonstrated that the prior findings con-
cerning the eventual increase in imbalance as units are 
progressively pruned [10, 20], a significant consequence 
of the PSM paradox, can be attributed to the inappropri-
ate imbalance metrics that were employed. As extensively 
discussed by Rosenbaum [16], the covariate values of 
treated and untreated subjects matched on the same PS 
often exhibit different covariate values, which occur by 
chance and can swing in either direction. Consequently, 
when the number of matched pairs is substantial, these 
differences tend to average towards zero in PSM design. 
When matched samples are finite, the imbalances, when 
averaged across all matched samples, converge toward 
zero, or in other words, the expected value of imbalance 
is zero. Thus, using the average pairwise Mahalanobis 
absolute distance in covariate space between compari-
son groups as a measure of imbalance in a PSM design 

Fig. 4  Assessing PSM using the previous simulation setting [10]. A The trend of the mahalanobis distance with shrinking caliper size; (B) The trend 
of the proportion of absolute SMD of X1 larger than 0.1; (C) The trend of SMD of X1 ; (D) The trend of Intraclass Correlation Coefficient; (E) The trend 
of unadjusted effect estimator of PATT​
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misinterprets the balancing property of the PS. Note 
that the Mahalanobis absolute distance remains a useful 
tool for assessing imbalance in other CM  designs when 
matching is inexact.

Chance imbalances do not predict treatment sta-
tus and should not introduce bias when estimating 
population treatment effects [16]. This topic is widely 
discussed in the context of randomized designs, with 
differing philosophical perspectives on the role of 
chance imbalance [30]. One viewpoint holds that bal-
ance in a randomized study is essential for valid infer-
ence. However, Senn [31] argued that randomization 
does not guarantee balance in an individual CRD 
study. Even with matching or blocking, unmatched 
or unblocked variables may remain imbalanced 
between arms. Nevertheless, chance imbalance does 
not invalidate point estimates (e.g., sample mean dif-
ferences) or conventional hypothesis testing (e.g., 
two-sample t-tests). Any deviation between the point 
estimate and the true value reflects uncertainty or 
variability, not statistical bias. We can always adjust 
for unbalanced variables predicative of outcome in an 
analysis of covariance model (ANCOVA) to increase 
efficiency.

King and Nielsen [10] showed increased model-
dependence and statistical bias connected with the PSM 
paradox using a cherry-picking estimation procedure. 
However, we argue that evaluating model dependence 
of PSM based on biased cherry-picking procedure is not 
appropriate. As shown in our simulation and other stud-
ies [21, 26], PSM reduces the sensitivity of model mis-
specification because we can fit a well-considered model 
for estimating the treatment effect with satisfactory pre-
cision and efficiency, even if the chosen model could be 
misspecified. The key advantage of PSM, as a matching 
design, is that it frees us from the need to explore all 
possible models and search for the best results in post-
matching analysis, which is a biased practice that should 
be avoided. This practice can lead to the most dra-
matic effect estimate even in randomized studies [32]. 
The reduction on model dependence by PSM can be 
explained by the fact that matching can balance any func-
tion of X , making A and any function of X approximately 
orthogonal in the matched sample. Thus, the inclusion 
or exclusion of a nearly orthogonal predictor has negli-
gible effects on the other regression coefficients based on 
least-square theory [26]. This resembles similar practice 
in analyzing a CRD. We can perform unadjusted analy-
sis and also adjusted regression with gains in efficiency. 
However, what variables should enter into model and 
what forms they should take must be determined at the 
design stage.

Conclusions
This study focuses on the question, “Is PSM a valid 
design?” rather than “Is PSM superior to other CM 
designs?”. Debates about which design, PSM or CM, is 
superior in specific settings are always legitimate, consid-
ering the trade-off between statistical bias and efficiency. 
PSM, like any statistical method, is not a universal solu-
tion. It has notable limitations, including:

•	 PSM offers a practical approach to addressing the 
curse of dimensionality in matching designs. How-
ever, it may fail under substantial unmeasured con-
founding.

•	 Achieving unbiased treatment effect estimation in 
PSM requires correctly specifying the PS model 
[19]. Although matching designs are robust to 
misspecification of the outcome model, incorrect 
PS  estimation undermines its balancing score and 
ignorability properties. Flexible machine learn-
ing methods, such as generalized boosted regres-
sion, can help by accounting for nonlinearities and 
covariate interactions.

•	 PSM designs encompass both matching (design 
stage) and effect estimation or hypothesis testing 
(analysis stage). Conventional model-based inference 
for analyzing randomized designs, often adopted 
based on the premise that PSM mimics randomized 
designs, may be invalid. Further research is needed 
on variance estimators to address this issue [22].

•	 Discussions of the PSM paradox typically involve 
continuous outcomes and mean differences. How-
ever, clinical studies often focus on binary or time-
to-event outcomes, which target non-collapsible 
effect measures such as odds ratios and hazard 
ratios. In these cases, marginal effects (averaged 
over the population) and conditional effects (con-
ditioned on population characteristics) may differ. 
Additional considerations of causal quantities are 
necessary for analyzing PSM designs [28, 33].

Nevertheless, it’s important to recognize that the PSM 
paradox should not overly concern researchers.
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