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Abstract

Recent discoveries highlight the importance of stochastic epigenetic changes, as indexed

by epigenetic outlier DNA methylation signatures, as a valuable tool to understand aberrant

cell function and subsequent human pathology. There is evidence of such changes in differ-

ent complex disorders as diverse as cancer, obesity and, to a lesser extent, depression.

The current study was aimed at identifying outlying DNA methylation signatures of depres-

sive psychopathology. Here, genome-wide DNA methylation levels were measured (by

means of Illumina Infinium HumanMethylation450 Beadchip) in peripheral blood of thirty-

four monozygotic twins informative for depressive psychopathology (lifetime DSM-IV diag-

noses). This dataset was explored to identify outlying epigenetic signatures of depression,

operationalized as extreme hyper- or hypo-methylation in affected co-twins from discordant

pairs that is not observed across the rest of the study sample. After adjusting for blood cell

count, there were thirteen CpG sites across which depressed co-twins from the discordant

pairs exhibited outlying DNA methylation signatures. None of them exhibited a methylation

outlier profile in the concordant and healthy pairs, and some of these loci spanned genes

previously associated with neuropsychiatric phenotypes, such as GHSR and KCNQ1. This

exploratory study provides preliminary proof-of-concept validation that epigenetic outlier

profiles derived from genome-wide DNA methylation data may be related to depression risk.

Introduction

Recent discoveries, mainly in the field of cancer research, highlight the importance of differen-

tially variable methylation signatures as a valuable tool to understand cellular biology [1,2].

Accordingly, new studies are providing biologically-plausible frameworks to understand the

origins and implications of such stochasticity-related epigenetic modifications [3–5]. Beyond

environmental altering DNA methylation, recent data support the idea of epigenetic

PLOS ONE | https://doi.org/10.1371/journal.pone.0207754 November 20, 2018 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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stochasticity as an important modifier of DNA methylation. Epigenetic stochasticity refers to

themutation of epigenetic marks in the absence of detectable environmental influences, such

as in events where DNA methylation marks are not replicated [6,7].

Epigenetic stochasticity, as indexed by DNA methylation variability, has become a very

popular candidate mechanism in studies of cancer cell biology [8–10]. Notably, the importance

of DNA methylation variability to unravel disease aetiology and dynamics does not seem lim-

ited to the field of cancer. For instance, there is some evidence of increased DNA methylation

variability in obesity [11] and in depression [12–16]. This clinical background confers particu-

lar importance to the study of stochastic epigenetic changes in diseased populations, as they

may be linked to aberrant cell function and subsequent human pathology.

Due to the novelty of this subject, only a few tools to statistically assess differences in DNA

methylation variability between health and disease have been developed to date [17–19]. Most

of these tools have mainly been used in cancer, and incorporate statistical methods in which

outlier observations in the healthy and affected DNA samples are purposefully removed before

the analyses [17,18]. However, further research has indicated that epigenetic outliers may be

frequent across a broad set of pathological states, and could probably function as disease mark-

ers [19].

The translatability of the above mentioned techniques to phenotypes apart from cancer

comes from previous evidence of a sound epigenetic influence in a wide range of complex phe-

notypes [7,20]. In this sense, perhaps one of the clearest applications of these approaches out-

side the field of cancer is the work of Xu et al. [11], who showed an increase in the number of

DNA methylation sites with outlier methylation within a group of obese individuals. Neverthe-

less, applying these methods to pathological states such as mental disorders is not straightfor-

ward, since their epigenetic dynamics and the statistical properties of the data extracted from

them may have some particularities [16,21]. As described by Mill and Petronis [21], several

environmental factors and gene-environment interactions associated with depression are hard

to explain: e.g., the prevalence of depression in women almost doubles the prevalence in men

after puberty, and depression has a sharp rise in prevalence in women after puberty. Addition-

ally, epigenetic changes observed in psychiatric disorders are quite subtle, i.e. DNA methyla-

tion absolute changes reported in the literature are limited, typically under 5%; nevertheless,

such small changes may be sufficient to impact mental health [22,23].

As reported by Oh et al. [16] in a sample of monozygotic twin pairs discordant for major

depressive disorder, depressed individuals exhibited a statistically significant higher number of

epigenetic outliers, in both gene coding and intergenic regions, when compared to healthy

subjects. Although these previous findings indicate that there are epigenetic outliers spanning

the whole (epi)genome of depressed individuals [16], further research may allow substantiate

these findings with standard methods and to determine the precise genomic loci where DNA

methylation outliers could be frequent in psychopathology.

The present work aims to confirm the biological feasibility of epigenetic outlier signatures

in depressive disorders. To test for variable (outlying) methylation levels at the CpG level asso-

ciated with depression, the authors analyzed a DNA methylation dataset from the Illumina

Infinium HumanMethylation450 Beadchip, which covers >450,000 CpG sites across the

human genome. Data for this pilot evaluation came mainly from a set of six monozygotic

(MZ) adult twin pairs (12 individuals) discordant in their liability for depressive psychopathol-

ogy, and groups of concordant and healthy individuals (4 and 7 MZ pairs, respectively) were

used to further validate the findings. Using MZ twin samples to analyze methylation variability

in disease status has the advantage of suppressing potential sources of methylation variance

due to DNA sequence variation. Namely, the potential bias of single nucleotide polymorphism

(SNP)-containing probes [24,25] is controlled.
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Results

After multiple testing adjustments, affected co-twins from discordant MZ pairs showed

increased DNA methylation variance at sixteen CpG probes spanning the whole genome

(Fig 1).

As described inMaterials and methods, an additional analysis step was conducted to discard

CpG probes showing statistical significance due to potential technical artifacts, or perhaps

lacking biological relevance. Specifically, former research indicates that the Illumina technol-

ogy employed here is able to detect DNA methylation differences of 10% or more with a low

probability of error, and there is also evidence showing that methylation differences above

10% are likely to have important functional consequences [13,26–28]. Accordingly, the ranges

of DNA methylation values were estimated in both the healthy and affected co-twin subsets,

for all 16 CpG probes with increased DNA methylation variance in affected individuals. Since

3 of these probes had only slight increases in DNA methylation ranges (< 10%) in the affected

co-twins, they were discarded from the next discussion and analysis steps.

Fig 2 depicts the DNA methylation values observed in the 6 discordant twin pairs at the

remaining 13 probes. Two main observations can be derived from that data. First, the DNA

methylation variance increases in depression are driven by epigenetic outliers, rather than by a

homogeneous distribution of the methylation values in the affected co-twins (i.e., typically

only one of the six affected co-twins constitutes an outlier observation, increasing the overall

Fig 1. Sixteen DNA methylation probes across the genome exhibit larger methylation variance in the depression-

affected co-twins than in their healthy counterparts. The statistical significance of these p-values is already adjusted

for multiple comparisons using the FDR protocol proposed by Storey and Tibshirani (2003).

https://doi.org/10.1371/journal.pone.0207754.g001
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variance of the group). This fact somehow confirms the feasibility of the adopted statistical

protocol (F-tests of variance) to detect outlying observations. Secondly, across the 13 probes, it

seems that only two out of the six affected co-twins show epigenetic outlier signatures (pairs 5

and 6: blue and pink lines).

Table 1 shows descriptive information on the 13 CpG probes across the genome showing

an epigenetic outlier-like profile in depression. The names of the genes they span are also

shown, as well as a brief overview of their potential involvement in depression and related

brain and behavioral phenotypes.

As an additional validation procedure, the distributions of DNA methylation profiles for

the same 13 probes were also analyzed in the subsets of healthy and depression-concordant

MZ pairs. If the outlier methylation profiles observed in the affected co-twins from discordant

pairs were solely due to technical artifacts or not related to the disease etiology/manifestation,

healthy and concordant pairs may show high-variance distributions. The results of these analy-

ses are depicted in Fig 3.

Discussion

The current study evaluated the feasibility of an epigenetic outlier structure in DNA methyla-

tion profiles of depressed individuals. The statistical approach adopted here was customized to

account for the fact that, as previously indicated in the literature, both healthy and depressed

co-twins may exhibit epigenetic outlier profiles at specific CpG sites across the genome [16].

Most of the CpG sites with outlier distributions in the affected co-twins from depression-dis-

cordant pairs were located at genes previously associated with neuropsychiatric and related

phenotypes, likely indicating that they have functional consequences on relevant neuropsychi-

atric pathways. Hence, the results offer a preliminary proof-of-concept validation of a methyla-

tion outlier structure in depression, and propose data analysis guidelines to evaluate this

epigenetic phenomenon in samples of depressed individuals, where the statistical distribution

of DNA methylation levels could differ from other phenotypes.

Fig 2. CpG probes with large and statistically significant DNA methylation variances in the diagnostic-discordant MZ twins. The

thirteen probes displayed here are those with genome-wide statistically significant methylation variance increases in affected co-twins

from the discordant pairs. PairID: randomly assigned pair number.

https://doi.org/10.1371/journal.pone.0207754.g002
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Table 1. DNA methylation probes showing outlier distributions in the affected co-twins from the six adult MZ pairs discordant for depression, and potential neuro-

psychiatric relevance of their associated genes.

Probe

name

(TargetID)

Unadjusted

p-value

Adjusted

p-value

(q-value)

β range

(%):

affected

β range

(%):

healthy

β range

difference

Mean

methylation

(SD)

Coordinates

(hg19)

Gene name

(UCSC)

Gene

region

feature

category

(UCSC)

Brain-blood

methylation

correlation�

Potential

relevance of the

gene in

neuropsychiatric

disorders

cg00002719 9×10−7 0.039 34.8 1.7 33.2 3.9 Chr1:169396706 CCDC181 TSS200 None CCDC181
methylation has

been previously

described to be

associated with

exposure to

gestational

diabetes mellitus

highlighting the

importance of

prenatal

environment in

the programming

of long-term

health and disease

[61].

cg00100121 3×10−6 0.049 42.1 2.2 39.9 3.6 Chr1:169396635 CCDC181 1stExon;

5’UTR

Cerebellum

correlation

(p = 0.02)

cg08104202 4×10−6 0.049 35.1 2 33 8.4 Chr1:169396712 CCDC181 TSS200 None

cg05100739 4×10−6 0.049 15.3 1 14.4 5.7 Chr17:72733163 RAB37 TSS200;

1stExon;

Body;

TSS200

None Gene expression

correlated with

brain resting-state

oscillatory activity

[62].

cg08530065 2×10−6 0.042 22.5 1.3 21.3 86.6 Chr13:39980228 LHFP Body None Epigenetic

regulation of brain

function after

prenatal insults

[63].

cg10717290 3×10−7 0.034 25.6 1 24.6 9.2 Chr7:119913576 KCND2 TSS200 Prefrontal

cortex

(p = 0.03)

and

cerebellum

(p = 0.02)

correlations

Suggestive

evidence of an

etiological role in

autism[36].

cg11796442 2×10−6 0.049 35.2 1.8 33.4 17.8 Chr5:72593919 - - None -

cg12469257 3×10−6 0.049 19.2 1.2 18 88.5 Chr3:25761040 NGLY1 3’UTR;

Body;

Body;

Body

None Association with

intellectual

disability,

neuromotor

impairment and

neuropathy[64].

cg15240852 3×10−6 0.049 17.2 1 16.2 90.9 Chr3:131083585 NUDT16P Body None -

cg22058112 1×10−6 0.041 15.9 1 15.2 7.4 Chr15:42566300 TMEM87A;

GANC
TSS1500;

TSS200

None -

cg22070855 8×10−7 0.039 32.9 1.6 31.3 17.4 Chr3:172167527 GHSR TSS1500 Prefrontal

cortex

(p < 0.001),

entorhinal

cortex

(p = 0.02)

and superior

temporal

gyrus

(p < 0.001)

correlations

Association with

substance abuse

[65].

Acts as ghrelin

receptor,

regulating

important features

in the central

nervous system,

such as sleep,

mood, memory

and reward[31].

(Continued)
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DNA methylation levels at the thirteen identified CpG probes were retrieved for the groups

of diagnostic-concordant and healthy pairs, to explore whether they also exhibited a similar

outlier profile regardless of psychopathological status. As shown in Fig 3, most probes exhibit

similar ranges of values (and, accordingly, similar variances) across pairs of co-twins, regard-

less of whether they are concordant or healthy. A number of specificities on the statistical dis-

tributions should be noted, as they may provide complementary information. For instance,

both co-twins of one of the healthy pairs (pair ID: 13) exhibit an outlier-like profile at CpG

sites cg00002719, cg00100121 and cg08104202. However, both co-twins in this pair have

almost identical methylation levels at these sites suggesting that their particular genomic DNA

sequences may contain low-frequency SNVs associated with hyper-methylation such as SNP-

containing probes [24,25]. Alternatively, the shared methylation profile could have arised in

response to an environmental exposure common to both co-twins of the pair [29]. Thus, the

relatively high methylation levels at these probes are not actually indicating stochastic epige-

netic effects in healthy pairs. Rather, the plots would somehow indicate that methylation levels

at these three CpG sites can be genetically-regulated, but this observation does not invalidate

the epigenetic-outlier pattern observed in the discordant subset. Namely, in the present sam-

ple, affected co-twins from discordant pairs showed an outlier profile regardless of their DNA

sequence match with their healthy counterparts.

Besides, probes cg08530065, cg11796442, cg12469257 and cg22070855 also show relatively

large variances (Fig 3). But as displayed, these CpG sites had similar methylation levels in both

co-twins from each pair: the intrapair differences in DNA methylation are typically less than

5%, which may be due to technical measurement artifacts and/or have small functional effects.

In this regard, 15 mQTLs have been described to influence cg08530065 methylation, as

retrieved from the mQTL database [30]. In contrast, larger methylation differences were

observed when comparing the affected co-twin with outlier profile with the healthy co-twin

(Table 1 and Fig 2). Hence, analysis of DNA methylation profiles at the thirteen candidate

probes (retrieved from the diagnostic-discordant pairs), suggest that outlying methylation pro-

files are related to diagnostic status. This analysis may also suggest that the outlier profiles are

not due to technical artifacts.

Table 1. (Continued)

Probe

name

(TargetID)

Unadjusted

p-value

Adjusted

p-value

(q-value)

β range

(%):

affected

β range

(%):

healthy

β range

difference

Mean

methylation

(SD)

Coordinates

(hg19)

Gene name

(UCSC)

Gene

region

feature

category

(UCSC)

Brain-blood

methylation

correlation�

Potential

relevance of the

gene in

neuropsychiatric

disorders

cg24599017 1×10−7 0.03 14.6 0.4 14.2 96.3 Chr5:178835885 - - None -

cg24932449 4×10−6 0.049 26.2 1.6 24.7 91.5 Chr11:2672613 KCNQ1;

KCNQ1OT1
Body;

Body

Prefrontal

cortex

correlation

(p = 0.03)

Putative link with

working memory,

psychopathology

and brain activity

[33]. DNA

methylation levels

at birth may

correlate with

psychiatric

symptoms later in

life[35].

Note that no SNPs have been described in any of the CpG sites exhibiting outlier distributions. �Brain-blood correlations were retrieved from the Blood Brain DNA
Methylation Comparison Tool, a publicly available database [56].

Abbreviations: TargetID, Illumina identifier; 1stExon, first exon; 5’UTR, 5’ untranslated region; Body, within gene body; TSS200, within 200 bp of a TSS.

https://doi.org/10.1371/journal.pone.0207754.t001
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Regarding similar research studies, previous population-based clinical reports had used

analogous statistical approaches with data from genetically independent individuals with non-

psychiatric phenotypes (i.e., singletons; for instance Xu et al. [11]). By definition, DNA

sequence variants such as SNPs are equally represented across healthy and depressed co-twin

samples. Accordingly, the current study takes advantage of the DNA sequence parity between

MZ co-twins discordant for depression to show the presence of epigenetic outliers in affected

co-twins, regardless of some SNPs that may be present across the general population.

Additionally, a recent report by Oh et al. [16] has found that epigenetic outliers can be

found in both depressed and control populations–though they are more frequent in samples

from depressed individuals–. The current report somehow expands on this topic by suggesting

that DNA methylation variability due to epigenetic outliers may be related to the neurobiologi-

cal mechanisms underlying depressive physiopathology. Although there is no clear mechanism

about how these epigenetic changes can affect neurobiology downstream, it is important notic-

ing that the identified probes were found within genes and may have relatively direct func-

tional effects on those. Namely, as shown in Table 1, most of the CpG probes found with an

epigenetic outlier profile in the affected co-twins from discordant pairs are located within the

genomic coordinates of genes previously studied in the literature of psychiatric disorders. In

agreement with the findings by Oh et al. [16], our results indicate that DNA methylation vari-

ance analyses in depressed individuals should be conducted using one-tailed tests, since some

CpG probes with increased variance in normal control samples may be present and mislead

Fig 3. Assessment of DNA methylation levels in diagnostic-concordant and healthy pairs at the 13 CpG probes with epigenetic

outlier profiles in affected co-twins from discordant pairs. The thirteen probes displayed here are those with genome-wide

statistically significant methylation variance increases in affected co-twins from the discordant pairs (see Fig 2). PairID: randomly

assigned pair number.

https://doi.org/10.1371/journal.pone.0207754.g003
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the biological meaning of the results. Perhaps the most suggestive genes from this set are the

ghrelin receptor (GHSR), the potassium channel, voltage gated KQT-like subfamily Q, mem-

ber 1 (KCNQ1) and the potassium voltage-gated channel subfamily D member 2 (KCND2).

Ghrelin plays an important role in a broad spectrum of psychopathological outcomes, includ-

ing stress, mood-and anxiety disorders [31], probably by modifying brain reward circuitry

[32]. Similarly, there is evidence suggesting that KCNQ1may be related to psychopathological

phenotypes [33], and peripheral tissue DNA methylation levels of KCNQ1 have been shown to

correlate with both adult personality traits [34] and psychiatric symptoms during the first

years of life [35]. As opposed to KCNQ1, which is predominantly expressed in the adrenal

glands and the thyroid, KCND2 is most expressed in brain tissue; KCND2 genetic variants

have been associated with both epilepsy and autism [36]. Interestingly, CpG probes identified

in this set of genes exhibit methylation correlation across blood and brain tissue (see Table 1).

There are several limitations of this study to be noted. First, due to the statistical approach

focused in discordant twin pairs, the sample size to estimate DNA methylation outliers was

limited to only 6 twin pairs. Each of the epigenetic changes reported here was observed on one

discordant pair at a time, suggesting that stochastic factors could be underlying the results,

rather than non-shared environment across discordant pairs. However, there is no conclusive

evidence against the hypothesis of DNA methylation outliers caused by environmental factors

in the current analysis. Additionally, due to the cross-sectional nature of the study and the

inclusion of subjects with both prior and current history of anxious-depressive disorders, cau-

sality of observed DNA methylation outliers cannot be established. Finally, none of the

reported hits have been previously described in association with depression.

In summary, the present results suggest that, alongside other methylation variability mecha-

nisms recently shown in the literature of depression [12–15], epigenetic outliers may index

biological disruptions underlying the etiopathology and clinical manifestation of depression.

Materials and methods

Subjects

The participants of this study were part of a larger twin sample (UB-Twin Registry) consisting

of 242 Caucasian Spanish adult twins from the general population who gave permission to be

contacted for research purposes. The exclusion criteria included age under 18 and over 65

years, a medical history of neurological disturbance, presence of sensory or motor alterations

and current substance misuse or dependence. Written informed consent was obtained from all

participants after a detailed description of the study aims and design, as approved by the Bio-

ethics Committee of the University of Barcelona. All procedures contributing to this work

were performed in accordance with the Helsinki Declaration of 1975, as revised in 2008.

Trained psychologists applied face-to-face interviews to apply a battery of psychological

and neurocognitive tests and to obtain medical records information. Additionally, peripheral

blood or saliva samples were obtained from all 242 participants. The zygosity of the pairs was

determined by genotyping 16 highly polymorphic microsatellite loci from DNA samples

(SSRs; PowerPlex 16 System Promega Corporation). Identity on all the markers can be used to

assign monozygosity with greater than 99% accuracy [37].

A group of 34 middle-aged participants (17 MZ twin pairs; age range 22–56, median age 38;

47% female) who were representative and informative for psychopathology, neurocognition

and related factors was extracted from the above-described sample, to be investigated for brain

function and genome-wide epigenetic signatures. Peripheral blood was available from all

members of this group. Regarding depressive status of the participants, there were 6 discor-

dant, 4 concordant and 7 healthy MZ pairs (12, 8 and 14 individuals). Further information
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about these participants can be found elsewhere [13,38]; the specific categorical DSM-IV based

diagnoses of all subjects are detailed in S1 and S2 Tables. The main analyses described in this

manuscript were conducted with the six discordant pairs, and complementary confirmatory

analyses were carried out with the concordant and healthy pairs.

Clinical evaluation

A trained clinical psychologist applied the Structural Clinical Interview for DSM-IV Axis I Dis-

orders (SCID-I) [39] in a face-to-face interview to screen for the presence of any lifetime depres-

sion or related anxiety spectrum disorder. Only two out of the twelve participants in this study

had predominantly liability for anxious psychopathology. This apparently broad category of dis-

orders was adopted in view of the evidence on comorbidity, shared etiopathology and diagnos-

tic criteria overlap between depressive and anxious disorders [40–44], as well as taking into

account evidences of some shared DNA methylation mechanisms in these diagnoses [40,45].

Complementarily, on the day of blood extraction, the current psychopathological status of

all participants was evaluated with the Brief Symptom Inventory (BSI) [46,47]. This self-

administered 46-item questionnaire is aimed at identifying the experience of psychopathologi-

cal symptoms during the last 30 days. Its six subscales (depression, phobic anxiety, paranoid

ideation, obsession-compulsion, somatization and hostility) were conceived for use in both

clinical and non-clinical settings. All items are rated on a 5-point likert scale of distress,

according to self-perception of symptoms. There were no between-group differences in intel-

lectual quotient distributions, and the whole sample showed overall intelligence level profiles

similar to those reported for demographically analogous samples [48]. Summarized informa-

tion is shown in Table 2.

Methylation data

The Illumina Infinium HumanMethylation450 (450K) BeadChip [49,50] was employed with

peripheral blood DNA samples for all participants. Specifically, by genotyping sodium bisul-

fite-treated DNA, DNA methylation is assayed by this platform at> 450 000 CpG sites across

the genome at single-base resolution; next, bisulfite-converted DNA undergoes whole-genome

amplification, before being fragmented and hybridized to microarray probes. The DNA meth-

ylation fraction of each CpG site is estimated as β =M / (M + U + α);M and U stand for meth-

ylated and unmethylated fluorescence intensities, and α is an arbitrary offset applied to

stabilize β values with low intensities.

Table 2. Psychopathological, neurocognitive and demographic variables for DSM-IV diagnostic concordant, discordant and healthy MZ twin pairs.

CONCORDANT

(8 subjects, 8 female)

DISCORDANT

(12 subjects, 4 female)

HEALTHY

(14 subjects, 4 female)

Group comparison

Mean (SD) Range Mean (SD) Range Mean (SD) Range X-squareda; p
Age 42.5 (13) 22–54 37 (10.9) 20–50 30.3 (7.3) 19–39 5.9; 0.052

IQ 105.1 (12.5) 87–127 108.1 (11.8) 87–131 110.5 (5.5) 103–118 1.9; 0.393

Current psycho-pathology (total BSI) 27.9 (16.5) 6–57 20.9 (13.3) 4–45 10.6 (9.3) 1–33 8.7; 0.013�

Current depressive symptoms (BSI subscale) 6.9 (6.5) 1–20 3.5 (2.7) 0–9 1.7 (1.8) 0–6 6.4; 0.04�

Subjects from discordant twin pairs exhibit intermediate BSI scores (as compared with subjects from healthy or concordant groups) since they constitute a 50% of

affected and a 50% of non-affected subjects (their individual scores being averaged).

Notes: SD, standard deviation; IQ, intellectual quotient; BSI, Brief Symptom Inventory
a, Kruskal-Wallis X-squared, as these variables were continuous

�, statistically significant p-value.

https://doi.org/10.1371/journal.pone.0207754.t002
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Infinium methylation data was processed with Methylation Module of GenomeStudio soft-

ware using HumanMethylation450 manifest v1.1 following the instructions published by Bibi-

kova et al. [49] CpG sites with poor detection quality (p> 10−4) were removed from further

analysis.

The obtained DNA methylation data was further processed to adjust for cell mixture distri-

bution. Briefly, the proportions of different mononuclear cell populations and granulocytes

were calculated following a previously published protocol [51,52]. By using 493 probes that

matched the informative CpG sites reported by Houseman et al. [51], the proportions of six

different cell types (B, CD4+ T and CD8+ T lymphocytes, plus monocytes, natural killer cells

and granulocyte contamination) were estimated across the>450,000 measurements from the

Illumina array. Afterwards, a penalized regression procedure allowed retrieving a β value rep-

resenting the average cell. A software function to perform this cell mixture adjustment proto-

col is publicly available at https://gist.github.com/brentp/5058805#file-houseman-r. As

expected, results using the adjusted β were more conservative than those using the unadjusted

methylation values (i.e., there were less statistically significant CpG probes when using the

adjusted β value).

Since the present MZ twin sample contains both male and female participants, probes in

the X and Y chromosomes were removed from the analyses to avoid confounding. Likewise, in

view of the relatively small sample size, all CpG probes for which at least one of the 12 diagnos-

tic-discordant individuals had a missing value were removed, giving a final number of 473,864

probes.

The dataset supporting the results of this article have been deposited in NCBI’s Gene

Expression Omnibus and is accessible through GEO SuperSeries accession number

GSE120307.

Statistical analyses

In order to find CpG probes in which depressed co-twins from discordant MZ twin pairs

exhibited outlier DNA methylation signatures, independent F-tests were conducted at each of

the 473,864 probes across chromosomes 1 to 22 using var.test() in R. The F-test was imple-

mented using standard procedures as follows. First, let �X ¼ 1

n

Pn
i¼1

Xi and �Y ¼ 1

m

Pm
i¼1

Yi be

the sample means and S2

X ¼
1

n� 1

Pn
i¼1
ðXi �

�XÞ2 and S2

Y ¼
1

m� 1

Pm
i¼1
ðYi �

�YÞ2 be the sample

variances. The test statistic is computed as F ¼ S2
X
S2
Y
, and it has an F-distribution under the null

hypothesis with n-1 and m-1 degrees of freedom. These tests allowed assessing the null

hypothesis that the variances of both healthy and affected co-twin groups were equal. This test

was chosen to detect epigenetic outlier measurements since it is highly sensitive to departures

from normality in a statistical distribution (i.e., outliers) [53]. Considering the evidence of a

large number of CpG probes with increased epigenetic outlier features in normal populations

when compared to depressed individuals [16], it is necessary controlling for the fact that, in

some cases, the control group may display greater variance than the affected group. Hence,

one-tailed versions of the F-test were implemented.

Multiple testing adjustments were conducted using q-values, a measure based upon the

false discovery rate (FDR) that has been shown useful in genome-wide statistical analyses and

other large-scale multiple comparison settings [54,55]. Values of q–the multiple-comparison-

adjusted version of p–below a 0.05 threshold were considered statistically significant.

An additional filter was applied to the CpG probes obtained from the former procedure. As

previous reports indicate that methylation differences above 10% in Illumina assays may have

important biological implications and show a low probability of being technical artifacts

Epigenetic outlier profiles in depression

PLOS ONE | https://doi.org/10.1371/journal.pone.0207754 November 20, 2018 10 / 15

https://gist.github.com/brentp/5058805#file-houseman-r
https://doi.org/10.1371/journal.pone.0207754


[13,26–28], a DNA methylation measurement was considered an “outlier” if, apart from being

statistically significant at q� 0.05, the between-group (healthy vs. depressed) difference in

methylation ranges was above 10%.

Information regarding brain and blood correlation of DNA methylation values at the CpG

probes meeting the aforementioned outlier criteria was retrieved from the Blood Brain DNA
Methylation Comparison Tool, a publicly available database [56].

Finally, the names of the genes containing epigenetic outlier probes only within depressed

individuals were retrieved to further evaluate the biological feasibility of the results. All analy-

ses, as well as all data visualization procedures, were conducted using some packages for the R

software [57–60].
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20. Córdova-Palomera A, Fatjó-Vilas M, Palma-Gudiel H, Blasco-Fontecilla H, Kebir O, Fañanás L. Further

evidence of DEPDC7 DNA hypomethylation in depression: A study in adult twins. Eur Psychiatry. 2015;

30: 715–718. https://doi.org/10.1016/j.eurpsy.2015.04.001 PMID: 25952135

21. Mill J, Petronis A. Molecular studies of major depressive disorder: The epigenetic perspective. Molecu-

lar Psychiatry. 2007. https://doi.org/10.1038/sj.mp.4001992 PMID: 17420765

22. Klengel T, Binder EB. Review Epigenetics of Stress-Related Psychiatric Disorders and Gene × Environ-

ment Interactions. Neuron. Elsevier Inc.; 2015; 86: 1343–1357. https://doi.org/10.1016/j.neuron.2015.

05.036 PMID: 26087162
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