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Abstract: Dementia is described as the fifth leading cause of death worldwide and Alzheimer’s
disease (AD) is recognized as the most common, causing a huge impact on health costs and quality
of patients’ lives. The main hallmarks that are commonly associated with the pathologic process
are amyloid deposition, pathologic Tau phosphorylation and neurodegeneration. It is still unclear
how these events are linked to the disease progression, due to the complex pathologic mechanisms.
Nevertheless, several hypotheses have been proposed for a better understanding of AD. The AD
diagnosis is performed by using a combination of several tools to detect β-amyloid peptide (Aβ)
deposits and modifications in cognitive performance, sometimes being expensive and invasive. In
the treatment field, there is still an absence of effective treatments to delay or stop the progression
of the disease, with most of the approved drugs used to relieve symptoms, and all of them with
significant adverse side effects. Considering all limitations, the need to establish new and more
effective diagnostic and therapeutic strategies becomes clear. This review aims not only to describe
the disease and its impact but also to collect the currently available diagnostic and therapeutic
strategies, highlighting new promising RNA-based strategies for AD.
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1. Dementia and Alzheimer’s Disease Impact

According to The World Health Organization, presently, dementia is the 7th largest
cause of death in the world [1]. Dementia is a generic term used to designate a wide range of
diseases, with Alzheimer’s disease (AD), Vascular Dementia, dementia with Lewy bodies,
Frontotemporal Dementia and Parkinson’s Disease being the most relevant [2–4] (Figure 1).
Dementia is usually associated with a group of symptoms affecting memory, thinking and
social abilities, severe enough to interfere with daily life [5]. In general, the most character-
istic symptoms, rarely treated or prevented efficiently are the deterioration of cognitive
performance; behavioral disturbances; intellectual loss; difficulty in solving problems;
loss of other cognitive skills affecting daily activities; and ultimately death [2,5–8]. Age is
indicated as the biggest risk factor for the development of dementia. It is estimated that
dementia affects approximately 47 million people worldwide and that by 2050, this number
can reach about 131 [9]. The increased prevalence of these diseases is mainly associated
with population aging, due to increased life expectancy. The number of people affected
and the high impact that these diseases have on the quality of life are important arguments
to make dementia treatment an attractive opportunity for pharmaceutical companies [5,10].
The World Health Organization has recognized AD as the most common and devastating
form of dementia of our time, where two-thirds (50–75%) of the people affected can face
death in approximately 8.5 years after the onset of symptoms [5,10]. AD is a multifactorial,
progressive, chronic neurodegenerative disorder that occupies the 3rd place in the diseases
that causes disability and death for the elderly, after cardiovascular/cerebrovascular dis-
eases and malignant tumors [5,9,11]. It is estimated that about 31 million people have AD
worldwide, and due to advances in healthcare, life expectancy has increased, which can
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contribute to the expected increase in AD cases in the next few years. Importantly, AD is
also a comorbidity to other severe human diseases and is associated with high healthcare
costs—it is estimated that the overall cost of health and social care could reach 2 trillion
dollars by 2030 [9,10,12,13].
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2. Alzheimer’s Disease Characterization

Alzheimer’s disease was first described by Dr. Alois Alzheimer in the early 20th
century. The patient, “Auguste D.”, experienced memory loss, paranoia, and psychological
changes. In postmortem evaluation, shrinkage in and around nerve cells was detected in
the patient’s brain [14]. The pathological hallmarks of AD were first described in 1906 as
being extracellular plaques, intercellular tangles, and widespread neurodegeneration in
the brain. Decades later, the β-amyloid peptide (Aβ) and Tau were identified as the main
constituents of these tangles and plaques [15].

Generally, the risk factors for AD can be divided into two types: modifiable and
non-modifiable. The modifiable factors include poorly controlled type 2 diabetes, cardio-
vascular diseases (like stroke, hypertension), depression, traumatic brain injury, lifestyle,
and environmental factors (including stress, alcohol consumption, smoking, high blood
pressure, high cholesterol, obesity, and lack of exercise). In turn, the non-modifiable factors
include genetic mutations, genetic polymorphisms, age or gender [10,12,16].

These risk factors can lead to a progression along the seven stages associated with
Alzheimer’s disease: preclinical (positive biomarkers but no cognitive impairment), pro-
dromal (very mild cognitive impairment), mild dementia, moderate dementia, moderately
severe dementia, severe dementia, and very severe dementia [4,17]. These stages and their
features are summarized in Figure 2. Studies of biomarkers and PET scans suggest that
signs associated with AD may be found in the patient’s brain 20 years before the first symp-
toms appear. When some changes occur and are no longer reversible, symptoms gradually
appear [10,16]. Behavioral changes, impaired mobility, hallucinations, and seizures are
the first cognitive decline. Then, memory loss occurs, and in more serious cases, basic
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daily functions start to be affected, leading to the inability of independently living. In the
end, other clinical syndromes also emerge like posterior cortical atrophy (PCA), logopenic
aphasia (LPA), and AD frontal variant, leading to death [5,12,18]. Histopathological and
morphological examination of AD postmortem brains in combination with studies on AD
transgenic mouse models show multiple cellular changes. Cerebral amyloid angiopathy,
neurofibrillary tangle, senile plaques, inflammation (microglial activation) and oxidative
stress are the most prominent features identified. Cholinergic neuron damage, dystrophic
neurites, astrogliosis and altered acetylcholine levels are other cellular changes well estab-
lished in AD. These main changes can consequently result in mitochondrial fragmentation,
mitochondrial DNA damage, and hormonal imbalance. Downstream consequences of
these processes include neurodegeneration with synaptic and neuronal loss, leading to
macroscopic atrophy. These alterations are primarily observed in the learning and memory
regions of the brain, including the entorhinal cortex and spread regions of the hippocampus,
temporal cortex, frontoparietal cortex and subcortical nuclei [5,10,12,18]. Therefore, the
three biomarkers that are commonly used to document the underlying pathologic processes
of AD are mainly: amyloid deposition, pathologic Tau (microtubule-associated protein) and
neurodegeneration. Although the clinical characteristics and severity are better correlated
with neurofibrillary tangles (NFT), data suggest that Aβ pathology develops many years
before clinical symptoms appear and precedes Tau changes [19,20]. Once the presence of
the pathology of Tau can be related to the normal healthy aging process. It is still unclear
how Aβ and Tau are mechanistically linked, but some studies suggested that this inter-
action occurs in the immune system, since activated microglia co-localize with amyloid
plaques and some AD-risk genes are involved in immune system pathways [5,21]. It is
thought that Aβ deposition leads to microglia activation and astrocytes reactivation in AD,
causing pro-inflammatory cytokines release (TNF-a or IL-6), which in turn can lead to Tau
hyperphosphorylation and neuronal damage [22]. Due to the complexity of this disease,
the study of multiple molecular targets, mechanisms, and pathways is still necessary, but
several hypotheses have been proposed for a better understanding of AD [10,16,23].
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Figure 2. Description of the progression along the seven stages of AD. Is shown the clinical
features, symptoms, and treatments specific to each stage. (Aβ—amyloid beta-peptide; PET—
positron emission tomography; FDG—18F-fluorodeoxyglucose; CFS—Cerebrospinal fluid; p-Tau—
phosphorylated-Tau).
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2.1. Sporadic AD vs. Familiar AD

AD is commonly classified into two types, sporadic AD that can appear at any time
in life but usually appearing after 65 years old, and familial AD that appears early-onset,
between 30 and 50 years old. Sporadic AD is the most abundant and poorly understood
AD form, but it is thought that it may result from a combination of genetic (70%) (some
examples are mentioned in Section 3.2), and environmental factors (30%) (inflammation,
cholesterol metabolism and endosomal vesicle recycling pathways) [5,18,24]. The extremely
uncommon form, representing 1 to 5% of AD cases, is the inherited autosomal, dominant
(familial) AD, with clinical symptoms similar to sporadic AD, namely disease progression,
and biochemical and neuropathological changes (abnormal overproduction of Aβ) [10,23].
This form is caused by mutations in three genes coding for amyloid precursor protein
(APP), presenilin1 (PSEN1), and presenilin 2 (PSEN2) proteins, which are linked to Aβ
processing by γ-secretase complexes [5,10,12].

2.2. Amyloid and Tau Hypotheses

The most popular theories for explaining the AD pathological pathway are the amyloid
and Tau hypotheses. The hypothesis of the amyloid cascade was proposed by Hardy in
the early 1990s, where it was described that Aβ peptides sequentially led to the formation
of neurotoxic oligomers, insoluble amyloid fibrils, and finally, amyloid plaques [25]. The
amyloid peptide is generated by the cleavage of the transmembrane APP. This protein,
APP, has non-pathogenic functions and plays vital physiological roles in metal metabolism,
by having metal-associated redox activity and by stabilizing the plasma membrane for iron
transport, also impacting the modulation of synaptic functions and neuronal survival. In
the amyloidogenic pathway, APP is cleaved by the β-secretase (BACE), an aspartyl protease
with two isoforms BACE1 and BACE2, leading to the formation of sAPPβ, that is further
cleaved by γ-secretase complex to produce Aβ. The γ-secretase complex is composed
of four subunits, including presenilin (PS) 1 and 2, nicastrin, anterior pharynx defective
1, and presenilin enhancer 2. Presenilin comprises the catalytic domain of γ-secretase,
and the PS1 dysfunction has been directly linked to AD [21,26]. γ-secretase cleavage is
inconsistent, resulting in differences at the C-terminal end of the generated peptides. These
differences contribute to the existence of a variety of Aβ isoforms. The Aβ1-40 and Aβ1-42
are the most common isoforms, corresponding to the cleavage at the 40 and 42 positions,
respectively. Moreover, Aβ1-40 is the most abundant form, while Aβ1-42 is slightly longer
and less abundant, but is more hydrophobic and fibrillogenic, making it the main species
accumulated in the brain of AD patients [10,12,21,26].

So far, it is well known that almost all APP cluster mutations occur around the β-
secretase and γ-secretase cleavage sites [27].

Although the exact pathogenic role of Aβ is unknown, it is well documented that Aβ
toxicity depends on size, state of aggregation, and diffusion in subcellular compartments
and neuronal terminals. The pathogenicity of Aβ is amplified when monomers become
oligomers, leading to plaques formation. The intraneuronal accumulation of Aβ peptides
and amyloid plaques lead to a large number of neurotoxic processes such as loss of mito-
chondrial function, generation of reactive oxygen species (ROS) increasing oxidative stress,
disruption of calcium homeostasis, activation of microglia causing neuroinflammation
and neuritic alterations/synaptic distortions in cortical regions closer to the Aβ plaques.
Furthermore, these neurotoxic events act as positive feedback, making it impossible to
restore the original balance. In turn, there is evidence suggesting that Aβ plays a role
in inducing Tau hyperphosphorylation, leading to the formation of protein tangles, the
second hallmark feature of AD [12,16,21]. Tau protein is a highly soluble microtubule-
associated protein (MAP) encoded by the MAPT gene.One of the Tau main functions is to
modulate the stability of axonal microtubules, once the microtubules are naturally unstable
and require interaction with Tau to maintain their structure. Tau hyperphosphorylation
results in disruption of microtubule organization [16,28]. In a normal brain, there is a
balance between phosphorylation and dephosphorylation of the Tau protein, which allows
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maintaining the stability of the cytoskeleton and, consequently, the axonal morphology
of neurons. However, under pathological conditions, the accumulation of hyperphospho-
rylated Tau in neurons leads to protein misfold and aggregation in intracellular NFTs,
reducing their affinity for microtubules [10,16,18,21,29]. The loss of normal Tau protein
function leads to a pathological disturbance in the structural and regulatory functions of the
cytoskeleton of neuronal cells, causing alterations in the morphology, neuronal plasticity,
axonal transport, and provoking synaptic dysfunction and neurodegeneration [30]. This
hyperphosphorylation of Tau is especially caused by the increased activity of kinases,
namely glycogen synthase kinase-3 (GSK-3), CDK5, and the MAP/microtubule affinity-
regulating kinase (MARK) which are activated by Aβ oligomers [2,28,30–32]. However, the
inhibition of some phosphatases, including protein phosphatase 2A (PP2A) and calcineurin,
also plays a crucial role, culminating in the formation of NFTs [28,30,33–35]. In general,
significant evidence supports an Aβ-centered view of AD, and more research is still needed
to understand if these two hypotheses are independent or inter-related paths. Figure 3
represents the main events associated with these two ideas. However, more recently, an
additional perspective has been included in the AD-research equation with an increased
interest linked to the study of neuroinflammation in AD.
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Figure 3. Representation of the amyloidogenic pathway and Tau protein hyperphosphorylation. The formation of β-
amyloid plaques (amyloidogenic pathway) occurs in the cell membrane and is due to the cleavage of APP by β-secretase,
which gives rise to two products: a soluble APP fragment (sAPPβ), which is released into the extracellular space and a
membrane-anchored C-terminal fragment (C99). This is later cleaved by γ-secretase, originating APP intracellular domain
(AICD) and Aβ peptides, that further forms oligomers and, eventually, accumulate in Aβ plaques. The formation of
neurofibrillary tangles (hyperphosphorylation of Tau protein) occurs due to hyperphosphorylation of Tau protein, which
loses affinity for microtubules and thus causes their disintegration in AD.
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2.3. Neuroinflammation, Oxidative Stress, and Autophagy in AD

Emerging studies have been focusing on other pathological paths that may have an
important role in AD. Neuroinflammation, oxidative stress, and autophagy dysregula-
tion have been proven to be present and to have an important role in the course of the
disease (Figure 4) [36]. The presence of Aβ and the occurrence of mutations in genes
encoding for the innate immune system molecules provokes microglia activation. These
cells become more susceptible to stimulus and produce, continuously, inflammatory cy-
tokines and chemokines that lead to pro-inflammatory, cytotoxic events, and Tau protein
hyperphosphorylation. All this contributes to the disruption and deterioration of the
blood–brain barrier (BBB) [37–39], which causes increased vascular permeability and
inability to remove neurotoxic substances from the CNS, such as Aβ peptides and hyper-
phosphorylated Tau. Consequently, neuroinflammatory responses will happen, which
further contribute to neurodegeneration, taking place in a feed-forward loop [37,40,41].
Additionally, in the aging process, some endogenous and external environmental stimuli,
increase free radicals, mainly reactive oxygen and nitrogen species, triggering an imbal-
ance of the oxidation-antioxidant system. This imbalance affects cells either by cellular
dead or dysfunction [42,43]. Additionally, autophagy, a process responsible for the clear-
ance of abnormal proteins and components of cells, is thought to play an important role
in AD, when it is dysregulated. Accumulation of autophagosomes, Aβ, and phosphor-
Tau are neuropathological features of AD, that can come from the dysregulation of this
process [44]. Nassif and Hetz demonstrated that in autophagy-deficient mice, phosphor-
Tau was accumulated, and they suggested that restoring autophagy could reduce this
abnormal accumulation [45]. Nevertheless, these three mechanisms are far from being
well-established and more in-depth investigation is required to clarify this complex disease.
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Figure 4. Overview of neuroinflammation, oxidative stress, and autophagy in AD. Representation of the consequences of
Aβ plaque formation, namely, hyperphosphorylation of Tau protein, increased oxidative stress, inflammatory responses by
microglia activation, damage to astrocytes, which lead to BBB disruption, causing cerebrovascular damage, dysfunction,
and decreased autophagy.

3. Diagnostic Tools for Alzheimer’s Disease
3.1. Approved Diagnostic Tools

A simple view of the complex pathologic pathway of AD can be described by consid-
ering that the disease is initiated by Aβ plaques deposition, followed by accumulation of
Tau tangles and eventually by neurodegeneration. If the cascade of events follows or not
exactly these steps, is still a subject under study. Nevertheless, this simple view of events
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is the basis of current AD diagnostic tools, focused on the characterization of proteins
that have a role in the pathophysiology of AD at a specific stage and on the evaluation of
neurodegeneration markers. So, for AD diagnosis, a combination of several tools is used,
which include the clinical examination by magnetic resonance imaging (MRI) for the mesial
temporal lobe atrophy or, more recently, functional-connectivity MRI; positron emission
tomography (PET) to detect Aβ deposits, Tau presence or abnormal brain metabolism
by 18F-fluorodeoxyglucose (FDG); Cerebrospinal fluid (CSF) assays to detect Aβ42, total
Tau, threonine 181 (T181) phosphor-Tau and neurofilament light chain; and neuropsycho-
logical tests to assess cognitive performance [10,18]. These diagnostic markers allow the
recognition of AD patients and their categorization at different stages. Decreased CSF
levels of Aβ42 and increased amyloid PET signal come before subtle cognitive impairment
(neurodegeneration and synaptic dysfunction). MRI detection of hippocampal volume loss
and high concentrations of total Tau and/or phospho-Tau, in CSF, can predict the begin-
ning of AD pathology and clinical presentation [46–48]. Nevertheless, these techniques
are invasive and expensive making it difficult to apply them in routine clinical practice.
Thus, despite all progress on diagnostic processes, postmortem gross specimen analysis
and histology of brain sections, for amyloid plaques and neurofibrillary tangles evaluation,
continues to represent a high percentage of AD neuropathologic analysis [18,46]. The ab-
sence of effective treatment for AD makes even more important the early diagnosis. Thus,
developing new, accessible, specific, and sensitive molecular biomarkers and diagnosis
methods is mandatory to anticipate the disease, with great impact on the health economy
and quality of life.

3.2. Novel Diagnostic Approaches

New tools for AD diagnosis are expected not only to allow easy detection of preclini-
cal stages of AD but also permit monitoring disease progression and treatment response.
Tissue biopsies are too invasive, so the new diagnostic studies focus on genetic, circulat-
ing, and imaging-based biomarkers [46]. Genetics is still a poorly understood territory
that represents small contributions to the overall disease. Genes more likely to undergo
genetic alterations that are correlated with AD may be sortilin-related receptor 1, clusterin,
complement receptor 1, CD2-associated protein, ephrin type-A receptor 1 and membrane-
spanning 4-domains subfamily A, among others [12,24]. In familiar AD, APP, PSEN1, and
PSEN2 mutations account for approximately 30–50% of the cases and in sporadic AD, the
apolipoprotein ε4 allele (APOE4) increases the risk by 20–30% [46]. APOE isoforms have
been difficult to determine, but it is known that they can promote Aβ aggregation and
impair Aβ clearance in the brain. Moreover, APOE can also participate in the regulation of
glucose metabolism, neuronal signaling, and Tau-mediated neurodegeneration [10,12,16].
In, 2017, the 23andme company received FDA approval to diagnose the ApoE allele and
communicate with patients the increased probability to develop AD [49]. More recently, the
identification of a novel APP gene allele, lead to the discovery of the Alzheimer Associated
protein (ALZAS), which is overexpressed in the blood of patients affected by AD and can
become a novel biomarker [49]. Imaging-based biomarkers had a big breakthrough with
the amyloid and Tau PET imaging, but the sensitivity of the amyloid PET ligands remains
to be determined and further studies are necessary to correlate Aβ and Tau PET imaging
results to CSF biomarkers and cognitive measures. Nevertheless, the FDA recently ap-
proved a dopamine transporter (DAT) single-photon emission computerized tomography
(SPECT) to evaluate suspicions of Parkinson’s disease, which can be seen as evidence of
the next imaging-based diagnostic in AD [46]. These two groups of biomarkers can be less
invasive but continue to be expensive and hard to include in routine clinical practice. So, to
try a more accessible approach, recent studies focus on circulating biomarkers as the next
promising tool in the diagnostic area [50,51]. The easier way to assess patients’ samples for
biomarkers study is through the blood. CSF is the biofluid closest to the CNS cells; however,
to be obtained, an invasive lumbar puncture is needed [46]. On the other hand, blood is a
rich source of molecules, including RNA, originating from different tissues in the human
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body. Figure 5 shows the biomarkers evolution in AD diagnostic. Certain circulating
levels of these molecules are altered in some pathological conditions, allowing one to draw
some conclusions about the processes that are happening in the cells [46,47,52]. Before the
passage through BBB, proteins/peptides suffer cleavage, and metabolites pass passively
or through portal systems at differential rates. Additionally, in the blood molecules suffer
metabolization into different products. So is necessary to keep in mind that some molecules
can be intact, and others can become different from the form present in the brain. Recent
biomarker development efforts for AD have focused on the characterization of circulating
RNA that can influence the regulation of genes involved in AD [46,47,49,52].
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3.2.1. Ribonucleic Acid

Ribonucleic acid (RNA) is a polyanionic macromolecule, with a single chain of four
different nucleotides, make it a simple source of genetic information, comparing to the
double chain of the DNA [53]. In 1990, Andrew Fire and Craig Mello discovered the RNA
interference (RNAi) [54] and showed that the RNA is more than a simple intermediate
molecule in the genetic information transfer from DNA to proteins, allowing the world
to show interest in other types of RNA besides the well know messenger RNA (mRNA),
transfer RNA (tRNA) and ribosomal RNA (rRNA). RNA is currently recognized as a
fundamental molecule for the regulation of gene expression [53]. This regulation occurs at
a post-transcriptional level, through non-coding RNA molecules (ncRNAs) by blocking the
translation or inducing the degradation of their target mRNA via sequence-specificity [55].
There is a large group of ncRNAs-regulated gene sequences, some of which playing
important roles in a variety of diseases. For example, in neurodegenerative disorders,
dysregulated levels of ncRNAs can be a consequence of some imbalance in their expression
and will also result in target proteins dysregulation [21,56]. ncRNAs can be classified
into two main groups according to their length (Figure 6). If they have above 200 nt are
called long non-coding RNAs (lncRNAs) and when they present circular form, are called
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circular RNAs (circRNAs). If they have less than 200 nt are named small non-coding
RNAs (sncRNAs). Both types of ncRNAs are particularly abundant in the central nervous
system [21,57,58]. For classification and characterization, sncRNAs can be subdivided via
biogenesis and mode of action into infrastructural RNAs [rRNA, tRNA, small nuclear RNA
(snRNA), small nucleolar RNA (snoRNA)] and regulatory RNAs [microRNA (miRNA),
small interfering RNA (siRNA), short hairpin RNA (shRNA) and PiWI-interacting RNAs
(piRNAs)] [58,59]. Figure 6 summarizes some RNA functions, more related to AD diagnosis
and therapeutics.
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3.2.2. Novel RNA-Based Diagnostic Tools

Extracellular environments harbor a vast range of RNAs, that remain stable against
blood RNases. It is not yet clear how circulating RNAs stay stable but is speculated that
extracellular vesicle-like exosomes might play an important role in that stabilization [48,52].
MicroRNAs are the most studied species for AD diagnosis due to their unique character-
istics, such as the possibility to correlate the miRNAs levels with their activity (as they
are not translated) and their presence in peripheral biofluids. Recent data suggest that
circulating miRNAs are representative of releasing tissues, allowing one to understand
what is happening inside the cells [6,60–62]. In the case of AD, several studies suggest that
specific miRNAs can play an important role in pathogenesis and appear to be dysregulated
in the blood of AD patients. Additionally, Leidinger and collaborators defined circulating
miRNA profiles, specific for AD, discriminating AD from controls with 93% of accuracy,
and from other neurological diseases like schizophrenia, depression, and bipolar disorder
with about 76% of accuracy, as summarized in Table 1 [63].
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Table 1. Suggested circulating miRNA profiles specific for AD, detected in blood (Adapted from
Leidinger and collaborators [63]).

miRNA Expression in AD

brain-miR-112
(Unknown) Upregulated

brain-miR-161
(Unknown) Upregulated

hsa-let-7d-3p Upregulated
hsa-miR-5010-3p Upregulated
hsa-miR-26a-5p Upregulated
hsa-miR-1285-5p Upregulated
hsa-miR-151a-3p Upregulated
hsa-miR-103a-3p Downregulated

hsa-miR-107 Downregulated
hsa-miR-532-5p Downregulated
hsa-miR-26b-5p Downregulated

hsa-let-7f-5p Downregulated

A different study showed that in extracellular vesicles of serum of AD murine, miRNA-
193b, an APP expression negative regulator, was significantly decreased when compared to
the wild-type mice [64]. Cheng and collaborators also identified a panel of 15 differentially
expressed miRNAs in serum extracellular vesicles that correlate with APOEε4 status. This
allowed predicting AD with a sensitivity of 87% [65]. These studies prove that miRNA can
be the next generation of AD biomarkers. Indeed several clinical trials currently ongoing
have miRNAs as target biomarkers [66], as summarized in Table 2.

Table 2. Clinical trials showing the potential diagnostic of AD using miRNAs as biomarkers.

Institutions miRNA Sample Type Disease Status

Shanghai Mental Health
Center

miRNA 107
Plasma MCI 1

UnknownCSF 1 AD 1

Sun Yat-sen University miRNAs Blood
MCI 1

UnknownAD 1

Seoul National
University Hospital miRNA 206 Olfactory

neuroepithelium tissue AD 1 Completed

Shanghai Mental Health
Center

miRNAs Plasma
MCI 1 due to AD 1

Recruiting
AD 1

Shanghai Mental Health
Center

miRNAs Plasma

MCI 1 due to AD 1

Not yet recruiting

Mild AD 1

Moderate AD 1

Severe AD 1

LBD 1

FTD 1

Neuromed IRCCS miRNAs

Blood MS 1

Unknown
CSF1

PD 1

ALS 1

AD 1

University of Pisa miRNA-30
Blood

PD 1
Completed

miRNA-7 AD 1

1 CSF—Cerebrospinal fluid; MCI—Mild cognitive impairment; AD—Alzheimer’s disease; LBD—Lewy body dementia; FTD—
Frontotemporal dementia; MS—Multiple sclerosis; ALS—Amyotrophic lateral sclerosis; PD—Parkinson’s Disease.

In this field of RNA-based diagnosis, some studies focused on lncRNA dysregulation
and its role in certain diseases, such as AD and several types of cancer. In the cancer
biomarker research area, lncRNAs have been vastly investigated [67]. For example, the
lncRNA PCA3 is elevated in patients with prostate cancer and due to its stability in bi-
ological fluids, PCA3 can be easily detected in urine. This is a non-invasive biomarker
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specific to prostate cancer that was approved for clinical trials [68]. In AD, lncRNA 51A and
BACE1-AS overexpression has been detected in patients, which can make them potential di-
agnostic biomarkers for this disease [69,70]. Fotuhi and collaborators showed that lncRNA
BACE1-AS is upregulated in the plasma of AD patients and can show some differences
between pre-AD and full-AD patients [71]. Modarresi group, in 2011, studied BACE1
and BACE1-AS levels in AD models of young mice and aged mace. In the early stage of
AD, the young mouse showed lower BACE1 and BACE1-AS levels, consequently having
less Aβ aggregation. In the aged AD mouse, BACE1 and BACE1-AS showed an elevated
expression with increased levels of insoluble aggregated Aβ oligomers [72]. This study
suggested that BACE1 and BACE1-AS levels can be correlated. Additionally, circRNAs
have shown potential to be used as biomarkers. circRNAs are evolutionarily conserved,
endogenous non-coding circular RNAs, abundantly expressed in eukaryotes. Like the
other ncRNAs mention before, they are stable, but due to their closed circular conformation,
they can be even more stable in blood [58,73,74]. Dube and colleagues have shown that
the expression of circRNAs changes before the appearance of significant onset symptoms
of AD, demonstrating that circRNAs levels can be correlated with neuropathological and
clinical evaluation of AD severity [75]. An example includes the circRNA KIAA1586,
which is significantly upregulated in AD-associated biological processes and may be a
novel risk factor in the pathogenesis of AD [76]. Moreover, circ-AXL, circ-GPHN, and
circ-PCCA differ significantly between AD patients and normal controls when studying
the expression profile in cerebrospinal fluid, which shows their potential as biomarkers in
AD [77]. Overall, the dysregulated and complex ncRNAs levels are closely associated with
core pathophysiological processes of AD via regulating gene expression. Because ncRNAs
are widely expressed in the brain and show a range of differences between AD and healthy
controls, it can be hypothesized that these RNAs are potentially the next generation of AD
diagnostic tools.

4. Therapeutic Applications for Alzheimer’s Disease
4.1. Approved Therapeutics

Treatments for AD have two main goals: (1) relieving cognitive symptoms, to improve
or maintain cognitive and daily activity skills; and (2) slowing the progress of the disease.
Until this year only a few drugs were approved by FDA and all of them were directed to sta-
bilize symptoms for a limited time [12,16,18,78]. In 1970, the susceptibility of the cholinergic
system was identified, leading to the emergence of the first effective drug for the treatment
of cognitive symptoms of AD, tacrine (Cognex®, Parke-Davis, Detroit, MI, United States).
However, tacrine was withdrawn from the market due to its side effects in the cholinergic
system and liver toxicity, but it paved the way to other cholinesterase inhibitors being
exploited [79–82]. Cholinesterase inhibitors are used in patients with mild to moderate
AD, improving neurotransmission by acetylcholinesterase inhibition (hydrolysis of acetyl-
choline) in the synaptic cleft, consequently increasing the levels of acetylcholine. Donepezil
(Aricept®, Eisai and Pfizer, Woodcliff Lake, NJ, United States), Rivastigmine (Exelon®,
Novartis, Basel, Switzerland), Galantamine (Razadyne®, Janssen, Beerse, Belgium) are
currently approved drugs, with small but valuable clinical benefits. However, they can
also cause adverse effects such as nausea, diarrhea, and vomiting [10,83–86]. Another
drug available to treat the cognitive problems of AD is a glutamate regulator, Memantine
(Namenda®, Allergan, Dublin, Ireland). This N-methyl-D-aspartate (NMDA) receptor
antagonist is prescribed for moderate-to-severe AD. The NMDA receptor is abundant in
areas involved in cognition, learning, and memory. Memantine, the NMDA antagonist, has
a moderate affinity that allows the physiological action of glutamate (NMDA ligand) with-
out receptors overactivation. In some cases, the combination of memantine and donepezil
(Namzaric®, Allergan, Dublin, Ireland) [10,83,86–88] is also used. This year, 2021, FDA
approved a new drug, aducanumab (Aduhelm™, Biogen, Cambridge, MA, United States),
which is the first drug to address the underlying biology of AD. This drug is a human
IgG1 monoclonal antibody that binds to Aβ fibrils and soluble oligomers, leading to a
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dose-dependent reduction in Aβ and some reduction in CSF phosphorylated-Tau [89].
In addition, one of the drug classes prescribed for AD patients is antipsychotics due to
changes in their behavior, however, haloperidol, suvorexant (Belsomra®, Merck, Darm-
stadt, Germany), and other antipsychotics have severe side effects, like sedation, leading
to physical injuries [83]. An alternative treatment is the use of antioxidants like selegiline,
alpha-tocopherol (vitamin E), and vitamin D, even not showing consistent benefits for
patients. On the contrary, nutraceutical huperzine A seems to show benefits in memory
and daily activities [83,86]. Furthermore, there are also non-drug treatments that may
be recommended for AD patients, like the Mediterranean diet, regular aerobic exercise,
and recreational physical activity [83,86]. Cognitive training or stimulation also show
improvement in cases of depression, anxiety, and aggression, improving the quality of life.
In general, non-drug treatments show some effect in behavioral symptoms, avoiding that
way the use of antipsychotics [90]. Considering all these reasons, limitations, and adverse
effects, it becomes clear the need to establish new therapeutic strategies, focusing on the
pathologic pathway.

4.2. Novel Therapeutic Approaches

Some of the new therapeutic strategies under evaluation involve the use of secretase
modulators, immunotherapy, amyloid binders, metal-chelating agents, anti-inflammatory,
and neuroprotective agents. Drugs targeting BACE1, like verubecestat, showed accept-
able safety at doses that strongly reduce Aβ levels in plasma and CSF, but showed no
cognitive or functional benefit [91]. γ-Secretase was another obvious target for inhibition
with semagacestat. Unfortunately, target toxicity is inevitable due to the approximately
40 cellular substrates of the γ-secretase, leading to the closure of the clinical trials [92,93].
However, γ-secretase modulators [94,95] and γ-secretase stabilizers [96] are still being
tested [10,16,83,86]. Immunotherapy, associated with specific passive immunization with
monoclonal antibodies directed to Aβ peptides or Tau protein, has shown good results in
the clearance of these proteins, as represented by the recently FDA-approved drug, adu-
canumab. Doig and coworkers referred to the reasons why small molecules and antibodies
targeting Aβ oligomers have difficulties becoming effective AD therapies, resulting several
times in failed attempts [97]. Nevertheless, other types of antibodies exist and have been
studied as shown by Nguyen and colleagues [97,98]. Table 3 summarizes some of the
current clinical trials [90,99,100] for AD therapeutics evaluation.

Table 3. Potential therapeutic drugs and applications in AD, currently in clinical trials.

Drug Definition Expected Results Phase

BAN2401
Human monoclonal antibody

Affinity for soluble Aβ 1 protofibrils
Human monoclonal antibody

Reduction in Aβ 1 levels and cognitive decline
Phase 3

Gantenerumab Human monoclonal IgG1 antibody Reduction in the Aβ 1 plaques Phase 3Affinity for Aβ 1 aggregated forms

TRx0237 Second generation Tau aggregation
inhibitor

Prevention of Tau aggregation Phase 3Dissolution of existing Tau aggregates

ALZT-OP1 Cromolyn and ibuprofen
(anti-inflammatory compounds)

Reduction in neuroinflammation Phase 3Clearance of Aβ 1

COR388
Gingipains inhibitor

(Virulence proteases from Porphyromonas
gingivalis, common in AD 1 brains)

Reduction in Aβ 1 42 production, neuroinflammation,
and hippocampal degeneration

Phase 2/3

Masitinib Selective tyrosine kinase inhibitor Modulation of neuroinflammation Phase 3
AGB101

(Levetiracetam)
SV2A 1 modulator

(anti-convulsant medication)
Reduction in Aβ 1-induced cognitive and functional

impairment Phase 3

Blarcamesine Sigma-1 chaperone receptor agonist
Prevention of memory loss

Phase 2/3Neuroprotective effects
Blockage of Tau hyperphosphorylation

Troriluzole
Prodrug conjugate of riluzole

(mechanism of action is not fully
understood)

Inhibition of glutamate release Phase 2/3

1 Aβ—β-amyloid peptide; AD—Alzheimer’s disease; SV2A—Synaptic vesicle glycoprotein 2A.
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Therapeutic approaches under investigation for AD show to be effective in animal
models but when reaching a clinical trial, the results are not successful. These failures are
inevitable, but all research and information obtained so far can help in the identification of
novel drug targets and the development of therapeutic strategies for this incurable disorder.
Probably these outcomes are due to the complexity of AD, which is not overcome with
single pathway approaches. So, maybe the next steps and future perspectives should be
more focused on “multi-pathway” therapeutic strategies. Recent approaches point to RNA-
based strategies, that offer great promise in the development of novel AD therapeutics.
RNA-based strategies allow targeting a range of pathological features. Figure 7 shows the
main events in AD therapeutic research, leading to the RNA research of today.
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4.2.1. RNA-Based Therapeutic Approaches

In recent years, RNA-based therapeutics have gained increased attention in the re-
search field. This interest was mainly supported by the establishment of new RNA modi-
fications that can improve the stability or on-target activity, and at the same time reduce
off-target effects [101]. These characteristics transformed the former poorly performing
RNA into the novel must-have therapeutic tools of tomorrow. In reality, it is expected that
RNA therapeutics can overcome limitations associated with small-molecular inhibitors or
antibiotics, enabling a higher target selectivity; regulation of gene expression and mRNA
splicing; targeting ncRNAs that play important role in transcriptional and epigenetic regu-
lation; and genome edition. Finally, it is important to mention that RNA-based therapeutics
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have been shown to have the rare ability to evolve pharmacologically with cancer mutation
and pandemic viral infections [58,102]. As discussed for diagnosis, RNAs have also great
potential as therapeutic agents and numerous studies are being developed, focusing on
several types of RNAs, expecting the implementation of more effective treatments for
uncurable diseases.

Coding RNAs

A new area that has recently been receiving huge attention is related to mRNA-based
therapies. Compared to conventional gene delivery methods, these products showed some
advantages which result in increased safety and efficiency, due to their characteristics. It
should be highlighted that: mRNA will not be integrated into the host genome; mRNA
does not need to enter the nucleus, being more effective in slowly- or non-dividing cells
(neural cells); allows better control in protein expression, because promoter sequences or
transcription is not necessary; and lastly mRNA does not contain sequences from viruses.
Nevertheless, due to its linear structure, mRNA can be unstable under some physiological
conditions and can be strongly immunogenic. To solve these problems, the development
of a good delivery system is very important to reach therapeutic goals [103,104]. Lin and
collaborators showed that mRNA can be used to express a non-secreted protein, Neprilysin,
on the mouse brain. This membrane protein can degrade Aβ monomers and oligomers,
resulting in a reduction in Aβ deposition. For the delivery of mRNA, the researchers have
used self-assembled nano-micelles, that after releasing mRNA were degraded into nontoxic
metabolites [103].

Small Non-Coding RNAs

siRNAs are synthetic double-stranded molecules that target complementary mRNA
and can regulate gene expression through the assembly of the RNA-induced silencing
complex (RISC). This technology is well studied and several chemical modifications are
already known and available to increase siRNA stability and target selectivity. Several
siRNA-based therapeutics were already approved by FDA for other diseases [58,105], sup-
porting their potential use for AD therapeutics. McSwiggen and colleagues patented 325
siRNAs that target BACE, showing that some reduced BACE expression by 40–90% [106].
Kao and coworkers also designed siRNAs, where two of the siRNAs reduced BACE1
mRNA by more than 90% and Aβ production by 36–41%. Additionally, increasing neu-
roprotection against hydrogen peroxide-induced oxidative stress [107]. Different studies
already described the decreased expression of APP, PSEN1, and PSEN2 after treatment
with RNA interference, such as siRNA and shRNA [108]. As mentioned before lncRNA
BACE1-AS is positively associated with BACE1 protein expression in vitro and in vivo,
and knockdown of BACE1-AS by siRNA improved cognitive function in a mouse model of
AD [72].

miRNA is one of the most characterized ncRNAs in AD. They can regulate mRNA
translation by binding to the 3’untranslated region. This strategy allows the reduction in
the amount of target protein, instead of only inhibiting their activity. miRNA can also target
multiple genes, allowing targeting not only one pathologic pathway but the whole disease
network [58,109,110]. As previously discussed, despite the requirements for tight control,
this feature can also make a great difference in the complex and multifactorial AD. This
characteristic makes the miRNAs an exciting new approach to AD therapeutics. Although
this area is still in the early stages, studies have shown evidence of several miRNAs that
target important molecules in this pathology [29,111–114]. Table 4 shows some studies of
miRNAs in AD, that can have a potential application as AD therapeutic tools.
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Table 4. Studies showing the therapeutic potential of miRNA in AD.

miRNA Target Proteins Therapeutic Potential References

miRNA-9-5p GSK-3β 1 Inhibition of mitochondrial damage and oxidative
stress [115]

miRNA-15b
NF-κB 1 signaling

Inhibition of BACE1 1, APP 1 and Aβ 1 levels [116]
BACE1 1

miRNA-21 PDCD4 1/ PI3K 1/AKT
1/GSK-3β 1 pathway Inhibition of Aβ 1-apoptosis induced [117]

miRNA-29a/b-1 BACE1 1 Regulation of BACE1 1 and Aβ 1 levels [118]

miRNA-29c
BACE1 1 Reduction in BACE1 1 and Aβ 1 levels [119,120]

PKA 1/CREB 1 Neuroprotection

miRNA-34a-5p BACE1 1 Inhibition of Aβ 1-induced apoptosis and
oxidative stress

[121]

miRNA-31
APP 1 Improvement of cognition and memory deficits

[122]
BACE1 1 Reduction in glutamate vesicles accumulation

Reduction in APP 1, BACE1 1 and Aβ 1

miRNA-101a-3p APP 1 Regulation in APP 1 and Aβ 1 levels [123]
miRNA-98 HEY2 1 Inactivation of Notch signaling pathway [124]

miRNA-101 APP 1 Reduction in APP 1 and Aβ 1 levels [125]

miRNA-106b Fyn 1 Inhibition of Aβ 11-42-induced Tau
phosphorylation at Tyr18 1 [126]

miRNA-107 BACE1 1 Inhibition of BACE1 1 [127]

miRNA-124-3p CAV1-PI3K/Akt/GSK3β 1

pathway
Attenuation of cell and abnormal Tau

hyperphosphorylation [128]

miRNA-125b-5p BACE1 1 Inhibition of Aβ 1-induced apoptosis and
oxidative stress

[121]

miRNA-137 SPT 1 Inhibition of Aβ 1 levels [129]
miRNA-153 APP 1 Reduction in APP 1 levels [130]
miRNA-181c SPT 1 Inhibition of Aβ 1 levels [129]
miRNA-195 BACE1 1 Inhibition of BACE1 1 and Aβ 1 levels [131]

miRNA-200a-3p
Bax 1/CASP3 1 axis

Inhibition of apoptosis, Aβ 1 and p-Tau levels [132]BACE1 1

PKA 1

miRNA-200b/c PS6KB1 1

(Insulin signaling)
Reduction in Aβ 1 secretion relieved and

memory impairments
[133]

miRNA-298
BACE1 1

Repression of APP 1, BACE1 1, Aβ 1 and some
Tau forms

[134]APP 1

Tau under study

miRNA-326 VAV1 1 Inhibition of Aβ 1 deposition, apoptosis,
Tau phosphorylation

[135]

miRNA-328 BACE1 1 Regulation of BACE1 1 expression [136]
miRNA-339-5p BACE1 1 Inhibition of BACE1 1 expression [137]
1 GSK-3β—glycogen synthase kinase 3 beta; NF-κB—nuclear factor kappa B; PDCD4—programmed Cell Death 4 gene; PI3K—
phosphoinositide 3-kinase; AKT—protein kinase B; BACE1—β-secretase; APP—amyloid precursor protein; Aβ—β-amyloid peptide;
PKA—protein kinase A; CREB—cAMP response element-binding protein; HEY2—Hes related family BHLH transcription factor with
YRPW motif 2; Tyr18—tyrosine residues 18; CAV1—caveolin-1; SPT—serine palmitoyltransferase; Bax—BCL2 associated X, apoptosis
regulator; CASP3—caspase-3; p-Tau—phosphor-Tau; PS6KB1—protein S6 kinase B1; VAV1—Vav guanine nucleotide exchange factor 1.

Besides miRNA, antimiRNA (inhibitors of endogenous miRNAs) and miRNA mimics
are also molecules under evaluation for the development of AD therapeutics, exploiting
their role in protein expression regulation. AntimiRNAs reduce complementary miR-
NAs levels to restore normal levels. As an example, microRNA-34c is increased in the
hippocampus and blood of patients with AD, and its inhibitor enhances memory in AD
mice models [138,139]. Lee and colleagues showed that AM206 inhibits miR-206 when
injected into the cerebral ventricles of an AD mouse model, achieving an improved mem-
ory function as well as hippocampal neurogenesis and synaptic density [140]. On the
other hand, miRNA mimics act like endogenous miRNA. For example, the Murphy group
inhibited acetyl-CoA acyltransferase, in a mouse model of AD, using an artificial miRNA.
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This led to a reduction in Aβ plaques, cognition improvement, and reduced human APP
levels [141]. MicroRNA-384 mimic downregulates the expression of APP and BACE1 in
SH-SY5Y cells [142].

Long Non-Coding RNAs

In the CNS, lncRNAs are abundant and play a critical role in the pathogenesis of AD.
This type of RNA can be highly specific for a sequence, cell, and tissue type, allowing for a
specific regulation therapy. Their role is executed through epigenetic regulation of chromatin
in cis, reversing or activating epigenetic modifications (mainly by DNA methylation). Since
they are mainly in the nucleus besides functioning as scaffolds for chromatin modifiers, they
can act also as transcriptional co-regulators. These roles allow lncRNAs to alter transcription,
mRNA stability and influence the alternative splicing [58,109,143]. However, lncRNA-based
therapeutic strategies are in an even earlier stage of understanding than miRNAs. So, in
AD therapeutics, lncRNA are used as novel therapeutic targets for inhibition. Brain-derived
neurotrophic factor antisense RNA (BDNF-AS) is a lncRNA that represses BDNF expression.
The inhibition of BDNF-AS results in neuronal growth and differentiation [144]. Nuclear
paraspeckle assembly transcript 1 (NEAT1), is involved in Aβ clearance by regulating the
expression of endocytosis-related genes in AD. In an APP/PS1 transgenic mouse model,
NEAT1 is increased and promotes the pathogenesis of AD via upregulating ubiquitination
and degradation of PTEN-induced putative kinase 1 (PINK1), which provided a potential
therapeutic strategy in AD [145,146]. As mentioned above, in Tg-19959 mice, knockdown
of BACE1 or BACE1-AS transcripts causes reductions in BACE1 protein and insoluble
Aβ [72]. Thus, therapies targeting the BACE1-AS transcript to reduced abundance of
Aβ1-42 can already be envisioned.

Also, circRNAs tend to be highly expressed in the brain. This accumulation is due
to the normal aging process, commonly relating circRNAs to age-related diseases, such
as AD [147]. Their role in AD remains unclear, but it is known that circRNAs can modu-
late the effect of miRNAs. Dysregulated circRNAs are associated with changed levels of
downstream target mRNAs in mouse models, indicating that circRNA-microRNA-mRNA
may play a significant role in the pathogenesis of AD [148]. Nevertheless, it has been
shown that circRNAs can attenuate Aβ accumulation, neuroinflammation, oxidative stress
and autophagy [42]. Additionally, studies have proven that circRNAs levels were altered
in pre-symptomatic AD patients, which means that therapeutic interventions with these
circRNAs may be a good option to treat preclinical AD [75]. Shi and coworkers showed
that, in SH-SY5Y cells, ciRS-7 overexpression upregulated the ubiquitin carboxyl-terminal
hydrolase L1 (UCHL1) protein, which accelerated APP and BACE1 degradation, reducing
Aβ production [149]. In a different study, the Lu group reported that the circHDAC9 is
significantly lower in the serum of AD patients. Naturally, circHDAC9 acts as a miR-138
sponge, reducing its levels and simultaneously increasing the expression of silent informa-
tion regulator 1 (sirtuin1), which plays an important role in decreasing the accumulation of
Aβ and attenuating mitochondrial dysfunction [150]. Thus, dysregulation in this circRNA
could be related to the AD pathologic mechanisms. On other hand, overexpression of
circNF1-419, in aged SAMP8 mice, enhances autophagy, reducing the levels of Tau, p-Tau,
Aβ1-42 and APOE [151], also showing its relevance in AD.

Synthetic Oligonucleotides

A well-studied method of nucleic acids-based therapeutics is the use of antisense
oligonucleotides (AOS). Short single-stranded synthetic oligonucleotides can control the
expression of proteins in different ways. They can modulate the pre-miRNA splicing or
bind to the mRNA, resulting in the repair of defective RNA or elimination of disease-
associated proteins [101,152]. Ionis Pharma has patented AOS that target Tau expression
and various regions of APP mRNA, inhibiting 39–82% of APP [101,153,154]. Banks and
colleagues showed in SAMP8 mice that a radioactively tagged AO targeting the Aβ region
of APP could transit the BBB and reversed the learning and memory deficits, possibly
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through reducing oxidative stress [155]. Chauhan and colleagues designed AOS that target
the β-secretase cleavage site of APP and found that by administrating it into a mouse
model of AD, the soluble APPα increased by 43%, and the soluble Aβ40 and Aβ42 levels
decreased by 39% [156]. In another study, the Fiorini group administered AOS targeting
PSEN1 to aged SAMP8 mice. The mice showed a reversal of learning and memory deficits
and reduced brain oxidative stress biomarkers [157]. Caceres and colleagues showed that
an AO targeting the 5’ end of the Tau gene, in the region before the start codon, can reduce
the Tau protein level [158].

Aptamers are another class of molecules that have been exploited in the therapeutic
perspective. Aptamers are short single-stranded oligonucleotides with a three-dimensional
structure that bind to targets with high affinity and specificity [101]. Babu and colleagues
developed an aptamer complexed with ruthenium that binds to Aβ oligomers inhibiting
them [159]. On the other hand, the Liang group developed aptamers that bind to the
extracellular domain of BACE1. When delivered in APP Swedish mutant cells, decreased
Aβ40/Aβ42 levels and sAPPβ expression were found in comparison with untreated
controls [160]. Kim and coworkers produced a Tau-1 aptamer that binds to Tau protein
inhibiting its oligomerization, thus reducing the levels of oligomeric Tau by approximately
94% [161].

In general, numerous studies have focused on finding potential treatments using
RNAs and even though, the transition from the laboratory bench to clinical trials still is
a challenge.

4.2.2. Challenges in the RNA-Based Therapeutic Applications

The ongoing research on RNA-based technology demonstrates that RNA possesses
attractive characteristics to be used in therapy. The ability of RNA to induce a robust
silencing of targeted genes expression and the possibility to promote long-lasting therapies
is already recognized. Some recent studies also suggest that the dosage required for
RNA therapeutics can be low, which can reduce the occurrence of undesirable adverse
effects in the patients, one of the biggest problems encountered in the development of
therapeutics [162,163]. Therapeutic oligonucleotides composed of naturally occurring
nucleotides are rapidly degraded in vivo or suffer renal clearance, which makes them
unsuitable for drug development. For pharmacological applications, certain characteristics
must be considered, like product stability, safety, and biological activity [58,101]. So, RNA-
based technologies typically use synthetic oligonucleotides around 8–50 nucleotides in
length, produced by chemical synthesis. The success rate of RNA synthesis depends
on the sequential deprotection-coupling and oxidation reaction followed by purification,
usually performed by high-performance liquid chromatography (HPLC). In this production
method, the addition of novel chemical modifications is possible and one can exploit
conjugation strategies to improve RNA pharmacokinetics and tissue-specific delivery.
2’-O-methyl (2’-OMe) RNA, 2’-fluoro (2’ F) RNA, 2’-O-methoxyethyl (2’-MOE) RNA,
PEGylated drugs are some of the modifications successfully incorporated in FDA-approved
oligonucleotide drugs. These modifications can improve RNA stability and bioavailability
(resistance to nucleolytic degradation or renal clearance) [101]. Another strategy is the
synthesis of neutral siRNA, masking the negative charge on the phosphate backbone to
reduced renal clearance [164]. However, there is a risk that these chemical modifications
may alert the cells to see RNA as an exogenous or pathogenic element or even amplify
off-target effects due to the changed structure, which can lead to changes in functional
properties. Another limitation is that the process of synthesizing longer sequences is more
prone to errors and can lead to changes in functional properties or toxicity to the cell. The
increased cost of synthetic RNAs depending on their length and number of modifications,
and the fact that the synthetic RNA is provided on a micromolar scale may influence the
decision to use RNA in clinical investigations [165,166].

Other solutions to this production method are enzymatic synthesis and recombinant
biosynthesis. The first is a well-established method, based on the use of bacteriophage sys-
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tems to produce RNA molecules from DNA sequences by in vitro transcription. Preparative
polyacrylamide gel electrophoresis and anion exchange fast protein liquid chromatography
are then frequently used to further purify the RNA products. Some of the disadvantages of
enzymatic production are the heterogeneity at 3’ and 5’ ends of the products, the decreased
reliability of RNA polymerase as the transcript length increases and the absence of post-
transcriptional modification machinery. The greater advantage of this method is the vast
commercialized kits available, the versatility to generate RNA molecules of various lengths
in the microgram to milligram amounts [165,167,168]. Lastly, recombinant production is
achieved by using host cells modified with an effective plasmid DNA (pDNA) coding
for the target RNA sequences. The cells growth occurs in a culture medium replicating
the pDNA molecule and expressing the target RNA sequences. The main challenges of
these methods are the difficulty in purifying the samples and the fact that the RNA is
highly susceptible to RNases activity in the culture medium. Nevertheless, this is the
most cost-effective approach [165,166,169,170]. Currently, only chemical and enzymatic
syntheses are approved by Food and Drug Administration (FDA).

Besides production and purification, another big challenge for RNA application as
therapeutics is the stable delivery of RNAs and the entrance into the cells. To accomplish
this, several options have been tried to encapsulate, protect, and deliver RNAs. Two main
strategies have been exploited as delivery methods, including the non-viral methods, based
on the use of lipid-based or polymeric nanoparticles, and viral vectors such as adenovirus
or adeno-associated viruses. The viral vectors are more powerful at transfection but
present immunogenicity, potential toxicity, the possibility of activating oncogenes and
difficulty in increased production. On the other hand, the non-viral vectors have an easy
and reproducible method of production, present higher biocompatibility, biodegradability,
non-toxicity, and non-immunogenicity. Giving these characteristics, they are preferred over
the viral vectors [171–173].

More specifically, in the treatment of brain disorders, the main obstacle of applying
RNA therapeutics is the existence of the BBB, because therapeutic RNAs are typically too
large to cross the BBB. The BBB is a specialized structural, physiological, and biochem-
ical barrier made of a highly specialized endothelial cell membrane that lines the brain
microvasculature and regulates the movement of molecules from the blood to the brain,
maintaining and protecting the ideal neuronal functioning from neurotoxins [39,41,174,175].
This blood–brain interface also allows exporting of potentially neurotoxic molecules from
the brain to the blood, such as Aβ peptides [37,39,174].

As referred above, the BBB is the main barrier that prevents therapeutic molecules from
entering the brain [37]. Even with the disruption of the BBB, therapeutic agents such as anti-
amyloid monoclonal antibodies continue to have limited brain penetration; it is estimated
that less than 1.5% of an administered dose enters the brain [37,40]. Due to these obstacles,
progresses in the development of new drugs for AD has been slow. Despite this, there are
some FDA-approved treatments for the brain region, such as Bevacizumab (Avastin) and
Natalizumab (Tysabri) (monoclonal antibodies for brain, cancer and multiple sclerosis), that
are not able to cross the BBB with an effective therapeutic concentration [176]. The first and
the only class of small molecules approved for the treatment of AD that managed to cross
the BBB were acetylcholinesterase inhibitors, with a molecular weight between 198 and
380 Da [177]. Some studies for the treatment of AD have focused on inhibitors of secretase
that give rise to the Aβ peptide. However, due to their size and chemical properties
their access to the brain was very limited [177]. Nevertheless, in 2019, a hope emerged
when adeno-associated virus-9-based gene therapy, a one-time intravenous administration
of the self-complementary-AAV9 encoding the survival motor neuron type 1 gene, was
approved for the treatment of children spinal muscle atrophy-1. This is the first FDA-
approved biotech product for a brain disease that crosses the BBB [178,179]. This result
gives hope for brain therapies, such as AD, and shows that it is possible to overcome this
complex and great obstacle. However, as discussed above the challenges imposed by viral
vectors emphasize the need to develop non-viral vectors that can efficiently deliver genes
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to the brain through systemic injection [180]. Gene therapy has increasingly shown great
potential for the treatment of AD, however, due to the presence of BBB, non-viral vectors
are less effective to be delivered into the brain through systemic administration [180,181].
In 2019, inspiring results emerged to surpass the BBB. Guo and coworkers developed
the gene carriers composed of cationic polymers, PEGylated poly(2-(N,N dimethylamino)
ethyl methacrylate) (PEG-PDMAEMA), surface-modified with both BBB targeting ligand
(CGN peptide) and Aβ-targeting ligand (QSH peptide) and verified that these complexes
penetrated the barrier and specifically delivered siRNA to neurons close to the amyloid
plaques. They observed that these complexes not only reduced the Aβ plaques, but also
slowed down the neurodegeneration process, thus promoting the cognitive performance of
AD [180]. In addition, in 2020, Zhou and colleagues developed a glycosylated nano-delivery
system, which uses glycemia-controlled glucose transporter-1 recycling to facilitate the
nanomedicine BBB penetration, for more effective AD therapy. This system combined with
a siRNA led to decreased expression of BACE1, consequently leading to reduced levels of
Aβ plaques, with the added benefit of suppressed levels of phosphorylated Tau protein. In
addition to the excellent biocompatibility, blood stability and effective BBB penetration,
these nanoparticles also exerted high brain accumulation [181].

Another strategy that is being exploited to overcome the BBB passage problem is the
intracerebral injection of drugs. In this strategy, the drug can be injected into the brain
through a burr hole drilled in the skull. However, besides the invasiveness, drug delivery is
mainly confined to the injection site, due to limited diffusion within the brain [176]. Another
of the solutions and one of the most currently explored is nasal delivery to the brain. Small
fat-soluble molecules enter the cerebrospinal fluid olfactory after nasal administration,
diffusing first through the nasal epithelial barrier, later through the olfactory arachnoid
membrane, and finally the brain. However, despite 40 years of studies in the delivery of
transnasal drugs to the brain, there is still no biological drug that has been approved by
the FDA for the treatment of AD after intranasal delivery. The main obstacle to overcome
in this method is the large volumes of the therapeutic agent needed, which causes local
damage to the nasal membranes [176]. However, once this problem has been surpassed, it
can be a very promising approach for the treatment of AD, being painless, and enabling a
prolonged treatment without huge costs and difficulties.

In addition, a different strategy under study that has already shown some interesting
results is the transient delivery of drugs to the brain by ultrasonic irradiation of the brain af-
ter intravenous administration of microbubbles [176,182]. This noninvasive method causes
a transient rupture of the BBB and provides an exciting opportunity for focused ultrasound
(FUS) coupling research in targeted drug delivery, immunotherapy, stem cell gene therapy
into various complex and deep brain structures, including the hippocampus [176,182]. An
example of the use of this strategy is the study carried out in 2020 by Rezai and co-workers,
where they used magnetic resonance (MR)-guided low-intensity focused ultrasound (FUS)
to surpass BBB. The research group found that FUS technology and focal BBB opening
offer a unique opportunity for targeted delivery of therapeutics to meaningful volumes
of essential brain structures in AD and other neurological conditions [182]. More results
on focused ultrasound applications are described in Nguyen and team review [98]. Thus,
underestimating drug delivery through the BBB and just looking for biomolecules for the
treatment of AD is not the way to successfully find an effective treatment for AD. The
development of new biological treatments for AD and other brain diseases, which may
eventually be approved by the FDA, will require an effort and an integrated approach to
innovation in terms of drugs and delivery strategies [176]. In addition, intracellular barriers
such as unspecific RNA delivery, inefficient cellular uptake and intracellular processing of
target RNAs in endosomes need to be overcome. Extracellular barriers are also a major
obstacle to RNA delivery and application, as they are responsible for the low bioavailability
of circulating RNA, for the enzymatic degradation by nucleases in the bloodstream, for
rapid renal release, for phagocytosis, opsonization by blood, diffusion through the cell
matrix and, finally, undesirable toxicity due to an immune response and/or unwanted
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effects [172]. Figure 8 summarizes the principal challenges in the application of RNA
therapeutics in AD.
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In general, RNA-based therapies have been evolving in the last few years, both
in AD and other diseases. However, there are still obstacles that must be overcome to
achieve an effective and suitable therapy for human use. Thus, the production, purification,
stabilization, and delivery of these biopharmaceuticals are the main points that need to be
addressed and enhanced to reach that goal.

5. Conclusions and Trends in AD Diagnosis and Treatment

AD is one of the neurodegenerative diseases that most affect people in the world,
having just a few therapies to relieve symptoms, and all of them with adverse side effects.
Presently, only one novel treatment managed to gain FDA approval to address the patho-
logical features. Despite the efforts, and although many drugs have shown success in cell
and animal models, the results often cannot be replicated in human trials. These limitations
are due to the complex and interconnected pathological mechanisms that can directly or
indirectly result in the hallmarks of AD. Thus, an alternative path is the accessible and
non-invasive early diagnosis of AD. If therapies take a long time to achieve therapeutic
standards, a successful pre-clinical diagnosis of AD can perhaps be a helpful manner to
change the outcome of the AD. Additionally, searching for novel biomarkers can open the
path to the identification of new target molecules, which can lead to different approaches
for AD treatment. In conclusion, there is a continuous and unmet need for better diagnostic
and therapeutic strategies, and RNA-based tools offer major advantages over traditional
ones. Looking at the big picture, the recent discoveries and studies show not only that we
are at the threshold of a new RNA-based diagnostic and therapeutic era, but also that this
area has the potential to dominate the future of biomedical and clinical applications.
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