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Abstract
Background: Recently, computed tomography (CT) manufacturers have devel-
oped deep-learning-based reconstruction algorithms to compensate for the
limitations of iterative reconstruction (IR) algorithms, such as image smoothing
and the spatial resolution’s dependence on contrast and dose levels.
Purpose: To assess the impact of an artificial intelligence deep-learning recon-
struction (AI-DLR) algorithm on image quality and dose reduction compared
with a hybrid IR algorithm in chest CT for different clinical indications.
Methods: Acquisitions on the CT American College of Radiology (ACR) 464
and CT Torso CTU-41 phantoms were performed at five dose levels (CTDIvol:
9.5/7.5/6/2.5/0.4 mGy) used for chest CT conditions. Raw data were recon-
structed using filtered backprojection, two levels of IR (iDose4 levels 4 (i4) and
7 (i7)), and five levels of AI-DLR (Precise Image; Smoother, Smooth, Standard,
Sharp, Sharper). Noise power spectrum (NPS), task-based transfer function,
and detectability index (d′) were computed: d′-modeled detection of a soft
tissue mediastinal nodule (low-contrast soft tissue chest nodule within the medi-
astinum [LCN]),ground-glass opacity (GGO),or high-contrast pulmonary (HCP)
lesion.The subjective image quality of chest anthropomorphic phantom images
was independently evaluated by two radiologists. They assessed image noise,
image smoothing,contrast between vessels and fat in the mediastinum for medi-
astinal images,visual border detection between bronchus and lung parenchyma
for parenchymal images,and overall image quality using a commonly used four-
or five-point scale.
Results: From Standard to Smoother levels, on average, the noise magnitude
decreased (for all dose levels: −66.3% ± 0.5% for mediastinal images and
−63.1% ± 0.1% for parenchymal images), the average NPS spatial frequency
decreased (for all dose levels: −35.3% ± 2.2% for mediastinal images and
−13.3% ± 2.2% for parenchymal images), and the detectability (d′) of the three
lesions increased. The opposite pattern was found from Standard to Sharper
levels. From Smoother to Sharper levels, the spatial resolution increased for

Abbreviations: AI-DLR, artificial intelligence deep-learning reconstruction; CNN, convolutional neural network; CT, computed tomography; FBP, filtered
backprojection; GGO, ground-glass opacity; HCP, high-contrast pulmonary; IR, iterative reconstruction; LCN, low-contrast soft tissue chest nodule within the
mediastinum; NPS, noise power spectrum; ROI, region of interest; SD, standard deviation; TTF, task-based transfer function.
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the low-contrast polyethylene insert and the opposite for the high-contrast air
insert. Compared to the i4 used in clinical practice, d′ values were higher using
Smoother (mean for all dose levels: 338.7% ± 29.4%), Smooth (103.4% ±

11.2%),and Standard (34.1% ± 6.6%) levels for the LCN on mediastinal images
and Smoother (169.5% ± 53.2% for GGO and 136.9% ± 1.6% for HCP) and
Smooth (36.4% ± 22.1% and 24.1% ± 0.9%, respectively) levels for parenchy-
mal images. Radiologists considered the images satisfactory for clinical use at
these levels, but adaptation to the dose level of the protocol is required.
Conclusion: With AI-DLR, the smoothest levels reduced the noise and
improved the detectability of chest lesions but increased the image smoothing.
The opposite was found with the sharpest levels. The choice of level depends
on the dose level and type of image: mediastinal or parenchymal.

KEYWORDS
artificial Intelligence, deep-learning image reconstruction algorithm, multidetector computed
tomography, task-based image quality assessment

1 INTRODUCTION

Recently, computed tomography (CT) manufacturers
have developed deep-learning-based reconstruction
(DLR) algorithms to compensate for the limitations of
iterative reconstruction (IR) algorithms such as image
smoothing and the spatial resolution’s dependence on
contrast and dose level.1–3 These DLR algorithms fea-
ture a deep neural network (DNN) to differentiate signal
from image noise. In 2018, Canon Medical Systems
developed the DLR–AiCE algorithm that trains DNNs
with high-quality model-based IR images from patients.1

In 2019, GE Healthcare developed the TrueFidelity
DLR algorithm that trains its DNN with high-quality fil-
tered backprojection (FBP) images from phantoms and
patients.2

The first studies carried out on phantoms and patients
with these two DLR algorithms have already demon-
strated their contribution for improving image quality
and their strong potential for dose reduction.4–26 Com-
pared to IR algorithms, they reduce image noise whilst
improving the contrast-to-noise ratio, which improves
lesion detectability and diagnostic confidence.5,6,19,20 In
addition, phantom studies have also shown that image
texture is preserved or improved and even approaches
that obtained with FBP for TrueFidelity.9,11–13,15,23,25,27

Other studies have also shown the strong potential
of these algorithms in dose reduction, particularly with
the implementation of low dose or ultra-low dose
protocols.7,21,28

Recently, Philips Healthcare also developed an artifi-
cial intelligence deep-learning reconstruction (AI-DLR)
called Precise Image.29 This algorithm uses a convo-
lutional neural network (CNN), which is a subtype of
a DNN, where each layer performs convolution oper-
ation. For AI-DLR, the CNN was trained to reproduce
the image appearance (noise magnitude and noise tex-
ture) of routine-dose FBP images from the raw data

of low-dose CT scans. For this, the CNN was trained
with images at routine-dose and low-dose levels for the
same patients.To avoid overexposing patients, low-dose
images were generated from the routine-dose images
using a simulation technique to accurately model photon
and electronic noise.29 According to the manufacturer,
the CNN was validated by comparing low-dose images
generated by AI-DLR to routine-dose images recon-
structed using standard methods. To our knowledge, no
studies have compared the impact of this AI-DLR algo-
rithm on dose reduction and image quality with an IR
algorithm available for the same CT manufacturer.

The purpose of this study was to assess the impact
on image quality and dose reduction potential of an
AI-DLR algorithm compared with a hybrid IR algorithm
and the FBP. To do this, a task-based image quality
assessment was conducted in a geometric phantom and
an anthropomorphic phantom (subjective image quality
assessment) on chest CT conditions.

2 MATERIALS AND METHODS

2.1 Phantoms

A 20-cm diameter ACR QA phantom (Gammex 464)
was used to perform a task-based image quality assess-
ment by measuring the noise power spectrum (NPS)
(Figure 1a) and the task-based transfer function (TTF)
on air (−1000 HU) and polyethylene (−95 HU) inserts
(Figure 1b). This phantom uses Solid Water, a durable
water equivalent (±10 HU) for photon and electron
energy measurements.

To evaluate the subjective image quality for the
chest, an anthropomorphic phantom CT Torso CTU-
41 (Kyoto Kagaku; https://www.kyotokagaku.com/en/
products_data/ph-4/) was used (Figure 1c). The chest
part was composed of different artificial organs such as

https://www.kyotokagaku.com/en/products_data/ph-4/
https://www.kyotokagaku.com/en/products_data/ph-4/
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F IGURE 1 (a) Axial computed tomography (CT) image of the ACR phantom with regions of interest (ROIs) used for the noise power
spectrum (NPS) assessment. (b) Axial CT image of the ACR phantom with ROIs used to calculate the task-based transfer function (TTF) with
air and polyethylene inserts. (c) Coronal chest CT image of the anthropomorphic phantom used for the subjective image quality assessment.

the aorta, vena cava, trachea, heart, pulmonary vessels,
and costal cartilage. Urethane-based resin (SZ-50) was
used for the soft tissues and organs and epoxy-based
resin for synthetic bones. However, this phantom does
not contain lung parenchyma and has a limited number
of vessels and bronchi.

2.2 Acquisitions and reconstruction
parameters

Images were acquired from both phantoms on an Inci-
sive Premium CT system (Philips Healthcare) equipped
with the fourth-generation hybrid IR algorithm iDose
(iDose4) and the Precise Image AI-DLR.

All acquisitions were performed with a tube voltage of
120 kVp, a pitch factor of 1, beam collimation of 40 mm
(64 × 0.625 mm), and rotation time of 0.35 s/rot. Tube
current values (mA) were fixed and defined to obtain
five values of volume CT dose indexes (CTDIvol:9.5,7.5,
6, 2.5, and 0.4 mGy). These are the dose levels used for
chest CT examinations in clinical routine,for various clin-
ical indications.The first three dose levels correspond to
the 75th percentile, median, and 25th percentile of our
national diagnostic reference levels for the chest CT.The
last two dose levels correspond to the dose levels used
in clinical routine for our low dose and ultra-low dose
chest CT protocols, respectively. For the ACR geometric
phantom,five acquisitions were performed for each dose
level and only one for the anthropomorphic phantom.

Raw data were reconstructed with FBP, the intermedi-
ate (i4; used in clinical routine) and highest (i7) levels of
iDose4,and the five levels of AI-DLR (Smoother,Smooth,
Standard, Sharp, and Sharper). For the FBP and iDose4,
the reconstruction kernel B usually used for mediastinal
images and the reconstruction kernel YA usually used
for parenchymal images were used. For AI-DLR, the
reconstruction kernels “soft tissue”and “lung”were used,
respectively. With AI-DLR, 1-mm thick images can only

be reconstructed with 50% overlap.For this purpose, the
images of all algorithms used were reconstructed with a
slice thickness of 1 mm (0.5-mm overlap).Lastly, images
were reconstructed using a field of view of 250 mm for
the ACR phantom and 350 mm for the anthropomorphic
phantom.

2.3 Task-based image quality
assessment—ACR geometric phantom

A task-based image quality assessment was performed
using the iQMetrix-CT software developed by a working
group from the French Society of Medical Physicists.No
articles or reports have yet been published to describe
the iQMetrix-CT software; however, this software has
been used in various studies.11,12,30

2.3.1 Task-based transfer function

In the iQMetrix-CT software, the circular edge technique
was used to calculate the TTF by plotting the Edge
Spread Function (ESF).31 A conditioning of the ESF has
been applied when the ESF was noisy. It consisted, by
a simple mathematical operation, in making the ESF
strictly monotonic. It was performed when the CNRTotal,
calculated on the composite image created from the
average of the slices selected for the TTF calculation,
was less than 15.32 Raw data ESF were then derived
to obtain the line spread function (LSF). The Hann filter
was applied to remove the noise on the tails of the LSF.31

In this study, the TTF was computed on the air and
polyethylene inserts (Figure 1b) to get closer to the
chest lesions.33,34 To minimize the image-noise effect
on the ESF, the TTF was computed from 150 consecu-
tive axial slices (30 slices for each of the 5 acquisitions).
As the TTF was calculated from the images of the five
acquisitions, no standard deviation (SD) or error bar
could be calculated.
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2.3.2 Noise power spectrum

To use the same process than for the TTF calculation,
the NPS was computed in 250 consecutive axial slices
(50 slices for each of the 5 acquisitions) by placing 4
square regions of interest (ROIs) of 128 × 128 pixels
(Figure 1a) using the same methodology as previ-
ously reported.11,12,30 In the iQMetrix-CT software, the
raw data NPS1D curves are fitted using an 11th-order
polynomial.

2.3.3 Detectability index

A non-prewhitening observer model with an eye filter
(d′NPWE) was used to compute the detectability index
of the chest lesions of 5-mm diameter: low-contrast
soft tissue chest nodule within the mediastinum (LCN;
50 HU), ground-glass opacity (GGO; 200 HU), and a
high-contrast pulmonary lesion (950 HU).10,12 For the
first two tasks, the TTF outcomes of the polyethy-
lene insert (contrast with the Solid Water background
material close to 95 HU) were used, whereas the TTF
outcomes of the air insert (contrast with the Solid Water
background material close to 1000 HU) were used for
the third task.d′ of the LCN were computed only with the
mediastinal images and the parenchymal images for the
other two.

Interpretation conditions were defined in consensus
by the radiologists of the study in reference to the visual-
ization screen conditions used during the interpretation
of chest CT images:a zoom factor of 1.5 and a 500-mm
viewing distance.

Other parameters used in the iQMetrix-CT software to
define each task function were a matrix size of 300 pix-
els and a pixel size of 0.05 mm, the “Designer” task
function,32 and the Eckstein visual response function.35

2.3.4 Relative differences between
metrics

The mean relative differences (±SDs) between two
values were computed for the five dose levels follow-
ing the same methodology previously published.36 This
allows comparison of the results obtained for each met-
ric between two reconstruction algorithms for all dose
levels.

2.4 Subjective image quality
assessment on an anthropomorphic
phantom

Two senior chest radiologists (12 and 8 years of experi-
ence) were read in consensus the chest images of the
anthropomorphic phantom.10,12 For each set of images,

the radiologists read all the axial chest images randomly
and were blinded to the reconstruction type (algorithm
and levels) and dose level. They were instructed to
subjectively assess image noise, image smoothing, and
contrast between the vessels and fat in the mediastinum
for mediastinal images and for visual border detection
between bronchus and lung parenchyma for parenchy-
mal images using a commonly used four- or five-point
scale.10 A value <3 was considered unsatisfactory for
clinical use.

The radiologists first blindly read a set of images
previously selected by the medical physicists from the
geometric phantom results (highest and lowest dose;
smoothest and least smooth image) to define how to
score the images from the proposed scales. Sometime
later, they performed the consensus reading.

3 RESULTS

NPS and TTF curves for all dose levels, all reconstruc-
tion types, and both reconstruction kernels are depicted
in the Supplementary file. Images centered on Module 3
of the ACR phantom obtained for all types of reconstruc-
tion, for 0.4,2.5,and 9.5 mGy and for both reconstruction
kernels, are also depicted in the Supplementary file.

All values expressed as percentages hereafter corre-
spond to the relative mean ± SD differences obtained
for all dose levels between two algorithms or between
two levels for the same algorithm.

3.1 Noise power spectrum

3.1.1 Noise magnitude

For both reconstruction kernels and all reconstruction
types, the noise magnitude decreased as the dose
increased (Figure 2a,b).

For the soft tissue kernel and all dose levels
(Figure 2a),the noise magnitude was lower than the FBP
with i4 (−27.9% ± 0.1%) and i7 (−51.0% ± 0.2%), and
similarly for the lung reconstruction kernel (Figure 2b),
−29.2% ± 0.2% (i4) and −55.6% ± 1.8% (i7). For
both kernels, the noise magnitude was lower with the
Smoother level and increased from the Smoother to the
Sharper level.

For the soft tissue kernel and all dose levels, the noise
magnitude was lower with the Smoother (−59.6% ±

0.7%) and Smooth (−19.1% ± 0.5%) levels of AI-DLR
than i7. The noise magnitude of the Standard level
was lower than i4 (−18.5% ± 0.4%) but higher than i7
(20.0% ± 0.3%). With the Sharp and Sharper levels, the
noise magnitude was higher than i4 but lower than FBP.

For the lung kernel and all dose levels, the noise mag-
nitude was lower with the Smoother level of AI-DLR
than i7 (−29.3% ± 3.1%). For the Smooth level, the
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F IGURE 2 Noise magnitude (a and b) and average noise power spectrum spatial frequency (fav; c and d) obtained for all dose levels, all
reconstruction types and both reconstruction kernels (Soft tissue kernels a and c and lung kernels b and d). i4 and i7 correspond to levels 4 and
7 of the iterative reconstruction (IR) algorithm iDose4; artificial intelligence deep-learning reconstruction (AI-DLR): Precise Image; noise texture.

noise magnitude was lower than i4 (−16.9% ± 0.3%)
but higher than i7 (32.8% ± 5.6%). For the Standard
level, the noise magnitude was lower than with FBP
(−15.2% ± 0.1%) but higher than i4 (19.8% ± 0.4%).
For the Sharp and Sharper levels, the noise magnitude
was higher than with FBP: 11% ± 0% and 39% ± 0%,
respectively.

For the soft tissue kernel and all dose levels
(Figure 2c), the fav values were lower with i4 (−8.8% ±

0.3%) and i7 (−23.2% ± 0.7%) than the FBP. For the
lung reconstruction kernel (Figure 2d), similar fav val-
ues were found with FBP, i4 (−0.7% ± 0.1%), and i7
(−1.6% ± 0.1%). For both kernels, fav values were lower
with the Smoother level of AI-DLR, increased from the
Smoother to the Sharper level, and decreased as the
dose increased.

For the soft tissue kernel, fav values obtained for
the Smoother level of AI-DLR were lower than those
obtained with the FBP,i4,and i7,and for the Smooth level,
they were only lower than the FBP.

For the lung kernel, fav values were higher with all AI-
DLR levels than those obtained with the FBP, i4, and i7,
except for the Smoother level from 2.5 to 9.5 mGy.

3.2 Task-based transfer function

3.2.1 Polyethylene insert

For both kernels and reconstruction types, the values
of TTF50% increased as the dose increased, especially
for lung kernel (Figure 3a,b). Compared to FBP, TTF50%
values decreased as the iDose4 level increased.

For both kernels, the values of TTF50% shifted toward
higher frequencies from Smoother to Sharper,especially
for the lung kernel.

For all dose levels, values of TTF50% were higher with
all AI-DLR levels than with FBP, i4, and i7, except at
0.4 mGy for both reconstruction kernels. For the soft tis-
sue kernel, values of TTF50% at 0.4 mGy were higher
than i4 only for the Sharp and Sharper levels for the
Standard, Sharp, and Sharper levels for lung kernel.

3.2.2 Air insert

For both kernels and all reconstruction types, the val-
ues of TTF50% increased as the dose and as iDose4
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F IGURE 3 Values of task-based transfer function at 50% (TTF50%) obtained for all dose levels, all reconstruction types and both
reconstruction kernels: (a and b) Polyethylene insert for soft tissue and lung kernels, respectively; (c and d) air insert for soft tissue and lung
kernels, respectively.

F IGURE 4 Detectability index (d′) values according to dose and reconstruction type for the detection of a low-contrast soft tissue chest
nodule within the mediastinum using soft tissue kernel (5 mm in diameter,−50-HU contrast), the ground-glass opacity (5 mm in diameter,
−200-HU contrast), and the high-contrast pulmonary lesion (5-mm diameter,−995-HU contrast) using the lung kernel.

level increased.For both kernels,values of TTF50% were
higher with iDose4 than with FBP and with AI-DLR than
with iDose4 and FBP (Figure 3c,d). Using AI-DLR, val-
ues of TTF50% shifted toward lower frequencies from
Smoother to Sharper.

3.3 Detectability index

Regardless of the clinical task, the values of d′
increased as the dose and iDose4 level increased
and from Sharper to Smoother (Figure 4). Compared to
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i4 usually used in clinical practice, d′ values obtained
with AI-DLR were higher with the Smoother and Smooth
levels for all tasks. For the Standard level and all dose
levels, d′ values were also higher than i4 for the
LCN (34.1% ± 6.6%) and similar for the Sharp level
(0.5% ± 4.1%).

Potentials to reduce the dose for all simulated chest
lesions according to the AI-DLR levels are depicted in
Table 1.

Compared to d′ values obtained at 10 mGy and i4,
similar d′ values were obtained at 0.62 mGy for the LCN,
1.67 mGy for the GGO,and 1.91 mGy for the HCN using
the Smoother level. Using the Smooth level, similar d′
values were obtained at 2.22 mGy for the LCN,4.15 mGy

TABLE 1 Potential dose reduction (%) with Smoother, Smooth,
and Standard levels for the same d′ values obtained at 10 mGy with
iDose4 level 4

Smoother Smooth Standard

Low-contrast soft tissue
chest nodule within the
mediastinum (%)

−94 −78 −57

Ground-glass opacity (%) −83 −58 –

High-contrast pulmonary
lesion (%)

−81 −46 –

for the GGO, and 5.35 mGy for the HCN. For the Stan-
dard level, similar values were only obtained for d′ at
4.33 mGy for the LCN.

3.4 Subjective image quality
assessment

Tables 2 and 3 show the outcomes of subjective image
quality for mediastinal and parenchymal images of the
anthropomorphic phantom.

For the mediastinal images using AI-DLR (Table 1
and Figure 5a), the image noise decreased as the dose
increased, and the opposite for image smoothing and
contrast. Image smoothing was rated lower than 3 for all
dose levels with the Smoother level (except at 0.4 mGy)
and from 6 to 9.5 mGy for the Smooth level. At 0.4 mGy,
the overall image quality was rated higher or equal to 3
only for the Smoother level. For this level, the score was
rated lower than 3 for other dose levels regarding the
image smoothing score. Regarding the contrast score, it
was rated lower than 3 at 0.4 and 2.5 mGy for the Sharp
and Sharper levels and at 0.4 mGy for the Standard
level.

Based on overall image quality, the mediastinum was
best viewed at the lowest dose (0.4 mGy) with the

TABLE 2 Results of subjective assessment of mediastinal images obtained by the two radiologists in consensus

iDose4 Precise ImageCTDIvol
a

(mGy) FBPb Level 4 Level 7 Smoother Smooth Standard Sharp Sharper

Image noise 0.4 1 2 2.5 4 3 2.5 2 1

2.5 2 3 4 5 4.5 4 3 2

6 2.5 3.5 4.5 5 5 4 4 3

7.5 3.5 4 4.5 5 5 4.5 4 3.5

9.5 3.5 3.5 4.5 5 5 4.5 4.5 3.5

Image
smoothing

0.4 5 4.5 4 3 3.5 4.5 5 5

2.5 5 4.5 3.5 2 3 4 4.5 4.5

6 5 4.5 3.5 2 2.5 3.5 4 4.5

7.5 5 4.5 3.5 1.5 2.5 3.5 4 4.5

9.5 4.5 4 2.5 1.5 2 3 4 4

Contrast
between the
vessels and
the fat in
mediastinum

0.4 1 1 2 3.5 2.5 1.5 1 1

2.5 2 2.5 3.5 4 3.5 3 2.5 2

6 3 4 4 4.5 3.5 4 3.5 3

7.5 3.5 4.5 5 4.5 4 4 4 3.5

9.5 4 4.5 4.5 3.5 4 4.5 4.5 3.5

Overall image
quality

0.4 1 1 2 3 2.5 1.5 1.5 1

2.5 2 2.5 3 2.5 3 3 2.5 2

6 2.5 3.5 4 2.5 3 3 3.5 3

7.5 3.5 4.5 4.5 1.5 3 3.5 3.5 3.5

9.5 3.5 4 3.5 1 2 3.5 4.5 3.5

Note: Bold indicates values <3, which were considered unsatisfactory for clinical use.
aVolume CT dose index.
bFiltered back projection.
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TABLE 3 Results of subjective assessment of parenchymal images obtained by the two radiologists in consensus

iDose4 Precise ImageCTDIvol
a

(mGy) FBPb Level 4 Level 7 Smoother Smooth Standard Sharp Sharper

Image noise 0.4 1.5 2 3 5 4 3.5 3 2

2.5 3 4 4.5 5 5 5 4 3.5

6 4 4.5 4.5 5 5 5 4.5 4

7.5 4 4.5 5 5 5 5 4.5 4

9.5 5 5 5 5 5 5 5 5

Image
smoothing

0.4 5 4.5 4 4 4.5 4.5 5 5

2.5 5 4.5 4 2.5 4 4 4.5 4.5

6 4.5 4.5 3.5 2.5 3.5 4 4.5 4.5

7.5 5 4.5 3.5 2.5 3.5 4 5 5

9.5 5 4.5 2.5 2 3 3.5 4.5 5

Visual border
detection
between
bronchus and
lung
parenchyma

0.4 2 2 2 4 4.5 3.5 2.5 2

2.5 3.5 4 3 4 5 5 4.5 4.5

6 4 4.5 4 4.5 5 5 5 4.5

7.5 4.5 4 4 4.5 5 5 5 5

9.5 4.5 4 4 4.5 5 5 5 5

Overall image
quality

0.4 2 2.5 2.5 4 4.5 3.5 3 2.5

2.5 3 3.5 3.5 3.5 4.5 4.5 4 4

6 3.5 4.5 4.5 3.5 4.5 4.5 4.5 4

7.5 4 4 4 3 3 4.5 4.5 4.5

9.5 4 4 3.5 2.5 3 3.5 4 4.5

Note: Bold indicates values <3, which were considered unsatisfactory for clinical use.
aVolume CT dose index.
bFiltered back projection.

Smoother level. Intermediated dose levels (2.5–7 mGy)
were best viewed at smooth or standard levels and the
highest dose levels (6–9.5) were best viewed with Stan-
dard, Sharp, or Sharper levels. An improvement with
AI-DLR was noted at 0.4 and 2.5 mGy compared to i4
and i7, which demonstrated unacceptable image quality
at these doses.

For parenchymal images using AI-DLR (Table 2
and Figure 5b), image noise decreased as the dose
increased and the opposite for visual detection of the
border between bronchial and lung parenchyma. Image
smoothing was rated above average or excellent for all
dose levels using FBP,i4,and the Sharp and Sharper lev-
els of AI-DLR. For the other AI-DLR levels and i7, image
smoothing increased as the dose increased. Compared
to i4 and i7, the use of AI-DLR improved the visual bor-
der detection between bronchus and lung parenchyma.
Overall image quality was rated 3 or above for all
AI-DLR levels apart from 9 mGy with the Smoother
level and 0.4 mGy for the Sharper level. Based on the
image smoothing outcomes, the overall image quality
decreased as the dose increased for the Smoother and
Smooth levels of AI-DLR.

Finally, all levels of AI-DLR can be used for low-dose
protocols and all levels for chest ultra-low dose pro-
tocol, except the Sharper level. For the ultralow dose,

the overall image quality was not considered clinically
acceptable with i4 and i7.

4 DISCUSSION

In the present study, we assessed the impact of a new
AI-DLR algorithm on image quality, in comparison to a
standard clinical protocol using either FBP or IR recon-
struction algorithms in a phantom study. Task-based
and subjective image quality assessments were per-
formed in chest CT conditions for the evaluation of
different clinical tasks.We evaluated the five levels avail-
able and characterized for each of them a different
impact on noise magnitude, noise texture, and spatial
resolution according to the contrast and detectability of
simulated lung lesions. From Standard to Smoother lev-
els, the noise decreased and detectability increased but
the image texture was modified and smoothed, and the
opposite for the Standard and Sharper levels.Compared
to the usual routine iterative algorithm, the Smoother,
Smooth, and Standard levels produced better image
quality and had a greater dose reduction potential for
the optimization of routine CT protocols.

The NPS results showed that the amplitude and tex-
ture of the noise varied with the level of AI-DLR. The
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F IGURE 5 Anthropomorphic phantom CT
images in the axial plane obtained for the level 4 of
iDose4 and the five levels of Precise Image and at
0.4, 2.5, and 9.5 mGy: (a) Mediastinal images (WL:
370 HU, WW: 60 HU) were centered on the anterior
vascular mediastinum structures; (b) parenchymal
images (WL:−1600 HU, WW: 600 HU) were
centered at the level of the tracheal carina. Red
contours correspond to images with an overall
image quality score considered unsatisfactory for
clinical use and green contours the opposite.

variations of noise magnitude and fav values obtained
with AI-DLR may have been related to the difference in
non-stationarity of the noise between their levels, espe-
cially with the Smoother level. The names given to the
various levels of the AI-DLR by the manufacturer clearly
reflect the impact of these levels on the images and were
close to the behavior of the reconstruction kernels. In
one direction, the image was less noisy but smoother
with few details and, in the other direction, the image
was noisier but with sharper definition and finer details.
These results were confirmed by both chest radiolo-
gists during the subjective assessment of the image
noise and the image smoothing on the images of the
anthropomorphic phantom. The impact of the change
in noise was also greater on mediastinal images than
on parenchymal images. For the mediastinal images,
radiologists even considered the low-dose images (0.4
and 2.5 mGy) with the Sharp and Sharper levels as
unsatisfactory for clinical use due to too much noise in
the image, and the high-dose images (9.5 mGy) with
Smoother level were considered unsatisfactory due to

too much image smoothing and the appearance of dis-
tortion particularly in the interface between soft tissue
and air. For parenchymal images, only images recon-
structed with the Smoother level were considered too
smooth and with artifacts from 2.5 to 9.5 mGy. However,
at 0.4 mGy, the image smoothing was rated above aver-
age for the Smoother level.This behavior was also found
for other levels of AI-DLR where image smoothing was
rated less important as the dose decreased, and there-
fore the noise increased. Furthermore, compared to
iDose4 and, in particular, the level 4 used in clinical rou-
tine, we found that the noise magnitude was lower only
at the Smoother and Smooth levels for the two recon-
struction kernels and the Standard level only for the
soft tissue kernel. On the other hand, the fav was higher
than iDose4 level 4 for all levels except for the Smoother
level. Lastly, the noise variations between this algorithm
and the iterative algorithm usually used in clinical rou-
tine were different from those found in the literature,with
the other two DLR algorithms.9,11–13,15,23,25 Indeed, with
TrueFidelity and AiCE, the noise was lower compared to
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ASIR-V 50% and AIDR-3D Enhanced, respectively, and
this was more so as the strength level of each algorithm
increased. With TrueFidelity, the fav values were higher
than ASIR-V 50% and the difference increased with
the level. For AiCE, the fav values were higher than for
AIDR-3D Enhanced but only for the Mild and Standard
levels.11

The TTF results showed that, as with iDose4, AI-DLR
has nonlinear properties despite the fact that it results
in CNN with FBP images. For both algorithms, the spa-
tial resolution depended on the contrast of the insert and
the level of dose and noise. Indeed, for both inserts stud-
ied, the TTF50% values increased as the dose increased,
and therefore the noise decreased. This variation was
more marked for the low-contrast insert than for the
high-contrast insert and for the kernel lung than for the
soft tissue kernel. These results are directly related to
the circular edge technique used to calculate the TTF by
plotting the ESF.31 Both the ESF and the TTF are influ-
enced by the amount of image noise and even more
so when the difference in contrast between the insert
and the background is low.32,37 Moreover, the opposite
behavior is found depending on the insert used and
according to the AI-DLR level. With the low-contrast
insert, the TTF was higher with the Sharper level and
decreased as Smoother was approached. The opposite
was found for the high-contrast insert.However, the vari-
ation in TTF50% values with level was less pronounced
for all reconstruction kernels. The impact of AI-DLR
level on TTF50% values was also more pronounced
with the low-contrast insert and the lung kernel. These
results were not directly found by the radiologists with
the subjective image quality assessment. For mediasti-
nal images, better contrast between fat and vessels was
found with Standard, Smooth, and Smoother levels than
with Sharp and Sharper.For parenchymal images,radiol-
ogists found visual border detection between bronchus
and lung parenchyma above average or excellent at
all dose and AI-DLR levels, except at 0.4 mGy with
Standard, Sharp, and Sharper levels. Finally, compared
to iDose4 level 4 used in clinical routine, TTF50% val-
ues were higher with AI-DLR for both kernels and both
inserts, except at 0.4 mGy for Standard, Smooth, and
Smoother levels.These variations in values between AI-
DLR and iDose4 were similar to those found between
TrueFidelity and ASIR-V 50% for two low and high con-
trast inserts in a homemade phantom.23 In addition, the
large variations according to the level were close to
those found with AiCE.

The detectability index results confirmed the varia-
tions in NPS and TTF with AI-DLR levels. The differ-
ences between the AI-DLR levels were directly related to
the variations in noise magnitude,more marked between
Smoother and Smooth levels and Smooth and Standard
levels. Compared to i4 used in clinical routine, the d′ val-
ues were higher with Smoother, Smooth, and Standard
levels and equivalent with Sharp level for mediastinal

images. For parenchymal images, d′ values were higher
than i4 only for Smoother and Smooth levels. The high-
est d′ values were found for the same lesions simulated
with TrueFidelity and AiCE12 compared to IR algorithms.
These differences may be explained by the different
software used and the parameters selected to define
each task function including the matrix and pixel size
and the type of task function. Matrix size and pixel
size have a significant impact on d′ values. However, a
change in these parameters does not affect the varia-
tion in d′ values according to the dose level or the type
or level of algorithm.

These results for d′ could be linked to the results of
the overall image quality assessment performed by the
two radiologists to choose which level to use in clini-
cal practice. For mediastinal images, the image quality
was rated satisfactory for clinical use with the Standard
and Sharp levels for dose levels from 6 to 9.5 mGy,
regularly used in clinical practice. In addition to image
smoothing, they reported image distortion and nonlin-
earity of the beam hardening correction with the Smooth
and Smoother levels at the highest dose levels. Using
these levels should therefore be limited from 7.5 to
2.5 mGy for Smooth and 0.4 mGy for Smoother lev-
els, respectively. For parenchymal images, the image
quality was also rated as satisfactory for clinical use
with both Smooth and Smoother levels for all dose lev-
els except for 9.5 mGy with Smoother. They reported
that image smoothing was more pronounced as the
noise decreased with increasing dose.The Smooth level
can therefore be used in clinical routine for all dose
levels, and the Smoother level with a smoother and
less noisy image. The results obtained in the present
study with the ACR phantom and the anthropomorphic
phantom should be taken with caution. Both phantoms
did not perfectly mimic the patient’s body morphol-
ogy and anatomical structures. The inserts used with
the ACR phantom to simulate lesions did not precisely
mimic the patients’ anatomical structures. The contrast
of the simulated chest lesions was slightly different from
the contrast between each insert and the background
material of the phantom used for the TTF calculation.
However, this small difference in contrast has a lim-
ited impact on the calculation of d′, which is strongly
influenced by the NPS results. The anthropomorphic
phantom has a low body mass index (18 kg/m2),no lung
parenchyma or fat, and no real lesions. Patient studies
should now be carried out to confirm these phantom
results and validate the choice of level for our three
routine chest CT protocols.

This study has its limitations. The image quality and
the anthropomorphic phantoms used are very useful
for image quality assessment; however, their size and
water-equivalent diameter (WED) (mean WED of 20.1
± 0.3 cm and 21.8 ± 1.7 cm, respectively) are far from
those of patients undergoing a chest CT examination38

(WED close to 26 cm). The five dose levels were
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defined without taking the WED differences into account,
which could lead to an overestimation of the results
obtained. In addition, to ensure a fixed CTDIvol, we had
set the mAs, and the tube current modulation was not
used. Different results may have been found for phan-
toms of different sizes and if the modulation system
had been activated. We therefore chose to calculate
the detectability index in the frequency domain using
the NPWE model observer as recommended by the
AAPM.32 However, to get as close as possible to patient
images, it would have been more realistic to calculate
the index via a model observer in image space from an
anthropomorphic phantom with real lesions.To evaluate
the image quality obtained with these new reconstruc-
tion algorithms in a realistic way, another way would
be to use textured phantoms with more realistic tissue
texture and anatomical features.39–41 However, these
phantoms were not available in our institution. Last, the
assumptions of non-stationarity of noise for the different
algorithms used in this study were not studied and could
be the subject of a future study.25

5 CONCLUSION

In the present study, we evaluated the impact on image
quality of an AI-DLR algorithm. The choice of level of
this algorithm impacted in different ways the noise mag-
nitude and noise texture, the spatial resolution, and the
detectability of simulated lung lesions. Compared to the
IR algorithm used in clinical practice, the detectability of
simulated lung lesions was better with the smoothest
levels, confirming an improvement in image quality for
the same dose level. Potentials for dose reduction were
found with the Smoother (from −81% to −94%) and
Smooth (from −46% to −78%) levels for all simulated
lung lesions. Patient studies are now required to con-
firm the choice of AI-DLR levels defined in this study in
relation to dose level.
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