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Abstract: This study was conducted on 16 adult specimens of molly fish (Poecilia sphenops) to inves-
tigate ependymal cells (ECs) and their role in neurogenesis using ultrastructural examination and
immunohistochemistry. The ECs lined the ventral and lateral surfaces of the optic ventricle and their
processes extended through the tectal laminae and ended at the surface of the tectum as a subpial
end-foot. Two cell types of ECs were identified: cuboidal non-ciliated (5.68 ± 0.84/100 µm2) and
columnar ciliated (EC3.22 ± 0.71/100 µm2). Immunohistochemical analysis revealed two types of
GFAP immunoreactive cells: ECs and astrocytes. The ECs showed the expression of IL-1β, APG5,
and Nfr2. Moreover, ECs showed immunostaining for myostatin, S100, and SOX9 in their cytoplas-
mic processes. The proliferative activity of the neighboring stem cells was also distinct. The most
interesting finding in this study was the glia–neuron interaction, where the processes of ECs met the
progenitor neuronal cells in the ependymal area of the ventricular wall. These cells showed bundles
of intermediate filaments in their processes and basal poles and were connected by desmosomes,
followed by gap junctions. Many membrane-bounded vesicles could be demonstrated on the surface
of the ciliated ECs that contained neurosecretion. The abluminal and lateral cell surfaces of ECs
showed pinocytotic activities with many coated vesicles, while their apical cytoplasm contained
centrioles. The occurrence of stem cells in close position to the ECs, and the presence of bundles of
generating axons in direct contact with these stem cells indicate the role of ECs in neurogenesis. The
TEM results revealed the presence of neural stem cells in a close position to the ECs, in addition to
the presence of bundles of generating axons in direct contact with these stem cells. The present study
indicates the role of ECs in neurogenesis.
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1. Introduction

Poecilia sphenops (Valenciennes, 1846) is a freshwater fish species commonly named
molly fish. They are natural inhabitants in the freshwater streams and coastal brackish water
of Mexico and Colombia, and can be found in many countries around the world through the
aquarium fish trade [1]. They are mostly observed in swarms below floating vegetation as
they feed principally on algae and other herbal resources [2]. Because of their higher birth
size, growth rate, reproduction, and brood number, mollies are categorized as one of the
most popular fish. The lifespan of the fish is 3–5 years, and they reach maturity at the age
of 4 months. Moreover, this species is a member of the viviparous fish [3,4]. In mammals,
more than 60–75% of the cerebrospinal fluid (CSF) is mainly secreted by the four choroid
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plexuses (CP), one in each ventricle. The remaining 20–30% is produced by the ventricular
ependymal cells and the blood–brain barrier (BBB) [5]. From the lateral ventricles, where
CSF is produced, it flows unidirectionally in a craniocaudal direction into the arachnoid
granulations, where it is reabsorbed into the dural venous sinuses. A pump-like activity
forces the liquid through the ventricular system and this action is accommodated by the
rhythmic beating of the ependymal cilia [6]. A large range of mammalian homeostatic
activities, including the transportation of nutrients, the elimination of catabolic waste
products, the absorption of hydro-mechanical stress, the control of thermal stress, and the
transfer of neurotransmitters, are carried out by CSF [7]. In zebrafish juveniles and adults,
the circulation of CSF has recently been reported to be essential for the body axis formation,
in addition to embryo and spine morphogenesis [8,9].

Ependymal cells (ECs) are glial cells that line the ventricular system of the brain and
the central canal of the spinal cord, forming an epithelial barrier called the ependyma.
ECs play an important role in the process of neurogenesis, neuronal differentiation, and
axonal guidance [10]. ECs are multi-ciliated cells, and the motility of cilia generates the
directional flow and homeostasis of the cerebrospinal fluid (CSF) inside the brain ventricles
and spinal cord [11,12]. The motility of cilia in zebrafish regulates the morphogenesis of the
spine through CSF circulation and the formation of a glycoprotein filament called Reissner
fiber [9,13]. Furthermore, ependymal cells act as a moderator between the parenchyma
and cerebrospinal fluid-filled cavities throughout life. Therefore, these cells regulate the
bidirectional flow of immune cells and solutes between the CSF and interstitial fluid [14,15].
In addition to the role of ECs in CSF circulation, they are involved in the adult neurogenic
niche that assembles into a characteristic pinwheel-like organization [16]. The neurogenic
niche is restricted in the mammalian brain to certain regions such as the olfactory bulb,
the subventricular zone (SVZ) of the lateral ventricles and the dentate gyrus (DG) of
the hippocampus [17]. In contrast to the brain of mammals, the adult teleost fish has
several sites containing neural stem cells (NSCs) throughout the rostrocaudal axis of the
brain [18,19]. The optic tectum of zebrafish is one of the neurogenic niches that contains
several proliferating neural stem cells [20].

ECs were studied at the ultrastructural level in the bluegill Lepomis macrochirus, the barred
sand bass Palarabrax nebulifer [21], and in the optic tectum of goldfish Carassius auratus [22]. The
morphology of the central nervous system shows distinct variations among fish species [23].
In fish, ECs comprise the main neurological element in the brain, as they are fundamental
for CSF circulation, in addition to their roles in the adult neurogenic niche [15,24]. The neu-
rogenic niche of the adult telencephalic ventricle of zebrafish is composed of multi-ciliated
ependymal cells and radial glial cells, which act as neural stem cells and generate neuronal
progenitor cells and migrating new neurons [18]. Little data are available regarding the gen-
eral structure of fish ependymal cells. Therefore, the present work aims to investigate the
morphology of the ependymal cells lining the surface of the optic tectum of molly fish and
their role in neurogenesis using ultrastructural examination and different immunostaining.
Obtaining this region for our study was very easy, as ependymal cells line the ventricular
system of the brain, and the optic tectum is the most obvious part of the mesencephalon.

2. Materials and Methods

The present study was conducted according to the University guidelines and Egyptian
legal requirements for animal care. All the procedures of this work were approved by the
National Ethical Committee of the Faculty of Veterinary Medicine at Assiut University
in Egypt.

2.1. Sample Collection

This study was performed on randomly selected adult male molly fish (Poecilia sphenops,
n = 16, with age ranging from 9 to 10 months), which were bought from an ornamental
fish shop. The anthropometric characteristics of the selected specimens were 4.20 ± 4.0 cm
standard length and 10.60 ± 1.70 gm body weight.
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2.2. Semithin Sections and Transmission Electron Microscopy (TEM)

Small brain samples were left overnight in a mixture of paraformaldehyde–glutaraldehyde
for proper fixation [25,26]. The specimens were then washed using 0.1 mol/L phosphate
buffer and were osmicated using 1% osmium tetroxide. Following that, the samples were
passed in ethanol for dehydration, and were transferred to propylene oxide. Finally, the
tissues were embedded in Araldite. Semithin sections of about 1 µm thick were cut and
were stained with toluidine blue for light microscopy examination; meanwhile, ultrathin
sections of about 70 nm were cut by Ultrotom-VRV (LKB, Bromma, Germany) and were
examined using a JEOL-100CX II electron microscope (Boston, MA, USA) after staining
with lead citrate and uranyl acetate [27].

2.3. Immunohistochemical Analysis

The Pierce Peroxidase Detection Kit (36000, Thermo Fisher Scientific, Waltham, MA,
USA) was used for the immunohistochemical analysis of brain sections. Firstly, the sections
were embedded in xylene for deparaffinization, passed in graded series of ethanol for
rehydration, and finally were washed using distilled water [28]. Following washing,
the epitope exposure was increased through heating sections in a 0.01 M sodium citrate
buffer (pH 6.0) using a microwave for 15 min. The tissues were kept for 30 min at room
temperature for cooling, and then were washed with wash buffer consisting of 0.05%
Tween-20-contained tris-buffered saline. To knock endogenous peroxidase activity out,
the sections were incubated in peroxidase suppressor for 30 min. Following that, tissues
were washed using the wash buffer and were blocked for 30 with universal blocker™
blocking buffer at room temperature. After blocking, the sections underwent overnight
incubation at 4 ◦C with primary antibodies (dilution 1:100) against interleukin 1 beta
(IL-1β) (sc-7884, Santa Cruz Biotechnology, Heidelberg Germany), glial fibrillary acidic
protein (GFAP) (PA5-16291, Thermo Fisher Scientific, Waltham, MA, USA), autophagy
protein 5 (APG5) (sc-133158, Santa Cruz Biotechnology, Heidelberg, Germany), nuclear
factor erythroid 2-related factor 2 (Nrf2) (sc-722, Santa Cruz Biotechnology, Heidelberg,
Germany), myostatin (AB3239, Sigma-Aldrich, Madrid, Spain), SRY-Box transcription factor
9 (Sox9) (AB5535, Sigma-Aldrich, Madrid, Spain), CD3 (ab828, Abcam, Cambridge, UK),
and S100 protein (Z0311, Dako, Glostrup, Denmark). In parallel, tissue specimens, in which
S100 protein primary antibody was omitted and replaced with buffer, served as negative
controls. The tissues were washed using wash buffer and were then incubated at room
temperature for 30 min with diluted goat anti-mouse IgG (31800, Invitrogen, Waltham, MA,
USA, dilution 1:100) and diluted goat anti-rabbit IgG (65-6140, Invitrogen, Waltham, MA,
USA, dilution 1:1000) secondary antibodies. After incubation, the sections were washed
with a wash buffer, and were incubated for 30 min with Avidin-HRP (43-4423, Invitrogen,
Waltham, MA, USA, dilution the diluted 1:500) in the blocking buffer. The tissues were
washed with a wash buffer and were incubated for 5–15 min with a 1× metal-enhanced
DAB substrate working solution. After obtaining the desired staining, the sections were
finally washed with the wash buffer, counterstained with Harris modified hematoxylin
stain, and mounted with mounting media provided in the detection kit [29,30].

2.4. Morphometrical and Quantitative Studies

Morphometrical and quantitative measurements were carried out on brain images of
semithin sections and immunohistochemical-stained sections, respectively, using Image-J
software [31,32]. The number of ependymal cells per constant area of 100 µm2 was mea-
sured. The expression intensity (EI) of the immunohistochemistry staining markers was
quantified using ImageJ software (1.48v), and a color deconvolution algorithm was used
to differentiate and isolate different stains for their quantification. The optical density of
the red, blue and green color vectors was calculated for each one using default software
settings and control slides stained separately with hematoxylin or DAB [33,34]. All these
measurements were performed on a total number of 10 brains, and five randomly selected
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sections per fish were examined (from each section, three randomly selected regions were
measured). The obtained morphometric data are presented as mean ± SEM.

2.5. Digitally Colored TEM Images

Ependymal cells, neurons, and other specific cellular elements were digitally colored
using Adobe Photoshop software (version 6) to boost the visual dissimilarity between the
abundant structures depicted in single electron micrograph.

3. Results
3.1. Histological Analysis

The ependymal cells (EC) lined the ventral and lateral surfaces of the optic ventricle
(Figure 1A). Two cell types of EC based on shape were identified: cuboidal non-ciliated and
columnar ciliated EC (Figure 1B). Morphometric analysis of the brain sections of the molly
fish revealed that the number of ciliated ECs/100 µm2 was 3.22 ± 0.71, while the number
of non-ciliated ECs was 5.68 ± 0.84. The columnar cells showed many basal processes that
ramified and interweaved within the ependymal region to form the characteristic fibrous
meshwork (Figure 1C,D).
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Figure 1. Semithin sections of the ependymal cells (ECs) were stained with toluidine blue.
(A) ECs lined the surfaces of the optic ventricle (boxed area). (B) Two cell types of EC based
on shape were identified: cuboidal non-ciliated (black arrowheads) and columnar ciliated ECs (white
arrowheads). (C,D) The basal processes of the columnar ECs ramified within the ependymal region
to form the characteristic fibrous meshwork (white arrowheads).
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The processes of ECs extended through the full thickness of the tectal laminae and
ended at the surface of the tectum as a subpial end-foot (Figure 2A), while the surface
of these cells was covered with secretion (Figure 2A,C). Intermingling with the basal
processes of the ECs were cell bodies of stem cells that were characterized by a high nuclear
cytoplasmic ratio and divided nuclei (Figure 2B,C). In addition, multipolar neurons were
observed in contact with the processes of these ECs (Figure 2D).
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Figure 2. Semithin sections of the ependymal cells (ECs) were stained with toluidine blue.
(A) The processes of ECs (white arrowheads) extended through the full thickness of the tectal
laminae. Note the apical neurosecretion (zigzag black line). (B,C) The basal processes of the EC
(white arrowheads) were connected with stem cells (black arrowheads). Note that the surfaces of
the ECs were covered with secretion (zigzag black line). (D) The interaction between the ECs (white
arrowheads) and multipolar neurons (black arrowheads).

3.2. Immunohistochemistry

Immunohistochemical analysis revealed the presence of two types of GFAP immunore-
active cells with EI of 20.44 ± 1.7%: ependymal cells (EC) and astrocytes (Figure 3A). The
ECs showed more intense reactions than those of the astrocytes. The processes of the
astrocytes were in direct contact with the processes of the ECs (Figure 3A–C).

The ECs showed an expression of IL-1β (Figure 4A) in their cytoplasmic processes with
an EI of 33.12 ± 2.68%. ECs also showed strong cytoplasmic expressions of APG5, where
the EI was 15.41 ± 1.49% (Figure 4B). On the other hand, ECs showed nuclear expressions
of Nfr2, with an EI of 17.47 ± 1.78% (Figure 4C). Moreover, ECs showed expressions of
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myostatin (EI was 33.9 ± 2.65%, Figure 4D) and SOX9 (EI was 46.74 ± 3.05%, Figure 4E) in
their cytoplasmic processes. The proliferative activity of the neighboring stem cells was
also distinct (Figure 4D,E).
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Figure 3. GFAP immunohistochemistry. (A–C) Two types of GFAP immunoreactive cells could be
identified: ependymal cells (white arrowheads) and astrocytes (black arrowheads). Note the intense
reactions of ECs and the processes of astrocytes that were in direct contact with the processes of
the ECs.

The expression of S100 protein in the wall of the adult mesencephalic ventricle was
investigated. We observed S-100 protein expression in the cytoplasm and the nucleus of ECs
as well as in their cytoplasmic processes. However, the neural stem cells showed negative
immunoreactivity for S100 protein (Figure 5A,B). Moreover, the sub-ependymal astrocytes
expressed S100 protein (Figure 5C). CD3 showed singly distributed T lymphocytes in
the subependymal region and negative-stained ependymal cells (Figure 5D). The typical
morphology of T cells includes a small, round, and dark nucleus with a scarce cytoplasm.

3.3. Transmission Electron Microscopy (TEM)

TEM revealed the presence of two types of cells: ciliated and non-ciliated cells. The
ciliated cells possessed a euchromatic nucleus and were covered by cilia and their cytoplasm
showed numerous mitochondria and many vesicles of different shapes (Figure 6A,B).
However, the non-ciliated cells appeared smaller in size with fewer organelles and in
many locations showed bleb-like protrusions containing clear vesicles (Figure 6C). Some
non-ciliated ECs were branched to encircle the nearby blood vessels. The ECs gave off
collateral projections that were associated with the synapse (Figure 6C). The most interesting
finding in this study was the glia–neuron interaction that was observed (Figure 6D), where
the processes of ECs met the progenitor neuronal cells in the ependymal area of the
ventricular wall.
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Figure 4. Immunohistochemistry of ECs. (A) ECs showed expression of IL-1β (white arrowheads)
in their cytoplasmic processes. (B) ECs showed strong cytoplasmic expression of APG-5 (white
arrowheads). (C) ECs showed nuclear expression of Nfr2 (boxed areas). (D,E) ECs showed expression
of myostatin (white arrowheads) and SOX-9 (boxed areas), respectively, in their cytoplasmic processes.
Note the proliferative activity of the neighboring stem cells (black arrowheads and white arrows).
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Figure 5. Immunohistochemistry of S100 protein and CD3 expression in the wall of the adult
mesencephalic ventricle of molly fish. (A,B) The ependymal cells and their cytoplasmic processes
(arrowheads) express S100 protein. The boxed area is a negative control. (C) Neurogenic niche
showing immunostaining for S100 protein in the astrocytes (black arrowhead) and the ependymal
cells and their long processes (white arrowheads). Note the blood vessel (BV) and secretion (S).
(D) T lymphocytes in the neurogenic niche express CD3 (arrow, boxed area), while ependymal cells
(EC) are negatively stained to CD3.

These cells also showed bundles of intermediate filaments in their processes and basal
poles (Figure 7A,C). The ECs were connected by desmosomes, followed by gap junctions
(Figure 7B). Many membrane-bounded vesicles could be demonstrated on the surface of
the ciliated ECs that contained neurosecretion (Figure 7B). The ciliated cells also contained
distinct fascicles of intermediate filaments (Figure 7C). However, the non-ciliated ECs
possessed many mitochondria and abundant vesicles, which were distributed all over the
cytoplasm (Figure 7D).

EC’s abluminal and lateral cell surfaces showed pinocytotic activities with many coated
vesicles (Figure 8A,B). The apical cytoplasm of the ECs contained centrioles (Figure 8C,D).
The cytoplasm of these ECs also contained distinct fascicle filaments that contained inter-
mediate filaments and mitochondria (Figure 8A,D).
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Figure 6. Digital colored transmission electron microscopy (TEM) of EC (pink). (A,B) The ciliated ECs
were covered by cilia and their apical cytoplasm showed many mitochondria (M) and many vesicles
of different shapes (yellow arrowheads). (C) The non-ciliated ECs showed bleb-like protrusions
(white arrowhead) containing clear vesicles (black arrowhead). Some non-ciliated ECs were branched
to encircle the nearby blood vessels (BV). The ECs gave off collateral projections that were associated
with the synapse (black arrow). (D) Distinct glia–neuron interactions were observed between the
processes of ECs (white arrowheads) with the progenitor neuronal cells (N, blue).
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8C,D). The cytoplasm of these ECs also contained distinct fascicle filaments that contained 
intermediate filaments and mitochondria (Figure 8A,D). 

Figure 7. Digital colored transmission electron microscopy (TEM) of ECs (pink). (A) The ECs
showed bundles of intermediate filaments (yellow arrowhead) in their processes and basal poles.
(B) The ECs were connected by desmosomes (boxed areas) and gap junctions (white arrowheads).
Note the presence of surface membrane-bounded vesicles (black arrowhead) containing neurosecre-
tion and mitochondria (M). (C) The ECs showed distinct fascicle filaments that contained intermediate
filaments (black arrowheads). Note the junctional complexes between the cells (white arrowheads).
(D) Higher magnification of the boxed area of (C) shows the non-ciliated ECs that possessed many
mitochondria (M) and abundant vesicles (white arrowheads).
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Figure 8. Digital colored transmission electron microscopy (TEM) of ECs (pink). (A,B) The surfaces
of ciliated ECs showed many cross-sections of cilia (yellow arrowheads). The abluminal and lateral
cell surfaces of ECs showed pinocytotic activities with many coated vesicles (white arrowhead).
(C) The apical cytoplasm of ECs possessed centriole (yellow arrowhead) and well-developed junc-
tional complexes (white arrowhead in the boxed area). (D) The cytoplasm of these ECs also contained
bundles of intermediate filaments (white arrowhead), distinct fascicle filaments (black arrowhead)
and centrioles (boxed areas).

Many stem cells with a characteristic high nuclear-to-cytoplasmic ratio and a rich
cytoplasm with ribosomes could be demonstrated among the ECs (Figure 9A–D). Centrioles
were considered the most characteristic features of these stem cells (Figure 9A,D). Bundles
of generating axons were demonstrated in direct contact with these stem cells (Figure 9A).
Narrow processes of astrocytes were seen among the ECs. The cytoplasm of the astrocytes
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was electron-dense with fewer microtubules and other organelles and their processes
contained granules containing mitochondria (Figure 9C).
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The most interesting finding in the present study was the glia–neuron interaction. 
The schematic representation illustrates the composition of the ventricular layer of neuro-
genic niches. It consists of glia, neural stem cells, periventricular neurons, and vascular 
cells (Figure 10A). The semithin sections show that periventricular neurons with charac-
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Figure 9. Digital colored transmission electron microscopy (TEM) of ECs (pink), astrocytes (violet),
and stem cells (blue). (A,B) Many stem cells (blue, S) could be demonstrated among the ECs. In (A),
bundles of intermediate filaments (white arrowhead) and centrioles (boxed areas) were observed in
the cytoplasm of stem cells, while generated axons (NF, red) were observed in direct contact with
these stem cells. (C) The processes of astrocytes (A, violet) and stem cells (blue) were seen among the
ECs. (D) In addition, the stem cell cytoplasm contained centrioles (boxed area, white arrowheads).

The most interesting finding in the present study was the glia–neuron interaction. The
schematic representation illustrates the composition of the ventricular layer of neurogenic
niches. It consists of glia, neural stem cells, periventricular neurons, and vascular cells
(Figure 10A). The semithin sections show that periventricular neurons with characteristic
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cytoplasmic Nissl’s granules were observed to neighbor these ECs and extend their axons
to the cell processes of the ECs (Figure 10B,C). The results of the TEM confirmed this
interaction in which the neurons with cytoplasmic rER and mitochondria established
contact with ECs (Figure 10D).

Cells 2022, 11, 2659 13 of 21 
 

 

 
Figure 10. Glia–neuron interaction dynamics. (A) Schematic representation of the composition of 
the ventricular layer of neurogenic niches. (B,C) Periventricular neurons (black arrowheads) ex-
tended their axons (arrow) to the cell processes of ECs (white arrowheads). (D) Digital colored TEM 
image showing the connection between ECs and neurons (N, boxed area), showing mitochondria 
(M) and rER. 

4. Discussion 
The cellular layer covering the surface of the brain ventricles and spinal canal, known 

as the ependyma, is important for cerebrospinal fluid (CSF) dynamics [11,35]. The epen-
dymal cells of molly fish have bundles of motile cilia, similar to those present in zebrafish. 
These cilia beat and contribute to the directional flow of CSF [36]. Ependymal cells consti-
tute the principal neuroglial element in the brains of fish, amphibians, reptiles, and birds 
[8]. In addition to their role in CSF circulation, ECs are required for the adult neurogenic 
niche to assemble into its characteristic pinwheel-like architecture [24]. 

The ependymal cells in the wall of the optic ventricle of molly fish form a continuous 
layer of ciliated columnar or cuboidal cells. These cells are connected with adjacent cells 
by desmosomes and gap junctions. The cilia of ependymal cells extend into the optic ven-
tricle, and their long fibrillar processes extend through the full thickness of the tectal lam-
inae and end at the surface of the tectum as a subpial end-foot. Stevenson and Yoon [22] 
provided a broad description of the ECs in the optic tectum of the goldfish, Carassius au-
ratus. They investigated whether ECs had the same description as other teleosts; however, 
their peripheral processes ramified locally in the tectum region, with the cell body posi-
tioned near the tectum ventricular lumen. The ependymal cells in the perciform teleost 

Figure 10. Glia–neuron interaction dynamics. (A) Schematic representation of the composition of the
ventricular layer of neurogenic niches. (B,C) Periventricular neurons (black arrowheads) extended
their axons (arrow) to the cell processes of ECs (white arrowheads). (D) Digital colored TEM image
showing the connection between ECs and neurons (N, boxed area), showing mitochondria (M)
and rER.

4. Discussion

The cellular layer covering the surface of the brain ventricles and spinal canal, known
as the ependyma, is important for cerebrospinal fluid (CSF) dynamics [11,35]. The ependy-
mal cells of molly fish have bundles of motile cilia, similar to those present in zebrafish.
These cilia beat and contribute to the directional flow of CSF [36]. Ependymal cells consti-
tute the principal neuroglial element in the brains of fish, amphibians, reptiles, and birds [8].
In addition to their role in CSF circulation, ECs are required for the adult neurogenic niche
to assemble into its characteristic pinwheel-like architecture [24].

The ependymal cells in the wall of the optic ventricle of molly fish form a continuous
layer of ciliated columnar or cuboidal cells. These cells are connected with adjacent cells
by desmosomes and gap junctions. The cilia of ependymal cells extend into the optic
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ventricle, and their long fibrillar processes extend through the full thickness of the tectal
laminae and end at the surface of the tectum as a subpial end-foot. Stevenson and Yoon [22]
provided a broad description of the ECs in the optic tectum of the goldfish, Carassius auratus.
They investigated whether ECs had the same description as other teleosts; however, their
peripheral processes ramified locally in the tectum region, with the cell body positioned
near the tectum ventricular lumen. The ependymal cells in the perciform teleost send a
vertical process of fibrils, which runs through the OT and terminates at the pia mater after
giving off several short leaf-like processes along its course [37]. The presence of numerous
bundles of intermediate filaments or fibrils throughout the cytoplasm of ECs is a main
feature of these cells. These bundles of filaments appear homolog to those in astrocytes of
the mammalian CNS; therefore, the ECs of teleost are different from mammalian ECs [38].

Several functions have been reported for ependymal cells. Kriebel [39] reported
a neuroendocrine function of the ECs lining the ventricular surface. The presence of
cytoplasmic intermediate filaments in ECs is a principal feature of teleost ependymal cells.
The presence of these filaments allows ECs to function as a supportive barrier between
the brain and cerebrospinal fluid. A morphometrical study of EC number is considered
an indicator of their function. Decreased number and delayed maturation of ECs may
disrupt CSF flow dynamics during early brain development and, consequently, enhance
the accumulation of CSF within the brain ventricles, resulting in hydrocephalus [40].
Furthermore, CSF flow dynamics can affect the proliferation of neural stem cells and the
migration of neuroblasts towards the olfactory bulb [41].

It is well known that the process of neurogenesis plays a crucial role in the replace-
ment of damaged neurons. Compared with any other studied vertebrate, teleost fish
have the most pronounced and extensive adult neurogenesis across the central nervous
system [42–45]. Adult neurogenesis is critical for the numerical matching of neurons in
the central nervous system, as well as sensory and motor aspects in fish [45,46]. The
ECs showed an expression of myostatin and SOX9 in their cytoplasmic processes. The
myostatin precursor was detected in several teleost fish tissues including the brain, where
its immunoreactivity was detected in the mesencephalon of sea bream and in the telen-
cephalon of zebrafish, proposing a possible role of myostatin in neuronal growth and
development [47]. Myostatin or growth differentiation factor-8 (GDF-8) is a member of
the TGF-β superfamily. It is mainly expressed in skeletal muscle where it is implicated
in the regulatory process of skeletal muscle growth [48,49]. Recently, myostatin has been
reported as a negative regulator of adult neurogenesis in zebrafish [50]. Myostatin-like
proteins such as myoglianin have been detected as important inhibitors of neuronal growth
and synapse function [51].

The SOX family is essential for stem cell maintenance and embryonic development in
humans and zebrafish [52–54]. SOX9 is a member of the SOX family, and plays an important
role in cell proliferation and cell fate regulation during embryogenesis, where its mutations
induce abnormal cellular growth [55–57]. Furthermore, SOX9 regulates stem and progeni-
tor cells in adult tissues [58,59], and it is implicated in neural stem cells’ identity [59]. SOX9
is essential for differentiation along the neuronal lineage, both in the adult and embryonic
central nervous system [60]. Numerous SOX transcription factors play various roles from
the initial differentiation phases to the generation of mature neurons [61,62], and the roles
of these transcription factors in the regulation of adult neurogenesis, especially in the
hippocampus, have been extensively reported [63–65]. Recently, SOX9 transcription factors
have been reported as an essential regulator of neuronal and glial differentiation during
neural development and adult neurogenesis [66]. Furthermore, SOX9 exerts planned im-
pacts on transcription, neuron production, basal progenitors’ proliferation, and neurogenic
cell fate of the embryonic mouse neocortex [67].

ECs showed the expression of IL-1β in their cytoplasmic processes. In fish species,
including sharp-tooth fish and air-breathing fish, IL-1β is one of the earliest-expressed pro-
inflammatory cytokines, and is secreted by blood monocytes, tissue macrophages, activated
endothelial cells, activated T lymphocytes, granulocytes, and other cell types. It mediates
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the regulation of innate and adaptive immune responses, enabling organisms to respond
immediately to infection [68–71]. Moreover, IL-1β has a critical role in the launch of local
and systemic responses to different stimuli via natural killer cells, T and B lymphocytes,
and activating macrophages [72,73]. Increased IL-1β production has been reported to be
involved in a wide variety of cellular activities, such as cell proliferation, differentiation, and
apoptosis [74,75]. Previous studies on Atlantic hagfish, rat, and IL-1β-converting enzyme-
deficient mice revealed the aggravative effect of IL-1β on the primary damage induced by
central nervous system infection. Furthermore, in in vivo studies, the lack of IL-1β reduced
neuronal loss and infarct volumes following ischemic brain damage [76–78]. IL-1β has been
shown to promote neuronal differentiation through a Wnt5a/RhoA/ROCK/JNK pathway
in cortical neural precursor cells [79].

Ependymal cells exhibit strong APG5 cytoplasmic expression and Nrf2 nuclear ex-
pression. Autophagy-related gene 5 (APG5 or Atg5) is one of the critical regulators of
the autophagy process [80]. It is essential for various processes including lymphocyte
development and proliferation, autophagic vesicle formation, and apoptosis [81]. Atg5
plays an essential role in the central nervous system of mice, where its expression in-
creases with cortical development and differentiation. Moreover, the suppression of Atg5
expression inhibits differentiation, promotes cortical neural progenitor cell proliferation,
and impairs cortical neuronal cell morphology, confirming the crucial role of Atg5 in the
cortical neurogenesis development of embryonic murine brain development [82]. The
autophagy–lysosomal pathway has been concluded to regulate adult neural stem cell
maintenance, quiescent neural stem cell activation, and newly born neurons’ survival and
maturation time [83].

Nrf2 is involved in various processes such as immunopotentiation, antioxidation,
and osmoregulation, in addition its role in toxicity and oxidative stress, as described in
Coilia nasus [84,85]. In addition to its role in modulating the stress response, Nrf2 can
control cellular functions, including protein quality, cell proliferation and differentiation,
and mitochondrial function in glioma stem cells, mice, and Drosophila [86–88]. In human
embryonic stem cells and also in mice, Nrf2 has been reported to drive critical aspects
of embryonic, adult, and induced pluripotent stem cell proliferation, neuronal differenti-
ation, and function [89,90]. Moreover, Nrf2 maintenance is important for proper neural
stem/progenitor cell proliferation and differentiation [91,92]. Nrf2 expression induction has
been detected to ameliorate the phenotypic defects observed in neural stem cells isolated
from the embryonic cortex of frataxin knockin/knockout mice, re-establishing a proper
neuronal differentiation program in Friedreich’s ataxia [93].

GFAP is expressed in the ECs of many teleost species, including Iberian barbel (ray-
finned fish species) [94,95]. GFAP is a major constituent of glial intermediary filaments
that form the cytoskeleton of mature astrocytes, and is responsible for maintaining glial
cells’ mechanical strength, and supporting neighboring neurons and the blood–brain
barrier [96,97]. It is found in astrocytes in the central nervous system, non-myelinating
Schwann cells in the peripheral nervous system, and enteric glial cells [98]. In mice,
the upregulation of GFAP and vimentin, an intermediate filament protein of astrocytes,
is considered the hallmark of astrocyte activation and reactive gliosis following injury,
ischemia, or neurodegeneration [99]. GFAP-expressing progenitors have been highlighted
as the principal source of constitutive neurogenesis in adult mouse forebrain [100].

The current results show a glia–neuron interaction that may indicate the transport of
chemical signals between them. Both neurons and glia interact dynamically to enable axonal
signal conduction, synaptic transmission, and information processing, and so are critical for
the normal functioning of the nervous system during development and throughout adult
life. The signals between neurons and glia include neurotransmitters, ions, cell adhesion
molecules, and other signaling molecules released from synaptic and non-synaptic regions
of the neuron. Glial cell communication modulates neuronal excitability and synaptic
transmission and coordinates the transfer of information across networks of neurons [101].
Interestingly, glial cells of zebrafish possess specific receptors that are required for control-
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ling the expression of genes involved in neuroendocrine regulation [102]. Furthermore,
somatostatin is expressed by neurons and glial cells of A. leptorhynchus and is probably
involved in regulating neurogenesis in response to neural injury for replacing damaged
cells [103]. Further studies should be conducted to identify the signaling pathways in which
teleostean glia–neurons interact in the teleostean brain during neuronal regeneration.

In the sunfish, some ECs that present in association with blood vessels may play a
role in sensing the biochemical composition of both cerebral fluid and blood and transfer
this information to neuronal elements [104]. The newly proliferated neurons during the
process of neurogenesis should migrate from the source of their creation to the site of injury
as a critical step in the subsequent process of the recruitment of new cells for the repair of
lesioned tissue. In the adult teleost fish Apteronotus leptorhynchus, several lines of evidence
show that radial glial fibers are responsible for this process [105].

The most interesting results in this study are the occurrence of stem cells in close
positions to ECs. The bundles of generating axons in direct contact with these stem cells
indicate the role of ECs in neurogenesis. In this context, Nelson et al. [106] found that the
ependymal glia in the transected zebrafish cord form elongated bipolar bridges that span
the lesion site and correlate with trans-lesional axon regeneration.

S100 is a multigenic family of Ca2+-binding proteins with at least 25 members identified
and localized in both the cytoplasm and nucleus of different cells [107,108]. S100 protein
is mostly found in non-neuronal cells in the zebrafish central nervous system. It has
been investigated in the diencephalon, the optic tectum, and the mesencephalon, as it is
identified mainly in the epithelium that lines the brain ventricles, tanycytes, astrocytes,
and subependymal radial glial [109]. S-100 protein in the central nervous system has
neurotrophic activity and regulates the cytoskeleton stability of cells [110]. Moreover,
Grandel et al., in 2006, added that S100 protein continues to be expressed in the glial
cells and the subventricular zone of adult zebrafish, which may play an important role in
adult neurogenesis [111].

5. Conclusions

The findings of this study confirmed the role of ependymal cells (ECs) in the neu-
rogenesis of molly fish. The presence of cytoplasmic intermediate filaments in the ECs
allows their function as a supportive barrier between the brain and cerebrospinal fluid.
The expressions of myostatin and SOX9 in the ECs suggest their possible role in neuronal
growth and development, cell proliferation, and cell fate regulation, in addition to neu-
ronal and glial differentiation during neural development and adult neurogenesis. The
immunoreactivity of IL-1β in ECs suggests their critical role in inducing local and systemic
responses and promoting neuronal differentiation. The expressions of APG5 and Nrf2 in
ECs suggest their role in lymphocyte development and proliferation, autophagic vesicle
formation, and immunopotentiation, in addition to proper neural stem/progenitor cell
proliferation and differentiation. The immunoreactivity of GFAP in ECs suggests their role
in glial cell maintenance. The expression of S100 in the ECs suggests their role in adult
neurogenesis. Finally, the presence of stem cells close to ECs and in contact with their
generating axons indicates the role of ECs in neurogenesis.
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