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Abstract
Drying of porous media is governed by a combination of evaporation and movement of 
the liquid phase within the porous structure. Contact angle hysteresis induced by surface 
roughness is shown to influence multi-phase flows, such as contact line motion of droplet, 
phase distribution during drainage and coffee ring formed after droplet drying in constant 
contact radius mode. However, the influence of contact angle hysteresis on liquid drying 
in porous media is still an unanswered question. Lattice Boltzmann model (LBM) is an 
advanced numerical approach increasingly used to study phase change problems includ-
ing drying. In this paper, based on a geometric formulation scheme to prescribe contact 
angle, we implement a contact angle hysteresis model within the framework of a two-phase 
pseudopotential LBM. The capability and accuracy of prescribing and automatically meas-
uring contact angles over a large range are tested and validated by simulating droplets sit-
ting on flat and curved surfaces. Afterward, the proposed contact angle hysteresis model 
is validated by modeling droplet drying on flat and curved surfaces. Then, drying of two 
connected capillary tubes is studied, considering the influence of different contact angle 
hysteresis ranges on drying dynamics. Finally, the model is applied to study drying of a 
dual-porosity porous medium, where phase distribution and drying rate are compared with 
and without contact angle hysteresis. The proposed model is shown to be capable of deal-
ing with different contact angle hysteresis ranges accurately and of capturing the physical 
mechanisms during drying in different porous media including flat and curved geometries.
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1 Introduction

Drying of porous media is ubiquitously seen in nature, scientific and engineering fields, 
such as soil/pavement and wood drying (Or et  al. 2013; Ferrari et  al. 2020), building 
facades after rain (Kubilay et al. 2018), innovative material design (Su et al. 2018; Hamon 
et al. 2012), food preserving (Prawiranto et al. 2019) and heat removal in electronic chips 
(Brunschwiler et al. 2016; Qin et al. 2021). Drying is a complicated multi-physical process 
which includes liquid/air flows, phase change, heat transfer and vapor transport, occurring 
with the complex geometry of porous media, and warrants exploring its mechanisms. The 
understanding of drying in porous media can advance through accurate microscale experi-
ments and advanced numerical modeling approaches at pore scale.

It is known that capillary effects dominate the drying process when gravity is absent, 
while gravity can stabilize the drying front in porous media (Laurindo and Prat 1996; Yio-
tis et al. 2012). Liquid films at corners of porous media can enhance the drying process 
(Yiotis et al. 2004; Prat 2007; Wu et al. 2020; Laurindo and Prat 1998). Pore size and its 
distribution affect without surprise the drying pattern and drying rate significantly (Pillai 
et al. 2009; Chen et al. 2018; Qin et al. 2019a; Wu et al. 2016; Lehmann et al. 2008). Sur-
face conditions, such as air velocity, affect the diffusive boundary layer thickness, which 
significantly influences the drying rate (Shahraeeni et al. 2012). More effects are seen when 
considering thermal gradients (Or et  al. 2013), in part due to the dependence of liquid 
surface tension and vapor saturation pressure on temperature (Vorhauer et al. 2013). Con-
tact angle hysteresis induced by material surface roughness, a difference between advanc-
ing and receding angles, has long been recognized during multi-phase flow in subsurface 
porous media, such as petroleum engineering and geological  CO2 storage. With advanced 
imaging such as micro-CT, contact angles can be directly measured in complex porous 
media. For example, Andrew et al. (2014) observed different contact angles ranging from 
35° to 55° for a supercritical  CO2–brine–carbonate system at reservoir condition, which 
was attributed to contact angle hysteresis. However, despite the wealth of experiments on 
drying of porous media, little work has considered contact angle hysteresis in drying. More 
often, contact angle hysteresis is studied in evaporation of droplets, such as occurring in the 
constant contact radius (CCR) mode of droplet evaporation on a flat rough surface, where 
the droplet contact angle decreases while the contact radius remains unchanged. Experi-
mental results have shown that materials with different surface roughness lead to various 
contact angle hysteresis range (Orejon et al. 2011). The formation of coffee ring is another 
example showing the influence of contact angle hysteresis during droplet drying (Deegan 
et al. 1997). The discussion here does not include hysteresis of the dynamic contact angle, 
which is a phenomenon occurring at different time scale.

In terms of numerical modeling, there are three main categories of approaches based on 
different length scales. Continuum models introducing transport properties such as poros-
ity, retention curve and permeability are efficient in modeling macroscopic phenomena, 
but lack the ability to analyze the pore-scale mechanisms (Prawiranto et al. 2019; Defraeye 
2014). By simplifying the porous media to a network of pores and throats, pore network 
models (PNMs) (Zhao et al. 2020a,b; Prat 2002, 2011) have achieved great success in mod-
eling pore-scale phenomena in porous media. Starting with pioneer works where PNM was 
applied to study drying in porous media (Nowicki et al. 1992; Prat 1993), PNMs have been 
improved by researchers to consider different mechanisms, including wettability hetero-
geneity (Chapuis and Prat 2007), corner film (Wu et al. 2020; Prat 2011), convective flow 
(Or et al. 2013; Shahraeeni et al. 2012) and heat transfer (Surasani et al. 2008). However, 
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PNMs may lack accuracy when dealing with complex geometries of porous media, which 
are simplified as regular pores and throats.

As a mesoscale approach, multi-phase lattice Boltzmann method (LBM) (Kang et  al. 
2002; Chen et  al. 2014; Li et  al. 2016a; Zhao et  al. 2018; Lin et  al. 2016; Fei and Luo 
2017) is advantageous in modeling flows in porous media at pore scale, given its automatic 
capture of the interface by incorporating pseudo-fluid–fluid and fluid–solid forces to model 
intermolecular-level interactions and its ease in dealing with different pore geometry. 
Noteworthy, the parallel computing of LBM is very straightforward, which significantly 
improves computational efficiency. There are four main categories of multi-phase LBMs, 
namely the pseudopotential model (Shan and Chen 1993, 1994), free energy model (Swift 
et  al. 1995, 1996), color-gradient model (Gunstensen et  al. 1991) and mean-field model 
(Reis and Phillips 2007). Among these, the pseudopotential LBM is very popular due to 
its simplicity and versatility and has been successfully applied to study phase change prob-
lems including different regimes of boiling (Li et al. 2015; Fei et al. 2020), evaporation in 
porous structures (Qin et al. 2019a; Zachariah et al. 2019), silt pore and film condensations 
(Sukop and Or 2004; Liu and Cheng 2013), etc. Li et al. (2016b) and Yu et al. (2017) stud-
ied non-isothermal droplet evaporation on flat surfaces with chemical heterogeneity in 2D 
and 3D, respectively. Qin et al. (2019a) studied liquid drying in synthetic porous structures 
with a similar approach, obtaining good agreement with experimental results. This work 
was further extended to drying of colloidal suspension in more complicated porous media 
including integrated chip stacks (Qin et al. 2021, 2019b,c). Going to multi-component, thus 
considering air, Zachariah et al. (2019) studied the different invasion-percolation patterns 
in capillary porous media.

Contact angle hysteresis was introduced into LBM by Wang et al. (2013), who studied 
the dynamic droplet motion under different situations, and their results agree with other 
numerical studies. Xu et al. (2017) studied the drainage process in a synthetic micro-pore 
structure with LBM and found that considering contact angle hysteresis was instrumental 
for the numerical results to agree with experimental results (Wu et al. 2016). Despite the 
developments in multi-phase LBMs, the influence of contact angle hysteresis on drying of 
porous media induced by surface roughness, is still an open question.

In this paper, we first introduce the pseudopotential two-phase LBM to model isother-
mal two-phase flow in Sect. 2. In Sect. 3, we implement the contact angle hysteresis model. 
We first apply the geometric formulation scheme (Ding and Spelt 2007; Liu and Ding 
2015) to accurately prescribe contact angles on flat/curved surfaces. Then, we propose 
an auto-measurement method which can compute the local contact angle automatically 
at each iteration of the simulation. Finally, the contact angle hysteresis model is proposed 
for liquid drying, based on the model used in Wang et al. (2013), Akai et  al. (2018). In 
Sect. 4, the proposed pseudopotential two-phase LBM considering contact angle hysteresis 
is applied to liquid drying in different situations, namely droplet drying on flat and curved 
surfaces, drying of two connected capillary tubes and drying of a dual-porosity porous 
medium. Section 5 concludes the present work.

2  The Pseudopotential Two‑Phase LBM

To simulate the drying of porous media under isothermal condition, we apply the 
entropic-multiple-relaxation-time multi-range pseudopotential LBM (EMRT-MP LBM) 
proposed in Qin et  al. (2018a), Qin (2020), allowing the simulation of different fluid 
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viscosity and surface tension. Incorporating the external force term, the LB equation for 
the populations of discrete velocities is written as:

fi(�, t) is the density distribution function of velocity direction i = 0, 1,… ,Q − 1 at lattice 
x and time t. Q is the total number of discrete velocities in LBM. f eq

i
 is the equilibrium 

form of fi , which is obtained by minimizing the entropy S
�
f
�
=
∑Q−1

i=0
fi ln(fi∕Wi) under 

fixed constraints of density and momentum conservations, i.e., {�, ��} =
∑Q−1

i=0

�
1, �i

�
f
eq

i
 . 

ρ and u are macroscopic density and velocity, while Wi is the lattice weight of velocity 
direction i. � ∈ (0, 1) is a free parameter to determine the fluid kinematic viscosity v by 
v = c2

s
(1∕(2�) − 1∕2)�t , where cs = �x∕(

√
3�t) is the lattice speed of sound. �x = �t = 1 

with lattice speed c = 1 are used in current simulations. The left-hand side of Eq. (1) is the 
propagation term, while the right-hand side f ′

i
 represents the post-collision term consider-

ing the additional force F. fmirr
i

 is the mirror state of fi constructed at each time step and 
lattice to minimize the total entropy of f ′

i
 by properly relaxing high order moments of fi. 

The readers are referred to Qin et al. (2018a), Qin (2020), Bösch et al. (2015), Bösch et al. 
(2018) for details of constructing fmirr

i
.

The last two terms f eq
i
(�, � + Δ�) − f

eq

i
(�, �) at the right-hand side of Eq. (1) consider 

an additional force F using the exact difference method proposed in Kupershtokh et al. 
(2009). F is implemented by its influence on flow velocity increment by Δ� = ��t∕� . In 
the current work of drying of porous media without considering gravitational force, F 
consists of two parts, i.e., the fluid–fluid cohesive force Fc to realize non-ideal gas and 
the fluid–solid adhesive force Fw to implement different surface wettability. With the 
consideration of F, the real fluid velocity is modified as �f = � + Δ�∕2 . In the following 
we introduce these two force terms.

Fc is applied by a multi-range pseudopotential as Qin et al. (2018a), Sbragaglia et al. 
(2007):

where � =
√

2(PEoS − �c2
s
)∕[(G1 + 2G2)c

2] is the interaction strength and G1, G2 are free 
parameters to approximately tune the surface tension � ∝ (G1 + 8G2)∕(G1 + 2G2) (Sbraga-
glia et al. 2007; Li and Luo 2013). G1 and G2 are set as G1 = − 1.0 and G2 = 0 in current 
work. w

(||�i||2
)
 is the force weight (Qin et al. 2018a) different from the lattice weight Wi. 

The Carnahan–Starling equation of state (EoS) is applied here to introduce phase evolu-
tion (Yuan and Schaefer 2006):

where a = 0.4963R2T2
c
∕pc and b = 0.18727RT∕pc are attraction and repulsion parameters, 

respectively. Tc and pc represent the critical temperature and pressure, while T is the tem-
perature and R is the gas constant. Following (Yuan and Schaefer 2006), the parameters are 
set as a = 1, b = 4 and R = 1.

Fw is implemented similarly to Fc by introducing a virtual wall density �w , i.e., (Qin 
et al. 2018a):

(1)fi
(
� + �i, t + 1

)
= f �

i
≡ (1 − �)fi(�, t) + �fmirr

i
(�, t) + f

eq

i
(�, � + Δ�) − f

eq

i
(�, �).

(2)�c = −�(�)

Q−1∑
i=0

w
(||�i||2

)[
G1�

(
� + �i

)
+ G2�

(
� + 2�i

)]
�i,

(3)PEoS = �RT
1 + b�∕4 + (b�∕4)2 − (b�∕4)3

(1 − b�∕4)3
− a�2,
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where I is the indicator function that equals unity at solid lattices and zero at fluid lattices. 
G = − 1 is set in the current work. The virtual wall density �w is given by a geometric for-
mulation scheme to be discussed in Sect. 3.

3  The Contact Angle Model

In this section, we first introduce the geometric formulation scheme retained to impose 
contact angle on flat/curved surfaces. Then, we propose a method to automatically measure 
local contact angles at each iteration of the simulation. Finally, we explain how contact 
angle hysteresis is considered in the numerical modeling of drying of porous media.

3.1  Geometric Formulation Scheme

The geometric formulation scheme was first proposed to realize contact angle in phase-
field method (Ding and Spelt 2007). This scheme, originally only applicable to flat surfaces 
(Li et al. 2016b; Liu et al. 2015), was extended to be used for two-dimensional (2D) curved 
surfaces still within the phase-field model (Liu and Ding 2015). Recently, this scheme was 
introduced in pseudopotential LBM and compared with a proposed improved virtual den-
sity scheme (Li et  al. 2019). However, the improved density scheme (Li et  al. 2019) is 
not able to deal with contact angle hysteresis, since the virtual wall density is not directly 
calculated from the prescribed contact angle and thus their relation is not formulized. In 
the current work, we apply the geometric formulation scheme (Liu and Ding 2015; Li et al. 
2019) which can deal with complex geometry such as curved surfaces and allows us to 
consider contact angle hysteresis.

Considering the curved surface as the black dashed curve shown in Fig. 1a, the black 
solid line is the wall boundary �w accordingly. To implement a certain contact angle 
θ, the virtual wall density �w at �w has to be determined. Here, we take wall lattice 
P ∈ �w as an example to illustrate how its virtual density �w(P) is calculated in Liu and 
Ding (2015), Li et al. (2019). As shown in Fig. 1a, ns is the unit normal vector of the 

(4)�w = −G�(�)

Q−1∑
i=0

w
(||�i||2

)
�
(
�w(� + �i), � + �i

)
I
(
� + �i

)
�i,

Fig. 1  Illustration of the geometric formulation scheme to realize a contact angle at wall point P on a 
curved surface in three different situations. Dashed black curve is the curved surface, while thick solid 
black line �w is the effective wall boundary, at the resolution of the lattice. �s is the unit normal vector of 
the curved surface at P pointing toward the fluid
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curved surface at P pointing toward the fluid. With the prescribed contact angle θ, the 
liquid–vapor interface is supposed to intersect the wall boundary along the two possible 
directions indicated by �1 and �2 , where D1 and D2 are the two intersections, respectively. 
�1 and �2 are symmetric about ns with the same angle difference of �∕2 − � . The virtual 
wall density �w(P) is determined by the following equation:

where �(D1) and �(D2) are the densities of the two intersections, respectively.
Here, we introduce the means of obtaining the ns, �1 , �2 vectors as well as �(D1) and 

�(D2) . Following (Xu et al. 2017), ns is evaluated as:

where I
(
� + �i

)
 is the same indicator function as in Eq. (4). w�

(|�i|2) is the weight for 8th 
order isotropic discretization using two layers of neighboring lattices, which benefits for 
improving the numerical accuracy as explained in Xu et al. (2017), Sbragaglia et al. (2007), 
Li et al. (2019):

We have also calculated the normal vectors as well as the resulting contact angles 
using two (eighth-order isotropic discretization) and three (tenth-order) layers of neigh-
boring lattices and found that these two discretizations are basically yielding identical 
results, showing that using two layers of neighboring lattices is sufficiently accurate in 
our simulations. With the known ns, the unit vectors �1 and �2 are determined as:

Subsequently, the two intersections D1 and D2 can be found as shown in Fig.  1a. 
Since a curved surface is considered, the possibility of D1 and D2 varies depending on 
the location of specific wall lattice P. For instance, D1 and D2 can locate between two 
fluid lattices (Fig. 1a), between one fluid lattice and one wall lattice (Fig. 1b) or between 
two wall lattices (Fig. 1c). We use linear interpolation/extrapolation to obtain the den-
sity of the intersections. In Fig. 1, the interpolation/extrapolation lattices for D1 and D2 
are E1,1, E1,2 and E2,1, E2,2, respectively.

After the densities of intersections D1 and D2 are obtained, the virtual density �w(P) 
can be determined by Eq. (5) considering the value of the prescribed contact angle θ. We 
note that �w(P) is limited between the vapor and liquid densities, i.e., �w(P) ∈ (�v, �l) . 
Then, �w(P) is plugged into Eq. (4) to compute the fluid–solid interaction.

(5)𝜌w(P) =

{
max(𝜌(D1), 𝜌(D2)), 𝜃 ≤ 𝜋∕2

min(𝜌(D1), 𝜌(D2)), 𝜃 > 𝜋∕2
,

(6)�
�
= −

∑Q−1

i=0
w

�

(��i�2)I
�
� + �i

�
�i

���
∑Q−1

i=0
w

�
(��i�2)I

�
� + �i

�
�i
���
,

(7)w�(��i�2) =

⎧
⎪⎪⎨⎪⎪⎩

4∕21, ��i�2 = 1

4∕45, ��i�2 = 2

1∕60, ��i�2 = 4

2∕315, ��i�2 = 5

1∕5040, ��i�2 = 8

.

(8)

{
�1 = (ns,1 cos(�∕2 − �) − ns,2 sin(�∕2 − �), ns,1 sin(�∕2 − �) + ns,2 cos(�∕2 − �))

�2 = (ns,1 cos(�∕2 − �) + ns,2 sin(�∕2 − �),−ns,1 sin(�∕2 − �) + ns,2 cos(�∕2 − �))
.
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3.2  Auto‑Measurement of Contact Angle

To consider contact angle hysteresis, we must measure the local contact angle of each tri-
ple-line at each iteration, in order to judge whether it overrides the hysteresis range and 
adjust it accordingly as described in Sect. 3.3 in following. Since we have to evaluate and 
adjust the contact angle manifold, the application of image analysis as used during post-
processing is not adequate. Inspired by the geometric formulation scheme of imposing con-
tact angle in color-gradient model in Xu et al. (2017), Akai et al. (2018), we apply a similar 
method that allows to measure the local contact angle automatically, thus without use of 
any post-processing technique.

To better explain the auto-measurement method, we use a single droplet resting on a flat 
surface for illustration. As shown in Fig. 2, between the tangential line �t and the wall sur-
face �w , θ is the contact angle of the droplet. �′ is the angle between the unit normal vector 
ns and the density gradient vector ∇� at the wall surface �w . Theoretically, �′ is identical to 
θ, which indicates a way to automatically measure the local contact angle � , i.e., by com-
puting �′ during the simulation. However, practically at a complex wall surface, the angle 
�

′ may vary to a certain degree. To avoid such variation, we take the average value of the �′ 
within the interface range (0.25�l, 0.9�l) of the first layer of fluid ( �f as white dashed line). 
For this illustration case of a resting droplet shown in the zoom of Fig. 2, �′ is calculated 
as ��

ave
=

1

n

∑n

i=1
�

�

i
 with n = 4 indicating the fluid density of these four lattices is within the 

interface range set above. This interface range (0.25�l, 0.9�l) is chosen by minimizing the 
average difference between the measured contact angle �′ and prescribed contact angle � in 
a large bracket of contact angles ranging from 10 ◦ to 140 ◦ with an interval of 10◦ . After-
ward, we give this �′

ave
 to the lattices belonging to �w (black solid dots) within the range of 

circle C. Circle C is chosen with its center Oc (black cube) at the middle of interface, i.e., 
the triple point of the local contact of liquid, vapor and wall. Its radius is set as 7 lattices 
to ensure it covers the full interface thickness. This step of determining �′

ave
 is introduced 

since the measured contact angle �′
ave

 will be used when considering contact angle hyster-
esis, as explained in the next subsection.

3.3  Consideration of Contact Angle Hysteresis

With the capabilities of prescribing and automatically measuring the local contact 
angle, we can consider contact angle hysteresis. As introduced in Sect. 1, a simple and 

Fig. 2  Illustration of the auto-measurement method of contact angle with a single droplet resting on a flat 
surface
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practical scheme to consider contact angle hysteresis is proposed in Ding and Spelt 
(2007), Ding and Spelt (2008). In this scheme, the contact angle hysteresis is set within 
the (�R, �A) interval, where �R and �A represent receding and advancing contact angles, 
respectively. When the measured local contact angle at a current iteration is within the 
hysteresis interval, this measured contact angle is prescribed as the contact angle for 
the next iteration, i.e., �(t + 1) = ��

ave
(t) when ��

ave
(t) ∈ (�R, �A) . Otherwise, the limits of 

the interval are used to prescribe the contact angle, with �(t + 1) = �R when ��
ave
(t) ≤ �R , 

or �(t + 1) = �A when ��
ave
(t) ≥ �A . This scheme has been successfully applied in multi-

phase LBMs to study droplet contact line motion under different flow and force condi-
tions (Wang et al. 2013) as well as liquid flow in tubes (Liu et al. 2015). However, this 
simple scheme does not perform well in simulating isothermal drying of porous media, 
since the drying is a quasi-equilibrium phenomenon and the contact angle always tend 
to minimize the interfacial area approaching 90◦ both in receding and advancing, failing 
to model the correct contact angle during receding or advancing. To illustrate this point, 
we simulate the drying of a liquid in a single tube with an initial contact angle of 60° 
considering a hysteresis range between 31° and 84°. Using a simple hysteresis scheme 
as presented by Liu et  al. (2015), the contact angle quickly evolves from 60° to the 
advancing contact angle of 84° and the liquid goes on drying at the advancing contact 
angle until the end (Figure S1a in Supplementary Materials). This process is not physi-
cal since the liquid during a drying process is receding and should show thus a reced-
ing contact angle. To physically model contact angle hysteresis in isothermal drying of 
porous media, we must additionally assess whether the contact line is actually receding 
or advancing. The assessment is made by comparing the vapor flow direction and the 
direction of movement of the triple point Oc. As shown in Fig. 2, we first calculate the 
average unit velocity vector of vapor phase �vp within circle C. Here, the vapor phase is 
identified as the region where the density �(�) is three times less (or equal) than the ini-
tial vapor density �v . This condition is used since the fluid density �(�) evaporated from 
the liquid–vapor interface is higher than the initial �v . Note that the liquid–vapor density 
ratio is around 30. Specifically, �vp is calculated as:

To assess the movement of triple point Oc, we record its past location as Op . The 
movement of Oc is calculated as the vector �Oc

 between its previous and current loca-
tions Op and Oc. For instance, as shown in Fig. 2, if Oc moved from Op1 to Oc in the same 
direction of the vapor movement, then using �Oc

= ����������⃗Op1Oc and the direction of the vapor 
movement �vp , we find that �Oc

⋅ �vp > 0 , indicating that the contact line is advancing. 
As a result, the contact angle for the next iteration �(t + 1) is set equal to the advancing 
limit contact angle �A . Oppositely, if Oc moved from Op2 to Oc opposite to the vapor 
movement direction, it is assessed that the contact line is receding and the contact angle 
for the next iteration �(t + 1) is set equal to the receding limit contact angle �R . Other-
wise, if the location of Oc remains unchanged, i.e., the triple point remains pinned, the 
constraint of first scheme (Ding and Spelt 2007, 2008) is used where we judge whether 
the contact angle is within or not the contact angle hysteresis range. If the contact angle 
of the pinned triple line is outside the limits, the limits apply. The modified scheme of 
contact angle hysteresis is summarized as follows:

(9)�vp =

∑
�∈C Ivp(�) �f (�)∕��f (�)�∑

�∈C Ivp(�)
, Ivp(�) =

�
1, �(�) ≤ 3�v
0, otherwise

.
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With the scheme proposed above, drying of porous media displaying contact angle hys-
teresis can be simulated. To illustrate that our improved scheme can recover the correct 
contact angle during drying, we also simulate the drying of a liquid in a single tube with 
an initial contact angle of 60° considering a contact angle hysteresis range between 31° 
and 84°. From Figure S1b in Supplementary Materials, we can see that the contact angle 
decreases from 60° to the receding contact angle of 31° before the contact point depins and 
moves. Afterward, the liquid–vapor interface recedes at the receding contact angle of 31° 
until completion of drying. Compared to the scheme by Liu et al. (2015) in literature, the 
current contact angle hysteresis scheme correctly models the drying process. Briefly, this 
model can deal with a large range of contact angle on both flat and curved surfaces without 
introducing additional spurious current at the contact point. It is also capable of simulating 
multi-phase flows with different densities and viscosity ratios. Moreover, the interface evo-
lution in phase change problems like evaporation or condensation can be physically mod-
eled. The drawback of this model lies in the complex implementation for interpolation/
extrapolation in presence of complicated curved surfaces. The extension of this model from 
2D to 3D is also expected to be challenging. The models of Ba et al. (2013) and Liu et al. 
(2015) share the advantages of dealing with large contact angle range on different surfaces, 
small spurious current and large viscosity ratios, but it is difficult for them to reach high 
density ratio or to simulate phase change problems like drying presented in this paper. The 
performance of current model in dealing with different flow problems is shown in Sect. 4.

4  Numerical results and discussions

This section has four subsections. In the first Sect. 4.1, we model droplets sitting on flat 
and curved surfaces to validate the capability and accuracy of the proposed contact angle 
model. To further validate the contact angle hysteresis model, we simulate droplet on a flat 
surface subject to a shear flow in Sect. 4.2. Afterward in Sect. 4.3, single droplet drying on 
flat and curved surfaces is simulated, with and without considering contact angle hyster-
esis. In Sect. 4.4, we study drying of two connected capillary tubes, to understand the influ-
ence of different hysteresis ranges on drying dynamics. In Sect. 4.5, we study the drying in 
a dual-porosity porous medium and analyze the influence of contact angle hysteresis on the 
drying pattern and drying rate. We note that all simulations are done in 2D.

4.1  Droplets Resting on Flat and Curved Surfaces

To validate the capability and accuracy of the geometric formulation scheme for contact 
angle introduced in Sect. 3.1, we simulate a single droplet sitting on a flat or a curved sur-
face with prescribed contact angles ranging from 10◦ to 140◦ . We then measure the equi-
librium contact angle with two methods, i.e., the auto-measurement method proposed in 
Sect. 3.2 and image post-processing method using ImageJ Fiji (Rueden et al. 2017; Schin-
delin et al. 2012). The computational domain is 204 × 204  lattices2 with all the four sides 
being solid walls. A half circular droplet with a diameter of 52 lattices is initially placed 
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on a substrate and allowed to equilibrate to a prescribed contact angle. The droplet profiles 
under different prescribed contact angles �pc are shown in Fig. 3a. The measured contact 
angles with ImageJ Fiji �Fj and our proposed auto-measurement method �am are compared 
in Fig. 3b, where we can see the difference between �am , �pc and �Fj is less than 3◦ . The 
small difference indicates that both the geometric formulation scheme to prescribe con-
tact angle and the proposed auto-measurement method for measuring the contact angle are 
accurate.

To simulate droplet sitting on a curved surface, we place a solid circle (in white 
color) with a diameter of 68 lattices diameter and center located at (102.5, 68) in the 
computational domain. A half circular droplet with a diameter of 102 lattices is ini-
tially placed in the domain with the same center as the solid circle. After reaching equi-
librium, the droplet profiles under different prescribed contact angles �pc are shown in 
Fig. 4a, while the measured contact angles from ImageJ Fiji �Fj and our proposed auto-
measurement method �am are compared in Fig. 4b. We can see that they generally agree 
well with each other. The maximum errors of around +4.5◦ and −3.5◦ are seen at the 

Fig. 3  a Results of droplet sitting on a flat surface with different prescribed contact angles �pc from 10◦ to 
140◦ . b Measured versus prescribed contact angle. Comparison of contact angles measured with ImageJ Fiji 
�Fj and with our proposed auto-measurement method �am for different prescribed �pc

Fig. 4  a Results of droplet resting on a curved surface with different prescribed contact angles �pc from 10◦ 
to 140◦ . b Measured versus prescribed contact angle. Comparison of contact angles measured with ImageJ 
Fiji �Fj and with our proposed auto-measurement method �am for different �pc
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minimum and maximum prescribed contact angles of �pc = 10◦ and 140◦ , respectively. 
Compared with the results on flat surfaces, the contact angle error on curved surfaces 
is a little higher. The error is mainly due to that, at very low or high contact angles, the 
geometric formulation scheme to prescribe contact angle loses some accuracy, and the 
complex curved geometry worsens it. Nevertheless, the geometric formulation method 
of prescribing contact angle and the auto-measurement method are overall accurate, 
with an average contact angle error of less than 1◦.

We note that the traditional virtual density method with a fixed wall density results 
in an artificial mass layer between liquid (vapor) and solid surface, depending on the 
prescribed contact angle (Figure S2 in Supplementary Materials). In the results shown 
in Figs. 3a, 4a and also Figure S2 in Supplementary Materials, we can clearly see such 
kind of artifact is eliminated with the geometric formulation scheme. Another impor-
tant issue of contact angle modeling is the spurious current at the contact line. We plot 
the velocity magnitude of the spurious current of a droplet sitting on a curved surface, 
as shown in Fig. 5. We can see the maximum spurious current is around 5.5e–3 lattice 
units at the vapor phase around the liquid–vapor interface. As shown in Figure S2 in 
Supplementary Materials, spurious currents occur at the artificial mass layer in the tra-
ditional virtual density method and may show higher values than that at the liquid–vapor 
interface. The absence of artificial fluid layer resulting from the present method makes 
that the geometric formulation scheme does not suffer from this situation. Moreover, 
in all three situations with different prescribed contact angles �pc = 10◦, 90◦, 140◦ , the 
spurious current at the triple contact point is smaller than the maximum spurious cur-
rent at the liquid–vapor interface, indicating the geometric formulation scheme has the 
benefit to alleviate the spurious current.

Summing up, in this subsection we simulated single droplets sitting on either flat and 
curved surfaces with prescribed contact angles ranging from 10◦ to 140◦ . The resulted 
equilibrium contact angles measured by ImageJ Fiji and auto-measurement method 
show an average error of less than 1◦ compared with the prescribed contact angles, 
indicating the accuracy of both the geometric formulation scheme to prescribe contact 
angle and the auto-measurement method to measure the contact angle during simula-
tion. Noteworthy, we found that the geometric formulation scheme does not give rise 
to an artifact, seen with the conventional method giving a mass layer at the wall surface 
of vapor phase, and has the benefit to alleviate the spurious current at the triple contact 
point.

Fig. 5  Velocity magnitude of spurious current of droplet sitting on a curved surface with different pre-
scribed contact angles �pc : a �pc = 10◦ . b �pc = 90◦ . c �pc = 140◦
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4.2  Droplet on a Flat Surface Subject to a Shear Flow

To validate our model considering contact angle hysteresis, we simulate the behavior 
of a droplet on a rough flat surface exposed to shear flow following the work of Liu 
et al. (2015). As illustrated in Fig. 6a, the computational domain is L × H = 480 × 240 
 lattices2. A droplet of radius R0 at contact angle of 60 ◦ is placed on the bottom plate of 
the domain with its normalized area A∗

d
=

4Ad

H2
= 0.5 , where Ad is the droplet area. The 

droplet is exposed to a shear flow with flow velocity uw at the top. The capillary num-
ber is defined as Ca = �vvvuwe

�H
 , where �v , vv and � are vapor density, kinematic viscosity 

and surface tension, respectively, while e is droplet height. Three capillary numbers of 
Ca = 0.05, 0.1, 0.15 are considered here. In all three simulations, a contact angle hyster-
esis range of �R = 10◦, �A = 140◦ is given to ensure that the local contact angle is within 
this range and the droplet is pinning. We remark that no roughness is introduced and 
pinning is totally governed by the contact angle model, whereas a constant contact angle 
would yield a sliding of the droplet.

As shown in Fig. 6b and c, current simulation results agree very well with the results 
from Liu et al. (2015) at capillary numbers of 0.05 and 0.1. At capillary number of 0.15 
in Fig.  6d, there is a small difference around the left contact point, due to our model 
limitation in reaching very low contact angle (< 10◦ ). Overall, our simulation results 
are found to be accurate to study multi-phase flow considering contact angle hysteresis. 
Moreover, in the case of capillary number at 0.15, the local contact angles at the left and 
right contact points are �L = 11◦, �R = 112◦ , indicating our model can deal with a large 
contact angle hysteresis. For the simulations in this subsection, the total mass change is 

Fig. 6  Simulation of droplet on a flat surface subject to a shear flow: a illustration of simulation setup, b–d 
comparison of droplet shape between current simulation and the result from Liu et al. (2015) at three capil-
lary numbers of Ca = 0.05, 0.1, 0.15
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within 0.02%, showing that mass conservation in our model is assured at a level accept-
able for engineering applications.

4.3  Droplet Drying on Flat and Curved Surfaces

With the geometric formulation scheme and the auto-measurement method validated under 
equilibrium conditions within a large contact angle range, we proceed to simulate drop-
let drying on flat and curved surfaces considering contact angle hysteresis. Although our 
model is capable of simulating contact angles much higher than 90◦ , we only consider the 
hysteresis range with advancing contact angle less than 90◦ , since it is observed that liq-
uids on hydrophobic and especially superhydrophobic surfaces evaporate at a nearly con-
stant contact angle not showing hysteresis (Dash and Garimella 2013, 2014). As shown 
in Orejon et al. (2011), the hysteresis range of different material surface varies a lot. For 
instance, the contact angle range of silicon surface and parylene are ( �R = 31◦, �R = 57◦ ) 
and ( �R = 59◦, �R = 88◦ ), respectively. To illustrate the capability of the proposed model 
to deal with a higher hysteresis range, in this subsection we use �R = 30◦ and �A = 84◦ to 
model droplet drying. Besides, we also validate our model with the water droplet drying 
experiment on silicon surface in Orejon et al. (2011).

As shown in Fig. 7, the droplets are sitting on flat and curved surfaces with the dashed 
black lines indicating their equilibrated initial profiles with prescribed constant contact 
angle before the onset of drying. The bottom sides of the simulation domains are non-
slip walls, while the left and right sides are periodic. The top sides are set as a constant 
pressure a little lower than the equilibrium pressure to induce drying (Guo et  al. 2002). 
Figure 7a and b shows intermediate frame at given time during drying, where the white 
streamlines indicate the flows inside the droplet and in the vapor phase. First, the triple 
contact points do not move, when the contact angle is higher than �R = 30◦ , i.e., �(a) = 63◦ 
and �(b) = 58◦ , respectively. Second, inside the droplet the liquid is transported from the 
central vapor–liquid interface to the contact points, which agrees well with experimental 
and other numerical studies (Deegan et al. 1997; Hu and Larson 2005).

To get an overall understanding of the droplet drying process, we record the droplet pro-
files and determine the normalized droplet contact radius  (CR*), droplet height (h*) and con-
tact angle ( � ) at different dimensionless time t*. These variables are defined as following: 

Fig. 7  Intermediate frame of single droplet drying on a flat and b curved surfaces considering contact angle 
hysteresis of ( �R = 30◦ , �A = 84◦ ). Dashed black lines indicate initial droplet profiles before drying. White 
streamlines illustrate flow inside the liquid droplet as well as in the vapor phase
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CR∗ = CR(t∗)∕CR(t∗ = 0) , h∗ = h(t∗)∕h(t∗ = 0) and t∗ = t�∕(�lCR(t = 0)) , where �, �l 
are liquid surface tension and dynamic viscosity, respectively. Figure  8 shows the com-
parison between the results of droplet drying on a flat surface considering only a constant 
contact angle at �0 = �A = 84◦ (a, b) and contact angle hysteresis of ( �R = 30◦, �R = 84◦ ) 
(c, d). For drying at constant contact angle, as shown in Fig. 8a, the droplet profiles are 
concentric circles showing a constant contact angle with time. In Fig. 8b, the contact angle 
is almost constant, except a small variation of a few degrees occurring at the end of dry-
ing, while the contact radius and droplet height decrease similarly following a quadratic 
trend. Considering drying with contact angle hysteresis, as shown in Fig.  8c and d, the 
droplet contact radius remains initially unchanged before t∗ ≈ 60 until the contact angle 
reaches the receding contact angle �R = 30◦ . In this first period, the droplet height and 
contact angle decrease linearly. After this first period, the contact angle remains relatively 
constant while the contact radius and droplet height decrease linearly. In brief, the droplet 
experiences a stick–slip process during drying and transition from CCR (constant contact 
radius) to constant contact angle (CCA), as also observed in experimental studies (Orejon 
et al. 2011; Nguyen et al. 2012). We conclude that imposing a constant contact angle does 
not allow to model the observed stick–slip process and the droplet is in slip mode, while 
the contact angle hysteresis model allows to model stick–slip, where the droplet remains 
initially pinned. Moreover, the total drying time when considering contact angle hysteresis 
is 13% longer, since liquid is transported to the contact points from the free liquid–vapor 
interface in the CCR model, making the drying interface farther from the top open end.

To validate our contact angle hysteresis model, we quantitatively compare the simu-
lated droplet drying curves with experimental results for a contact angle hysteresis range 
of ( �R = 31◦, �A = 57◦ ) following the setup of water droplet drying on silicon in Orejon 

Fig. 8  Comparison of single droplet drying on a flat surface a, b using a constant contact angle ( �0 = 84◦ ) 
and c, d considering contact angle hysteresis ( �R = 30◦, �A = 84◦ ). Subfigures a and c show the droplet 
profiles (Supplementary movies 1 and 2), while b and d show the normalized droplet contact radius  (CR*), 
normalized height (h*) and contact angle ( � ) versus dimensionless time t*
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et al. (2011). Since we cannot simulate the real properties of water, due to the limitation of 
current LBM, we use normalized time and contact radius to compare our simulation results 
with experiment. The normalized contact radius  CR* is defined the same as that in the pre-
vious paragraph, while the normalized time is defined by the current time over the pinning 
time, i.e., tN = t∕(tpin) . The comparison of contact radius  CR* and contact angle � between 
experiment and current simulation is shown in Fig.  9, where we can see our simulation 
generally agrees well with experimental results.

The results of a droplet drying on a curved surface are shown in Fig. 10, where (a, b) 
are the results with a constant contact angle and (c, d) considering contact angle hysteresis. 
We can see that the results are similar to those on flat surfaces, i.e., constant contact angle 
mode and stick–slip mode are observed, respectively. Compared with droplet drying on flat 
surfaces, one difference lies in the small fluctuation of contact angle as shown in Fig. 10a 
and b, when the triple point is located at that point where the circle shows a zigzag surface 

Fig. 9  Comparison of simulation and experimental results of a single droplet drying on a flat surface con-
sidering contact angle hysteresis ( �R = 31◦, �A = 57◦ ) versus normalized time tN . a Normalized contact 
radius  (CR*). b Contact angle ( �)

Fig. 10  Comparison of the 
drying process of single droplet 
on a curved surface (a, b) 
using a constant contact angle 
( �0 = 84◦ ) and (c, d) consider-
ing contact angle hysteresis 
( �R = 30◦, �A = 84◦ ). Subfig-
ures a and c show the droplet 
profiles (Supplementary movies 
3 and 4), while b and d show 
the normalized droplet contact 
radius  (CR*), normalized height 
(h*) and contact angle ( � ) versus 
dimensionless time t*
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with abrupt change of local wall surface normal vector due to discretization. Moreover, in 
Fig. 10d, the decrease of contact angle in the stick mode is not linear, since the surface is 
not flat.

In brief, we modeled the drying process of droplets on flat and curved surfaces with and 
without considering contact angle hysteresis in this subsection. The drying displays a con-
stant contact angle mode for constant contact angle, while a stick–slip mode is observed 
when contact angle hysteresis is taken into account. Droplet internal flow from free inter-
face to contact points is seen during the stick mode.

4.4  Drying of Two Connected Tubes

When simulating drying in micro-pillar structures, Qin et al. observed the existence of cap-
illary flow induced by different interface radii (Qin et al. 2019a, 2018b). To study capillary 
effects during drying, we study the drying of two connected capillary tubes with different 
widths, to understand the influence of contact angle hysteresis on capillary flow during 
drying. Gravity is not considered here.

The size of the capillary tubes is shown in Fig.  11a, where the width of large tube 
( r1 = 126 lattices) is more than three times that of the smaller one ( r2 = 38 lattices). The 
passage height ( r3 = 30 lattices) is smaller than the size of smaller tube. The width of the 
solid separation between the tubes is 10 lattices. We first simulate the drying case using a 
constant contact angle of 60◦ . For the simulation setup, the top side is set with a constant 
pressure to induce drying while the rest are solid walls. The entire drying process is illus-
trated in Fig. 11. As shown in Fig. 11a, before drying starts, we put the interface at around 
equal average height in the two tubes at a constant contact angle �0 = 60◦ . During drying 
process, the interface (1) in the large tube recedes downward, while the interface (2) in the 
small tube advances upward, as can be seen in the snapshot at t* = 34.61. The streamlines 
in vapor phase show that drying occurs at both interfaces, and an internal flow exists from 
the large (1) to small interface (2). As explained in Qin et al. 2019a; Qin et al. 2020), the 
internal flow is due to capillary pumping effect, which is driven by capillary pressure dif-
ference between the large and small interfaces. According to Laplace law, the pressure dif-
ference is Δp = �(cos �2∕r2 − cos �1∕r1) = � cos �eq(1∕r2 − 1∕r1) since a constant contact 
angle is considered here. In this simulation, the pumping effect is stronger than the drying 
at the small interface (2), resulting in an advancing of the small interface during drying. 
At t* = 66.91, the small interface (2) reaches its peak when the large interface (1) arrives 
at the passage and the pumping starts to fade. Afterward as shown at t* = 116.36, the small 

Fig. 11  Drying of two connected capillary tubes with different widths, simulated using a constant contact 
angle of �eq = 60◦ at different dimensionless time t* (Supplementary movie 5). White streamlines indicate 
liquid internal flow and vapor transport, while black dashed line shows initial average interface location
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interface (2) recedes, while the interface (3) in the passage advances slightly due to the 
internal flow from interface (2) to (3) caused by capillary pressure difference. Finally, 
when the drying almost completes at t* = 161.50, the liquid forms a liquid island in the 
corner forming a partial droplet with constant contact angle (4). From all the subfigures 
in Fig. 11, we can see the contact angle remains constant during the entire drying process.

Using the same domain, we study the influence of different contact angle hysteresis 
ranges on the drying dynamics. We consider three cases with the hysteresis ranges of 
( �R = 60◦, �A = 80◦ ), ( �R = 20◦, �A = 60◦ ) and ( �R = 30◦, �A = 84◦ ). Compared with the 
drying case at constant contact angle discussed above, we consider contact angle hysteresis 
extending the contact angle range in case (a) by adding an advancing contact angle, case 
(b) adding a receding contact angle while case (c) we add contact angles at both limits. The 
simulated drying process for these three cases is shown in Fig. 12a–c. At t* = 0.00 before 
the drying starts, we see the contact angles are 80◦, 60◦, 84◦ , which ensures minimum inter-
face area within the given hysteresis range. During drying, the large interface (1) recedes, 
while the small interface (2) remains pinned, as shown in Fig. 12a–c at t* = 34.61. For all 
three cases, the receding contact angles are close to �R set in the simulations, i.e., 60◦ , 24◦ 
(error of 4◦ ) and 31◦ (error of 1◦ ), respectively. In contrast, the contact angles at the pinned 
interface (2) are quite different from the advancing contact angle, being 65◦ , 58◦ and 61◦ , 
respectively, which is within the contact hysteresis range as expected. If we compare case 
(a) with the drying case at constant contact angle in Fig. 11, we can see that pinning occurs 

Fig. 12  Drying of two connected capillary tubes with different widths considering different contact angle 
hysteresis ranges at different dimensionless time t*. Subfigures a to c correspond to Supplementary movies 
6 to 8. Black dashed line shows initial average interface location
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with a higher contact angle at interface (2), i.e., �2 = 65◦ compared to the receding con-
tact angle �1 = 60◦ . Since the pressure difference is Δp = �(cos �2∕r2 − cos �1∕r1) , when 
r1, r2 and � are constant, Δp decreases with increasing contact angle �2 , which weakens the 
pumping strength. As a result, the liquid transported to interface (2) from interface (1) by 
capillary pumping equals to that consumed by local drying at interface (2). Furthermore, 
comparing the three cases, we can see that a smaller receding contact angle at interface 
(1) leads to a smaller pinning contact angle at interface (2). The reason is again explained 
by the balance of capillary pumping with local drying at interface (2). The local drying at 
interface (2) is mainly the same for all three cases; thus, the pumping should be the same. 
Compared with case (a), if �1 decreases in cases (b) and (c), then Δp drops. To keep Δp 
in cases (b) and (c) the same as in case (a), �2 has to decrease accordingly ( 58◦ and 61◦ 
compared to 65◦ ). Another observation from Fig. 12a at t* = 34.61 is that, if we only con-
sider the advancing contact angle, then �A has to be higher than 65◦ for the interface (2) 
to pin. Similarly, if we only consider the receding contact angle, then �R has to be lower 
than 30◦ for the interface (2) to pin. The value of critical receding contact angle ( 30◦ ) for 
pinning to occur is further analyzed showing an advancing of interface (2) for a contact 
angle hysteresis range of ( �R = 40◦, �A = 60◦ ), while pinning of interface (2) occurs for 
( �R = 30◦, �A = 60◦ ) as shown in Figure S3 of Supplementary Materials. As drying goes 
on, the large interface (1) reaches the passage at which point the small interface (2) starts 
to recede, as shown at t* = 66.91 in Fig. 12a–c. Afterward, interface (2) recedes at corre-
sponding contact angle �R , while the previous interface (1) becomes interface (3) and stay 
pinned, as shown at t* = 116.36 in Fig. 12a–c. The corresponding pinning contact angles 
of interface (3) are 63◦ , 36◦ and 41◦ , respectively, showing the same relation that smaller 
receding contact angles lead to smaller pinning contact angles. Finally, at t* = 161.50, the 
remaining liquid dries at the left corner of the small tube with the corresponding receding 
contact angle �R.

Looking at drying in two connected capillary tubes, the effect of different ranges of 
contact angle hysteresis is illustrated. When the liquid dries at constant contact angle, the 
large interface first recedes while the small one advances due to strong capillary pumping, 
i.e., the liquid amount transported to the small interface is higher than the amount evapo-
rated. When different hysteresis ranges are considered, the small interface may first remain 
pinned at different contact angles while the large interface recedes at the receding contact 
angle. A smaller receding contact angle leads to a smaller pinning contact angle.

4.5  Drying of a Dual‑Porosity Porous Medium

In the previous subsections, we validated the contact angle hysteresis model with droplets 
drying on flat and curved surfaces. We further utilized the hysteresis model to study the 
influence of different hysteresis ranges on the drying dynamics in two connected capillary 
tubes. In this subsection, we apply the contact angle hysteresis model looking at liquid 
drying in a more complicated geometry, i.e., a dual-porosity porous medium. The study of 
drying in dual-porosity porous media is a well-studied topic in the porous media commu-
nity. Jabbari et al. (2016) applied a coupled free-flow porous media model to study drying 
of graded/layered material with dual-porosities. They showed that the graded/layered struc-
tures lead to significant differences in drying time and maximum drying rate. They further 
investigated the influence of some parameters on the characteristic drying curves including 
ventilation speed, porous medium porosity, flow and porous medium temperature (Jabbari 
et al. 2017). Shokri et al. (2010) studied the evaporation process in layered porous media 
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for different thickness and layer sequence and capillary characteristics of each layer. They 
modeled the composite characteristic length for layered porous media and applied it to pre-
dict the transition from stage 1 to stage 2 of drying, and they conducted experiments to 
validate the proposed model. In this paper, the geometrical information used in simulations 
is shown in Figure S4 in Supplementary Materials. The domain size is 360 × 540  lattices2. 
The solid particle diameter ranges from 12 to 22 lattices while the interparticle distance 
is within 10 to 50 lattices, resulting in two porosities of �s = 75% in the central one-third 
part and �l = 90% in the left and right parts of the porous medium. The left, right and bot-
tom sides of the geometry are solid walls, while the top side is set with a constant pressure 
slightly lower than equilibrium pressure to induce drying.

We conduct two simulations with case (a) using a constant contact angle of �0 = 60◦ 
while case (b) considers a contact angle hysteresis of ( �R = 30◦, �A = 84◦ ). The phase dis-
tributions of the two cases at different dimensionless time t* during the drying process are 
compared in Fig. 13a–b. First, the main trend is similar in two cases, i.e., the large pores in 
large porosity regions are invaded first, followed by the invasion of small pores in the small 
porosity region. This drying pattern is determined by the capillary pumping from large to 
small pores, as explained in Sect. 4.4. Despite the global similarity of main drying pattern, 
there are considerable differences between the two drying processes. As shown in Fig. 13 
at t* = 137.50, the interface invades faster in the left part in case (a), while opposite trend 
is seen in case (b). At t* = 263.98, we can see that the invasion of large pores in case (a) is 
completed, while there is still an amount of liquid in the left side in case (b). During the 
drying in the central part with small porosity, the phase distributions are also different for 
both cases. At t* = 401.48, two isolated clusters occur in case (a) while there is only one 
connected cluster in case (b). Different liquid configurations and clusters in case (a) and (b) 
are also seen at t* = 549.97.

Fig. 13  Drying of a dual-porosity porous medium a using a constant contact angle of �0 = 60◦ and b con-
sidering contact angle hysteresis of ( �R = 30◦, �A = 84◦ ) at different dimensionless time t*. Subfigures a 
and b correspond to Supplementary movies 9 and 10, respectively
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After this global comparison of phase distributions, we analyze differences in interface 
evolution at pore scale. Considering small time steps between two phase distributions in 
Fig. 14, we use red and green curves to represent the liquid–vapor interfaces at the different 
dimensionless time t*. The red arrows pointing from the red interface to green one denote 
receding events, while the green arrows underline advancing or pinning events. Figure 14 
documents significant rearrangements of the interfaces, highlighting the co-occurrence of 
receding and advancing/pinning local events. As we explained above, liquid recedes from 
larger interfaces to smaller interfaces due to capillary pumping. The black streamlines in 
Fig. 14 illustrate the capillary pumping in liquid phase as well as the transport in vapor 
phase between some interfaces in the porous medium. At the same time, this capillary 
pumping may lead to the advancing of neighboring smaller interfaces if the pumping is 
locally stronger than drying. In Fig. 14a for the drying at constant contact angle of � = 60◦ , 
clear advances are seen at the interfaces marked with green arrows. In Fig. 14b for the dry-
ing considering contact angle hysteresis of ( �R = 30◦, �A = 84◦ ), no interface is advancing 
and the interfaces remain pinned. We can see that the curvature of the interfaces decreases 
after the red interfaces turn into green along the green arrows, indicating an increase of 
local contact angle. As explained in Sect. 4.4, the increase of contact angle at smaller inter-
faces, thus higher radius of curvature, weakens the pumping and thus the small interfaces 
can stay pinned. Similar phenomena during drying in both cases are further illustrated in 
Figure S5 in Supplementary Materials. We note that, even for case (b) with contact angle 
hysteresis, the small interface may advance when the pumping effect is so strong that the 
advancing contact angle ( �A = 84◦ here) is not high enough to make the interface pinned. 
One example of this occurrence is shown in Figure S6 in Supplementary Materials.

After the qualitative comparison of drying patterns, we further quantitatively compare 
the evolution of normalized liquid mass and evaporation rate during drying. The normal-
ized liquid mass is defined by the liquid mass at dimensional time t* divided by the initial 
liquid mass, i.e., m∗

l
(t∗) = ml(t

∗)∕ml(t
∗ = 0) . The normalized evaporation rate is the change 

Fig. 14  Comparison of interface evolution during drying of a dual-porosity porous medium between case a 
using a constant contact angle of �0 = 60◦ with t* = 66.00 ~ 71.50 and case b considering contact angle hys-
teresis of ( �R = 30◦, �A = 84◦ ) with t* = 241.99 ~ 247.49
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of normalized liquid mass in a certain time period dt∗ = 5.5 (corresponding to 10,000 
iterations), i.e., Ep∗(t∗) = (ml(t

∗ + dt∗) − ml(t
∗))∕dt∗ . As shown in Fig.  15a, the normal-

ized liquid mass decreases with decreasing rate for both cases, while the total drying time 
of the case considering contact angle hysteresis ( �R = 30◦, �A = 84◦ ) is about 16% longer 
than the case with constant contact angle �0 = 60◦ . The drying rate in Fig. 15b consists of 
three stages, for both cases. Before t∗

1
≈ 40 , the drying front is very close to the top open 

boundary, where the drying rate is very high. Afterward, the liquid recedes within the large 
pore regions at the left and right sides of the sample ( �l = 90% ), when the drying rate is 
moderate since capillary pumping between large pores and small pores sustains the liquid 
front in the small pores in the central region ( �s = 75% ). After t∗

2
≈ 265 , the large pores are 

completely dry and the capillary pumping decreases dramatically, explaining an even lower 
drying rate. The average drying rate in the case considering contact angle hysteresis is 
lower than the rate of the case with constant contact angle. This is due, first, to the weaker 
capillary pumping, since the receding contact angle is smaller than constant one in case 
(a) and, second, to the advancing contact angle is higher than the constant one promoting 
the pinning of the interface instead of advancing. Both effects prevent the interface from 
advancing toward the top open side of the porous medium, and thus, the average evapora-
tion rate is slightly smaller.

In order to verify that the mesh resolution is sufficiently fine to accurately simulate dry-
ing of porous media, we increase the mesh size by 50% in each direction and redo the sim-
ulations using the same setup. The size of this high-resolution mesh is 540 × 810  lattices2. 
Since the change of mesh size will also change the capillary pressure, we ensure to keep 
the capillary numbers of the simulations with different resolutions the same allowing to 
compare the two results. The comparisons of liquid configurations at same liquid satura-
tion with two different mesh sizes considering constant contact angle of 60° and contact 
angle hysteresis of 30° to 84° are shown in Figures S7 and S8 in Supplementary Materi-
als, respectively. We can see that, for both cases, the liquid configurations are quite similar 
with different mesh sizes. There are some differences when the liquid saturation becomes 
small, i.e., after S = 11.4 and 13.4% in Figures S7 and S8 in Supplementary Materials. At 
this drying stage, the large porosity regions are already fully dried, and the drying is basi-
cally diffusive without capillary dominated flow. In this diffusive drying period, the liquid 
configuration becomes very sensitive to the geometry of the solid. Since the lattices are in 
Cartesian coordinates while the solid particle is cylindrical, when we increase the cylinder 

Fig. 15  Comparison of a normalized liquid mass and b evaporation rate during drying of a dual-porosity 
porous medium between the case using a constant contact angle of �0 = 60◦ and the case considering con-
tact angle hysteresis of ( �R = 30◦, �A = 84◦)
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diameter by 50%, the actual lattices occupied by the cylinder are not exactly 1.25 times. 
This difference is one of the main reasons for differences in liquid configuration during 
diffusive drying. We further compare the saturations against the normalized drying time as 
shown in Figure S9 in Supplementary Materials. The saturation curves obtained under dif-
ferent mesh sizes almost coincide for both contact angle cases. Overall, we can see that our 
model is accurate with the mesh size of 360 × 540  lattices2 used in our simulations.

To sum up, we studied drying of a dual-porosity porous medium in this subsection with 
and without considering contact angle hysteresis. The main drying patterns are similar in 
both cases, where the large pore regions are invaded first, followed by the drying of the 
small pore region. With capillary pumping occurring from relatively large to neighboring 
smaller pores in the high porosity regions, the interfaces of neighboring smaller pores may 
advance in the case of drying at constant contact angle, while they mainly stay pinned at a 
higher contact angle (lower than advancing contact angle), in the case of drying consider-
ing contact angle hysteresis. As a result, the phase distributions are different for the two 
cases resulting in different drying dynamics. The average evaporation rate is slightly lower 
when considering contact angle hysteresis, since the capillary pumping is weaker and the 
small interfaces tend to stay pinned instead of advancing toward the top-side open end.

5  Conclusions

In this paper, we have proposed the embedment of a contact angle hysteresis model in a 
pseudopotential two-phase LBM to study drying of porous media. The contact angle hys-
teresis model is implemented based on a geometric formulation scheme, where the contact 
angle can be directly prescribed and automatically measured during the simulation, being 
essential to implement a contact angle hysteresis model. We first validate the model by 
prescribing and automatically measuring contact angles simulating droplets sitting on flat 
and curved surfaces. Within the simulated contact angle between 10◦ and 140◦ , the average 
and maximum errors are less than 1◦ and 5◦ , indicating the capability and accuracy of the 
proposed model. Afterward, this model is utilized to simulate droplets drying on flat and 
curved surfaces. When considering only a constant contact angle and no hysteresis, the 
droplet dries in constant contact angle mode. On the other hand, when considering contact 
angle hysteresis, the droplet dries in a stick–slip mode. Subsequently, drying in two con-
nected capillary tubes is studied considering different ranges of contact angle hysteresis. 
The results show that, by reducing the receding contact angle or increasing the advancing 
contact angle to critical values, the interface in the small tube becomes pinned instead of 
advancing, which occurs when using a constant contact angle without hysteresis.

Finally, drying of a dual-porosity porous medium is studied with and without consid-
ering contact angle hysteresis. While the main drying pattern remains similar, i.e., high 
porosity regions are invaded first, the phase distributions are notably different since local 
interface evolutions are not the same. The average drying rate is slightly lower when con-
sidering contact angle hysteresis, since the capillary pumping from large to small pores is 
weaker and the advancing of small interfaces is significantly restricted and pinning occurs 
favorably.

The proposed model is shown to be able to handle contact angle hysteresis on both flat 
and curved surfaces, allowing to analyze its effect on liquid drying under different situa-
tions. Although liquid drying in rather simple porous media is studied in this paper, the 
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simulation methodology has a high potential to be applied to problems in different kinds of 
engineering applications related to liquid drying in more complex porous media.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11242- 021- 01644-9.
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