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Phonetic relevance and phonemic 
grouping of speech in the 
automatic detection of Parkinson’s 
Disease
Laureano Moro-Velazquez   1*, Jorge A. Gomez-Garcia2, Juan I. Godino-Llorente2, 
Francisco Grandas-Perez3, Stefanie Shattuck-Hufnagel4, Virginia Yagüe-Jimenez5 & 
Najim Dehak1

Literature documents the impact of Parkinson’s Disease (PD) on speech but no study has analyzed in 
detail the importance of the distinct phonemic groups for the automatic identification of the disease. 
This study presents new approaches that are evaluated in three different corpora containing speakers 
suffering from PD with two main objectives: to investigate the influence of the different phonemic 
groups in the detection of PD and to propose more accurate detection schemes employing speech. 
The proposed methodology uses GMM-UBM classifiers combined with a technique introduced in this 
paper called phonemic grouping, that permits observation of the differences in accuracy depending on 
the manner of articulation. Cross-validation results reach accuracies between 85% and 94% with AUC 
ranging from 0.91 to 0.98, while cross-corpora trials yield accuracies between 75% and 82% with AUC 
between 0.84 and 0.95, depending on the corpus. This is the first work analyzing the generalization 
properties of the proposed approaches employing cross-corpora trials and reaching high accuracies. 
Among the different phonemic groups, results suggest that plosives, vowels and fricatives are the most 
relevant acoustic segments for the detection of PD with the proposed schemes. In addition, the use of 
text-dependent utterances leads to more consistent and accurate models.

Parkinson’s Disease (PD) is a chronic condition caused by the gradual death of brain cells, including those located 
in the substantia nigra, implicated in the production of dopamine. This neurotransmitter is involved in many 
neuronal activities that play a determining role in motor tasks. The consequent loss of dopamine in the patient 
affected by PD results in a lack of coordination, muscle rigidity and slowness of movements, among other signs.

The most common criteria for PD diagnosis are mainly based on the observation of motor cardinal signs1, 
non-motor indicators such as dementia, depression, excessive salivation and constipation and other physiolog-
ical and cognitive manifestations whose evaluation is employed in clinical diagnosis. Notwithstanding, neuro-
pathological diagnosis during autopsy is considered the gold standard, although some studies demonstrate that 
following the usual clinical diagnosis criteria it is possible to obtain 90% accuracy in a final judgment within an 
average time of 2.9 years2.

Recent studies point toward the development of new neuro-protective therapies that will potentially slow or 
stop the progression of the disease3. When these therapies are ready, new tools to support and reduce diagnosis 
time or even provide an early detection of the disorder are going to be crucial. Additionally, reducing the time to 
diagnosis might improve and maintain the patient’s quality of life and increase their life expectancy4. The search 
for these new tools can be considered highly relevant since, unfortunately, there are currently no efficient, reliable 
methods capable of achieving an early or fast diagnosis in most of the cases, due to the fact that the symptoms of 
PD often overlap with symptoms of other diseases.

1Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, 21218, USA. 2Universidad 
Politécnica de Madrid, Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación, Madrid, 28031, Spain. 
3Hospital General Universitario Gregorio Marãnón, Madrid, 28007, Spain. 4Massachusetts Institute of Technology, 
Speech Communication Group, Cambridge, 02139, USA. 5Consejo Superior de Investigaciones Científicas, Centro de 
Tecnologías Físicas Leonardo Torres Quevedo, Madrid, 28006, Spain. *email: laureano@jhu.edu

OPEN

https://doi.org/10.1038/s41598-019-55271-y
http://orcid.org/0000-0002-3033-7005
mailto:laureano@jhu.edu


2Scientific Reports |         (2019) 9:19066  | https://doi.org/10.1038/s41598-019-55271-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Introducing new objective methods for automatic assessment employing the speech signal can help reduce the 
diagnosis time5, and speech is particularly useful for these purposes because it requires very precise and complex 
movements. These movements are usually affected early by the neurodegenerative processes associated with PD, 
resulting in dysphonia, dysarthria and disprosody6–9. For instance, several studies have reported lower ampli-
tude and velocity in jaw and lower lip opening during articulation of PD patients in comparison to controls10–14. 
Furthermore, PD affects different phonemic groups in distinct ways, with stop-plosives, fricatives and affricates 
the most affected, as some early works performing a perceptual analysis of parkinsonian speech suggest15–19. 
However these studies have not determined whether there are differences between the phonemic groups for 
patients vs. controls which are not easily perceptible to human listeners, but which can nevertheless be relevant 
for early detection.

Some preliminary findings suggest that this might be the case. For example, it has been found that voiced seg-
ments tend to be longer, while stop silences produced by the closures before bursts tend to disappear, in the speech 
of PD patients compared to control speakers7,20. These observations are in direct relationship with misarticulation 
phenomena common in some dysarthrias by which plosives are produced as fricatives, where the frication noise 
is not necessarily preceded by a closure. This phoneme transformation phenomenon is known as spirantization. 
On the other hand, differences in the slopes and variability of the formant frequencies between patients and con-
trols (and especially between the vowel space areas (VSA) of both groups) have been reported21–27. Based on that, 
recent studies propose automatic systems to detect or assess PD making use of the articulatory aspects of speech 
and advanced signal processing techniques, suggesting that speech processing can derive powerful indicators of 
imprecise consonant articulation in PD-related dysarthria20,21,28–30. The accuracy in PD detection of these works, 
as in most of the works in the literature, does not exceed 90%, although it is difficult to compare the performance 
of the different methodologies since each study uses a different corpus and evaluates its results following a dif-
ferent procedure. However, although some studies31 analyze the importance of several words or segments in 
respect to others in PD detection, none of the works found in the literature have studied in detail the detection 
capabilities as a function of the manner classes of phonemes, that is to say, their manner of articulation. This may 
be crucial for determining the focus of future systems and to adequately select the speech tasks to be employed.

In this respect, Figs. 1 and 2 allow a comparison between the waveforms and spectrograms of two parkin-
sonian and two control speakers while pronouncing the word “petaca” ([petaka], flask in English) containing 
three plosives and extracted from a longer sentence. In Fig. 1, a newly diagnosed PD patient with a low Unified 
Parkinson’s Disease Rating Scale (UPDRS)32 motor examination score (part III) is compared with an age-matched 
control (the rating according to the UPDRS motor examination, whose values can range between 0 and 72, is 
accomplished through clinical observations of the patient’s movements.) Although both waveforms exhibit a 
silence or stop closure between the end of the vowels and the beginning of the plosives, the spectrogram shows 
a tendency for the patient to convert the release bursts of plosives into a more gradual articulation. This effect 

Figure 1.  Waveforms and spectrograms of a speaker with PD (newly diagnosed) and a control speaker 
pronouncing the word [petaka]. Obtained from the Neurovoz corpus39. Red dot-lines mark the first four 
formants calculated with Praat software46. (A) Idiopathic PD female speaker. Age: 59. UPDRS: 9. Span: 720 ms. 
(B) Control female speaker. Age: 59. Span: 857 ms
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is not observed in the control speaker, whose bursts are clearly visible and delimited in the spectrogram. More 
pronounced effects can be found in Fig. 2, where the stop silences are shorter in the patient (before [t]) or nonex-
istent (before [k]), transforming the plosive consonant [k] into something similar to a fricative [G]. The periodic 
signal substituting for the stop silence before the consonant burst reveals an incomplete lip closure or a possible 
lack of control of the glottal source which keeps vibrating when it should have stopped. These effects are visible 
in the patient’s spectrogram too, where the bursts of the plosives are almost indistinguishable and, in the case of 
the plosive [k], the first spectral peak from the preceding vowel [a] is joined with the first spectral peak from the 
following vowel [a].

In cases such as these, a separate statistical modeling of the acoustic characteristics of plosive segments from 
patients and controls would lead to substantially different probabilistic densities. Hence, this work proposes dif-
ferent approaches to automatically detect PD while extending the analysis to different types of acoustic segments 
for this task.

Overview and Contribution
This work presents a method for studying the importance of the different phonemic groups in the automatic 
detection of PD through the analysis of the speech signal, in order to expand our knowledge of how PD affects 
speech. Therefore, one of the goals of this study is to identify the speech segments that are more relevant in 
automatic detection systems, serving as well to determine more appropriate speech tasks to be employed in this 
detection. We hypothesize that not all types of acoustic segments have the same relevance in the detection, since 
each one derives from a different narrowing, articulation and configuration of the vocal tract.

Although the literature shows some examples of phonetic and phonemic analysis of parkinsonian speech, a 
thorough study of the relevance of the different types of phonemic segments (defined here as different manner 
classes) in the automatic detection of PD has not yet been carried out. To analyze this relevance and to confirm 
the influence of PD in the different manners of articulation, several PD detection approaches were analyzed in the 
present study, making use of Gaussian Mixture Model-Universal Background Model (GMM-UBM) techniques33 
and Perceptual Linear Predictive (PLP) features34 as described in a previous study35 but using only certain pho-
nemic categories from the speech signal. These acoustic segments were selected depending on the manner of 
articulation, after applying the phonemic grouping process presented in this study to the speech signal. For these 
purposes, state-of-the-art speech forced alignment techniques were used.

In addition, the approaches described in this work were tested on three different parkinsonian speech corpora, 
in order to determine their generalization properties.

Figure 2.  Waveforms and spectrograms of a speaker with PD (in an advanced stage) and a control speaker 
pronouncing the word [petaka]. Obtained from the Neurovoz corpus. Red dot-lines mark the first four formants 
calculated with Praat software. (A) Idiopathic PD female speaker. Age: 85. UPDRS: 47. Span: 810 ms. (B) 
Control female speaker. Age: 83. Span: 780 ms.
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Theoretical Background
Phonetic and phonemic considerations.  The term ‘phoneme’ refers to abstract units which distinguish 
one word from another in a language, while the different pronunciation variants of a phoneme are often referred 
to as allophones. Different categorizations of allophones of the Spanish language can be found in the literature, 
from which the ones proposed by Quilis36 are widely used. The present study uses his categorization of manner of 
articulation, since this is related to the type of articulatory movements and the degree of narrowing of the vocal 
tract during the production of each allophone.

Focusing on this categorization, it is possible to find two main types of segments: vowels and consonants, 
where consonants can be divided into plosives, fricatives, affricates, liquids and nasals (also known as manner 
classes). The plosive consonants are those preceded by a stop or a total obstruction of the articulators that results 
in pressure buildup behind the constriction, producing a burst of noise after its release. An example of a plosive is 
the [′t] in typical productions of the word “pastel” [pas’tel]. Fricatives are those sounds in which the constriction is 
incomplete, so that air passing through the narrow but incomplete constrictions generates turbulence noise, and 
there is no previous stop closure. An example of fricative is the [′f] in the word “alféizar” [al’fejθar]. Affricates are 
those sounds which begin with a stop closure, have a noise burst which is extended, via a lengthened incomplete 
constriction, as frication. An example is the [′t∫] in the word “colchón” [kol’t∫on]. Liquids are similar to fricatives 
in the sense that they involve a narrowing in the vocal tract, but in this case the articulators do not approach 
closely enough to produce the same turbulence noise as in fricatives. The [′ř] in the word “rey” [′řei] is an exam-
ple of a liquid. Nasal consonants are produced when there is a constriction in the oral tract, and the soft palate is 
lowered to allow the air coming from the larynx to pass through the nasal cavities and escape through the nose. In 
Spanish, nasals are sonorants, which means that the glottal source is functioning while articulating, as in vowels. 
An example of a nasal is the [′n] in the word “canario” [kanaɾjo].

Forced alignment and phonemic grouping.  Speech forced alignment techniques37 are used to iden-
tify and label sound within a speech recording when its transcription is known. This process consists in the 
automatic segmentation of the signal, giving as a result separated speech acoustic segments. These segments are 
often referred to as allophones or context-appropriate pronunciation variants of the phonemes that specify the 
word forms (although the acoustic segments that are identified can also be described as interlandmark intervals, 
because their boundaries are often determined by abrupt changes in the acoustic signal known as landmarks38.) 
Forced alignment methods produce a segmentation of the signal, with each identified interval labeled as a single 
allophone determined by the transcription, no matter how they were realized in the surface phonetics of the sig-
nal. Figures 1 and 2 show an example of a forced alignment of the word “petaca”.

The speech forced alignment set-up described by Moro et al.39 was employed in this work to train a Forced 
Alignment Model (FAM). This FAM can be used to perform the phonetic segmentation and labeling of the speech 
recordings. Then, this labeling can be employed to identify the speech segments that correspond to a certain 
manner category, that is to say, to group together only acoustic segments that correspond to either affricates, fric-
atives, liquids, nasals, plosives or vowels. This process, consisting of the automatic selection of groups of acoustic 
segments that share a manner of articulation has been called phonemic grouping. It permits the analysis of the 
acoustic differences between speakers with and without PD regarding different types of vocal tract constrictions 
(plosives, fricatives and liquids), the vibration of the vocal folds in combination with articulatory movements 
(vowels, liquids and nasals) and the articulation of the soft palate (nasals). This helped to test if the poor motor 
control of patients with Parkinson’s disease would result in more variability for all manner classes.

Materials and Methodology
Materials: speech corpora.  Five speech corpora were used in this study: Neurovoz, GITA, CzechPD, 
FisherSP and Albayzin. The first three are made up of different speech tasks from PD patients and matched con-
trol speakers. Albayzin is an auxiliary corpus used to train the different UBM as explained in Methods subsection 
while FisherSP was employed to create a FAM39.

Neurovoz.  This corpus contains 47 parkinsonian and 32 control speakers whose mother tongue is Spanish 
Castillian. The sub-set utilized in the present study contains a Diadochokinetic (DDK) task (repetitions of the 
sylable sequence “pa-ta-ka”), six text-dependent utterances (TDU) and a monologue (picture description). The 
speech was produced at a comfortable phonatory level. Table 1 contains the transcription and International 
Phonetic Alphabet (IPA) transcription of the TDU. All of the patients were under pharmacological treatment and 
took the medication between 2 and 5 h before the speech recording39. The Ethics Committee of Hospital General 
Universitario Gregorio Marañón approved the recording of the speech and the associated experimental protocols 
and methods, according to the Helsinki Declaration developed by the World Medical Association and derived 
European Directives. Signed informed consent was obtained from all speakers.

Gita.  This corpus contains a variety of speech tasks from 50 PD patients and 50 control speakers whose native 
language is Spanish Colombian40. Three types of speech tasks from GITA were utilized in this study: a DDK task 
(“pa-ta-ka”), six TDU and a monologue. Table 2 contains the transcription and International Phonetic Alphabet 
(IPA) transcription of the TDU. The recording of this corpus and the associated experiments are in compliance 
with the Helsinki Declaration and were approved by the Ethics Committee of the Clínica Noel, in Medellín, 
Colombia. A written informed consent was signed by each participant according to the authors of the corpus40.

CzechPD.  The CzechPD subset employed in this study only contains a DDK task (repetitions of the syl-
lable sequence “pa-ta-ka”) from 20 newly diagnosed and untreated speakers with PD and 14 controls whose 
mother tongue is Czech21. This subset only contains male speakers. The recording of this corpus and associated 
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experiments are in compliance with the Helsinki Declaration and were approved by the Ethics Committee of 
the General University Hospital in Prague. All participants provided written informed consent, according to the 
authors of the corpus28.

Table 3 shows the age, sex, UPDRS and years since diagnosis statistics of speakers in the three corpora.

Auxiliary corpora.  The phonetic dataset from the Albayzin corpus41 is also employed in the present study. This 
phonetically balanced dataset, sampled at 16 kHz and quantized with 16 bits, contains more than 4.800 utterances 
(4.1 h) in Castillian Spanish along with their transcriptions.

In addition, the FisherSP (Fisher Spanish) corpus, recorded by the Linguistic Data Consortium (8 kHz as 
sampling rate and 16 bits) to train and evaluate automatic speech recognizers in the Spanish language, was used 
in this study. It comprises around 163 h of telephonic speech from native Spanish speakers from more than 20 
countries, along with their transcriptions.

Methodology.  The general methodology of this study followed these main steps:

•	 Firstly, some trials employing different speaker recognition technologies were performed following the 
procedure analyzed in a previous study35 in order to set a baseline to be compared with the proposed new 
approaches.

•	 Then, a FAM in the Spanish language was trained with FisherSP and used to segment and label all the utter-
ances with associated transcriptions from three corpora: GITA, Neurovoz and Albayzin.

•	 The labeling was employed to identify tokens of the different manner classes in these three corpora, and to 
create several GMM-UBM models, employing Albayzin as UBM and the parkinsonian corpora for adapta-
tion. Three different approaches employing phonemic grouping are proposed to analyze the importance 
of the different phoneme categories for the automatic detection of PD. When possible, some trials using 
CzechPD to adapt the UBM were also carried out.

•	 Finally, several cross-corpora trials employing the baseline procedure and some of the proposed approaches 
completed and validated the proposed methodology.

General considerations.  In all the proposed approaches, the same front-end was used; utterances were filtered 
and downsampled to 16 kHz if their sampling frequency was higher. Then, the signals were normalized and char-
acterized using Rasta-PLP + derivatives (Δ + ΔΔ)34, with number of PLP coefficients (F) varying in the range {10 
... 20} in steps of 2. The length of the frames was set to 15 ms with an overlapping of 50%, employing a Hamming 

Sentence # Spanish transcription/IPA transcription/English translation

1
Cuando las barbas de tu vecino veas pelar, pon las tuyas a remojar/[kwa

∩
ndo la

∪
s  βaɾβa

∪
s  


e tu βeθino βea
∪
s  pelaɾ pon la

∪
s  tuʝa

∪
s  

a řemoxaɾ]/When your neighbor’s beard you see peeling, put yours to soak

2 De la calle vendrá quien de tu casa te echará/[de la kaʝe Be

ndɾa kjen 


e tu kasa te e ∫t aɾa]/From outside will come that who 

will kick you out from your house

3 Cuando el diablo no sabe qué hacer, con el rabo mata moscas/[kwa
∩
ndo el 


jaβlo no saβe ke aθeɾ kon el řabo mata 

moskas]/When the devil does not know what to do, it kills flies with its tail

4 La petaca blanca es mía/[la petaka βlanɣka e
∪
s  mia]/The white flask is mine

5 No pidas a quien pidió, ni sirvas a quien sirvió/no pi


a
∪
s  a kjen pi


jo ni siɾβa

∪
s  a kjen siɾβjo]/Do not beg the one who begged, 

nor serve the person who served

6 El que a buen árbol se arrima, buena sombra le cobija/[el ke a βwen aɾβol se ařima βwena sombɾa le koβixa]/To the one that 
comes to a good tree, good shade covers him

Table 1.  Spanish transcription of the six Neurovoz TDU (Spanish), IPA transcription and translation to 
English.

Sentence # Spanish transcription/IPA transcription/English translation

1 Luisa Rey compra el colchón duro que tanto le gusta/[lwisa ře i kompɾa el kol’tʃon 


uɾo ke tanto le ɣusta]/Luisa Rey buys the 
hard mattress that she so much likes

2
Los libros nuevos no caben en la mesa de la oficina/[loʂ li


βɾoʂ ’nweβ


oʂ no kaβ


en en la meʂa 


e la ofi’ʂina]/The new books do 

not fit in the office desk

3 Laura sube al tren que pasa/[la
∩
uɾa suβe al tɾen ke pasa]/Laura gets on the passing train

4 Mi casa tiene tres cuartos/[mi kasa tjene tɾe
∪
s  kwartos]/My house has three rooms

5 Omar, que vive cerca, trajo miel/[õmar ke βiβe seɾka traxo mjel]/Omar, living nearby, brought honey

6 Rosita Niño, que pinta bien, donó sus cuadros ayer/[řosita niɲo ke pi
∩
nta βjen 


ono sus kwa


ɾos aʝeɾ]/Rosita Niño, who paints 

well, donated her paintings yesterday

Table 2.  Transcription of the six GITA TDU (Spanish), IPA transcription and translation to English.
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window and 5 coefficients in the FIR filter used to calculate derivatives as this is the set-up that led to optimum 
results in a previous study35. In the baseline and in the new proposed approaches, all the available TDU were 
pooled to train the same model for all of the trials associated to one specific corpus. Therefore, the studied allo-
phones were not sentence-dependent. The cross-validation trials followed a k-folds strategy (11 folds). None of 
the utterances or frames from a speaker employed to adapt the UBM were used in the testing stage during the 
cross-validation.

Lastly, and regarding the classification stage employing GMM-UBM in the baseline and the proposed 
approaches, the number of Gaussians G varied in powers of 2 from 4 to 256.

Baseline.  In the baseline trials, all the available speech tasks from each parkinsonian corpus were used to adapt 
several UBM trained with Albayzin. An UBM is a GMM model that estimates the probability density function 
that characterizes a group of feature vectors of dimension D from a certain corpus, using a linear combination of 
G Gaussian components. This UBM serves as an initialization of the final GMM-UBM model that is used, in this 
case, to detect PD. In this work the resulting GMM-UBM were obtained through Maximum a Posteriori (MAP) 
adaptation of the UBM employing each parkinsonian corpus separately, a method that is similar to some speaker 
recognition systems33. This methodology provided accuracies up to 85% in the cited previous study35.

Proposed approaches and phonemic grouping.  Several types of trials were carried out, employing only the specific 
acoustic segments in the speech signal that correspond to a single intended manner class (identified by means 
of phonemic grouping), to train the UBM and to adapt it following MAP adaptation. Three different approaches 
were followed, depending on where the phonemic grouping process was applied: in the adaptation-testing set 
(GITA, Neurovoz or CzechPD), in the UBM corpus or in both. On each trial, the GMM-UBM were first adapted 
and then tested using only one specific parkinsonian corpus and acoustic segments associated with only one 
manner class: either fricative, liquid, nasal, plosive or vowel. Affricate segments were not analyzed, as these are 
underrepresented in TDU from GITA and Neurovoz (see Table 4). One of the main reasons this group is unrepre-
sented is that among all of the manner classes discussed here, affricates are the least common class in the Spanish 
language, representing less than 3% of the total phonemes42.

In order to categorize the acoustic segments phonemically into groups that each correspond to a sin-
gle intended manner class, a Spanish FAM39 was created in Kaldi43 and then used to segment and label GITA, 
Neurovoz and Albayzin. Then, after calculating the feature vectors containing D Rasta-PLP + Δ + ΔΔ coeffi-
cients for all the frames of the speech utterances, these were distributed into the corresponding manner groupings 
according to their phonemic labels, for training, adaptation or testing, in the corpora in which phonemic group-
ing was applied, depending on the experiment.

In the first approach (raw-phon), the phonemic grouping was applied only to the TDU of the adaptation-testing 
corpora (Neurovoz and GITA, used separately). A depiction of this approach is shown in Fig. 3. The notation 
raw-phon indicates that the we did not apply the phonemic grouping process to the UBM corpus (raw) while we 
applied it to the adaptation corpus (phon).

In the second approach (phon-phon), a new round of trials was carried out following the same premises but 
pursuing now phonemic grouping in the UBM too (Albayzin). A depiction of the second approach is presented 
in Fig. 4.

It is convenient to remark that in these two first approaches the phonemic grouping was applied to both 
training (adaptation) and testing utterances in the parkinsonian corpora. In this way, the obtained systems mod-
eled only one phonemic manner category at a time (fricative, plosive, etc.) and during the testing stage, only the 
specific acoustic segments associated with each category were employed. Therefore, the two first approaches and 
their associated rounds of trials permitted analysis of the importance of the different phonemic manner categories 
in the automatic detection of PD using connected speech. In these two first approaches, only TDU from GITA 
and Neurovoz were employed, since these were the only recordings that included transcriptions.

In the third approach (phon-raw), the phonemic grouping was applied only to the UBM corpus in order to 
analyze the importance of the initialization of the GMM-UBM. In this last approach, all three parkinsonian cor-
pora were employed without performing any forced alignment. TDU, monologues, and DDK tasks from GITA 

Neurovoz GITA CzechPD

Female Male Female Male Male

PD Ctrl PD Ctrl PD Ctrl PD Ctrl PD Ctrl

#Subjects 18 18 29 14 25 25 25 25 20 16

Age, 
average 70.9 (8.4)

68.4 
(6.0) 71.9 (12.3)

66.6 
(6.4) 60.7 (7.3)

61.4 
(7.0) 61.5 (11.6)

60.5 
(11.6) 61 (11.7)

61.8 
(12.9)

Age range 59–86 58–83 41–88 55–77 49–75 49–76 33–81 31–86 34–83 36–80

UPDRS *, 
average 16.9 (11.5) — 19.6 (11.8) — 37.5 (14.0) — 37.7 (22.0) — 17.9 (7.1) —

Years since 
diagnosis 6.4 (6.4) — 7.6 (4.7) — 12.6 (11.5) — 8.9 (5.9) — 2.4 (1.6) —

Table 3.  Demographic statistics of Neurovoz, GITA and CzechPD corpora. Ages are expressed in years. Ctrl 
stands for healthy controls. Standard deviation values are presented in parenthesis. *The Neurovoz corpus only 
contains UPDRS part III, i. e. motor examination; GITA contains global values of Movement Disorder Society 
UPDRS; CzechPD contains global values of UPDRS.
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and Neurovoz were examined separately. The DDK task from CzechPD was employed too since it was considered 
that this task has similar phonetic characteristics in the three parkinsonian corpora and can be used to adapt the 
UBM, independently of the mother tongue of the speaker (Spanish or Czech). Figure 5 shows a diagram of the 
third approach.

#Repetitions

Phonemic category GITA Neurovoz

Affricate 2 3

Fricative 29 35

Liquid 23 26

Nasal 19 21

Plosive 26 35

Vowels 85 107

Table 4.  Total number of repetitions of consonants and vowels in TDU from GITA and Neurovoz.

Figure 3.  First proposed approach5. Phonemic grouping methodology is applied to the parkinsonian corpus 
(raw-phon).

Figure 4.  Second proposed approach5. Phonemic grouping methodology is applied to the parkinsonian and 
UBM corpora (phon-phon).
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The objective of this last approach was to provide GMM-UBM classifiers that are more precise in modeling a 
certain type of acoustic segment but without completely discarding the rest of the acoustic segments present in 
the adaptation subset; in this way the last approach was different from the two previous proposed approaches. 
First, we consider that after a plosive grouping (as for any other phonemic grouping) of the UBM corpus we 
will obtain two types of acoustic segments: those including only frames related to plosives and those containing 
frames that also have information about adjacent sounds. This last type of frames arises near the initial or ending 
parts of a plosive, where the frame may include part of the beginning (or ending) of the plosive and part of the 
adjacent sound, when the frame coincides with a transition into or out of an adjacent vowel. Considering this, 
Fig. 6 illustrates an example of plosive grouping only in the UBM. In this example, most of the UBM Gaussians 
in the upper part of the figure -five in this case- have been modeled using only plosives (plos) whereas the other 
two UBM Gaussians in the lower part arose from the less abundant frames that contained information about the 
plosives along with information about other adjacent acoustic segments -mainly vowels- (plos-vow). Considering 
the use of a DDK task (“pa-ta-ka”) as speech material for the MAP adaptation, our hypothesis is that the sufficient 
statistics33 obtained from the plosive segments present in the adaptation utterances ([p], [t], [k]) tend to perform 
the adaptation of the Gaussians created in the UBM with only plosives. On the other hand, the sufficient statis-
tics obtained from the remaining segments ([a]) tend to adapt the other two Gaussians from the UBM, that are 
closer to those segments. Thus, the resulting GMM-UBM is modelling the features coming from several types of 
acoustic segments but is more focused on the plosives. Consequently, and generalizing, the phonemic grouping 
of the UBM corpus produces GMM-UBM models oriented to either fricatives, liquids, nasals, plosives or vowels, 
depending on the phonemic grouping but considering also the rest of the acoustic segments to a minor extent.

Scoring.  The score for each utterance u comprising N frames with respect to the GMM-UBM relative to class c 
(Γc) was calculated employing the log-likelihood of the feature vectors from every frame xn as:

∑ ΓΛ = |
=N

p x1 log ( ) ,
(1)u

c

n

N

n
c

1

where p(xn|Γc) is the Gaussian density of class c (c can be PD or Ctrl) for feature vector xn.
Finally, the global scores for each utterance were expressed in the form of log-likelihood ratio:

Λ = Λ − Λ . (2)u u u
PD Ctrl

To compute the class membership of a certain utterance from the test set, its score was compared with a 
threshold, λ to prove the hypothesis of this utterance belonging to the parkinsonian class, HPD. If the score Λu was 
higher than λ, the hypothesis was accepted; otherwise, the hypothesis was rejected. In all the approaches analyzed 
in this study, this threshold was determined by the equal error rate (EER)44 point obtained with the scores of the 
adaptation data.

Fusion of scores.  After analyzing the results of all the approaches, a fusion of scores from the approach provid-
ing the best accuracy and Area Under the ROC Curve (AUC) was studied. For each corpus, the speaker scores 

Figure 5.  Third proposed approach5. Phonemic grouping methodology is applied to the UBM corpus (phon-raw).
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obtained from the five possible phonemic groupings (fricative, liquid, nasal, plosive and vowels) were fused fol-
lowing all the possible combinations of n−tuples, going from 2−tuples to 5−tuples. To obtain a final score coming 
from the fusion of several scores, a logistic regression was employed. Therefore, for a given speaker and speech 
task a new score was calculated considering between two and five scores from this speaker and task, each score 
coming from a different phonemic grouping. Given that F is the number of PLP coefficients and G is the number 
of Gaussians on the GMM, only the scores produced with the same F and G were combined. For instance, to 
obtain the fricative-liquid-vowels score fusion for a certain trial, the three single scores from each speaker for 
the fricative, liquid and vowel categories, respectively, obtained with the same F and G were used in the fusion.

Cross-corpora validation.  Finally, a cross-corpora validation procedure was followed considering the baseline 
and the third approach (phon-raw), in which we applied the phonemic grouping process to the Albayzin corpus 
to obtain the five different types of UBM, that were subsequently adapted and tested with the DDK tasks from the 
parkinsonian corpora. In particular, three rounds of trials were carried out: in each one, two of the corpora were 
used jointly to adapt the model and the remaining corpus was utilized exclusively for testing. Therefore, there 
were several models created with the speakers from GITA and Neurovoz and tested with CzechPD; other models 
created with GITA and CzechPD and tested with Neurovoz; and a third group of models adapted employing 
the utterances from Neurovoz and CzechPD and tested with GITA. In this case, the same front-end, classifica-
tion parameters and scoring procedures of the rest of the experimental set were used. The differences between 
cross-validation and cross-corpora validations is illustrated in Fig. 7.

Results
In this section, the results of the cross-validation (k-folds) and cross-corpora trials are expressed in terms of accu-
racy (%) ± Confidence Interval (CI)44, AUC, sensitivity and specificity. To calculate the CI, 95% confidence level 
was considered. In all tables, best global results per corpus are in bold.

Table 5 contains the results of baseline trials (in which no phonemic grouping was applied to any utterance) 
employing the three parkinsonian corpora separately. Table 6 includes the best results of the three proposed 
approaches with GITA and Neurovoz and considering different speech tasks. In the first approach (raw-phon), 
phonemic grouping was applied only to the parkinsonian corpora; in the second (phon-phon) the phone-
mic grouping was applied to the parkinsonian and to the UBM corpus (Albayzin); and in the third approach 
(phon-raw), the phonemic grouping was applied only to the UBM corpus. Additionally, Table 7 includes the best 
results employing CzechPD in the third approach. In this case, only the DDK task was used.

Table 8 shows the results of the fusion of scores of the different phonemic groupings in the third approach 
(phon-raw) since this is the one that leads to higher accuracies in the cross-validation trials, according to Table 6. 
Finally, Tables 9 and 10 show the results of cross-corpora trials in the baseline scheme and in the third approach, 
respectively. Figure 8 includes a graphical representation of best accuracies and AUC reached in the different 
trials to compare the relevance of each phonemic category in the automatic detection.

Discussion
In this study, three different approaches based on a GMM-UBM classification scheme were tested with two main 
objectives: to study the relevance of different phonemic groups in the automatic detection of PD and to pro-
vide new detection schemes. For each proposed approach, a phonemic grouping based on manner of articula-
tion (fricative, liquid, nasal, plosive or vowel) was applied to the parkinsonian corpora or to the UBM corpus 
(Albayzin), enabling the observation of changes in accuracy and AUC depending on the employed phonemic 
manner category.

In general, the CI of the accuracy values generates overlapping margins in the results. This is a common 
issue in studies employing a small number of speakers in comparison to other works addressing speech or 
speaker recognition problems in which hundreds or even thousands of subjects are analyzed. The reason for this 
reduced number of speakers is related to the limited number of PD patients in a hospital, who are both willing to 

Fe
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# 
2

Feat# 1

plos

plos

plos-vow

plos

plos-
vow

plos

plos

UBM Gaussians
MAP-adapted 
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Figure 6.  Representation of Gaussians in the third approach (phon-raw). The GMM-UBM in the example 
contains 7 Gaussians modelling 2 features. Plosive grouping was applied to the UBM which was adapted with all 
the frames from a DDK task.
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Figure 7.  Diagram of trials. In the diagram, the classifiers are GMM-UBM where the UBM is trained with 
Albayzin. (A) Scheme of cross-validation trials (11 folds). The classifiers can be referred to any type of phonemic 
grouping (fricative, liquid, nasal, plosive or vowels) or approach (baseline, raw-phon, phon-phon or phon-raw). 
(B) Scheme of cross-corpora trials. The classifiers can be referred to any type of phonemic grouping. Only the 
baseline and the proposed approach leading to the best results in cross-validation trials were used in cross-
corpora trials.

Speech task

GITA Neurovoz CzechPD

Accu. ± CI AUC Accu ± CI AUC Accu. ± CI AUC

TDU 79 ± 8 0.86 86 ± 8 0.93 — —

DDK 81 ± 8 0.88 79 ± 9 0.85 88 ± 12 0.94

Monol. 80 ± 8 0.88 72 ± 13 0.79 — —

Table 5.  Results for the baseline scheme with no phonemic grouping.

GITA Neurovoz

Approach 
(speech task)

Phonemic 
group. Accu. ± CI AUC Sens. Spec. Accu. ± CI AUC Sens. Spec.

1 raw-phon 
(TDU)

Fricatives 77 ± 8 0.85 0.72 0.82 83 ± 9 0.88 0.86 0.78

Liquids 77 ± 8 0.84 0.77 0.78 82 ± 9 0.91 0.81 0.83

Nasals 77 ± 8 0.81 0.7 0.84 82 ± 9 0.89 0.83 0.78

Plosives 84 ± 7 0.9 0.83 0.84 83 ± 9 0.94 0.81 0.87

Vowels 81 ± 8 0.89 0.74 0.88 77 ± 10 0.71 0.87 0.89

2 phon-phon 
(TDU)

Fricatives 79 ± 8 0.86 0.74 0.84 86 ± 8 0.87 0.88 0.83

Liquids 77 ± 8 0.83 0.79 0.76 83 ± 9 0.9 0.81 0.87

Nasals 77 ± 8 0.84 0.79 0.76 82 ± 9 0.9 0.83 0.78

Plosives 85 ± 7 0.89 0.81 0.88 85 ± 9 0.93 0.81 0.91

Vowels 86 ± 7 0.9 0.79 0.92 77 ± 10 0.89 0.76 0.78

3 phon-raw 
(TDU)

Fricatives 82 ± 8 0.89 0.82 0.82 89 ± 7 0.93 0.87 0.91

Liquids 81 ± 8 0.88 0.74 0.88 87 ± 7 0.93 0.87 0.88

Nasals 82 ± 8 0.88 0.82 0.82 85 ± 8 0.93 0.85 0.84

Plosives 85 ± 7 0.91 0.82 0.88 86 ± 8 0.92 0.85 0.88

Vowels 82 ± 8 0.89 0.76 0.88 85 ± 8 0.92 0.83 0.88

3 phon-raw 
(DDK)

Fricatives 80 ± 8 0.87 0.8 0.8 83 ± 9 0.9 0.89 0.73

Liquids 82 ± 8 0.87 0.8 0.84 81 ± 9 0.89 0.85 0.73

Nasals 83 ± 7 0.89 0.86 0.8 82 ± 9 0.87 0.85 0.77

Plosives 82 ± 8 0.88 0.86 0.78 86 ± 8 0.88 0.89 0.81

Vowels 83 ± 7 0.88 0.86 0.8 81 ± 9 0.88 0.87 0.69

3 phon-raw 
(Monol.)

Fricatives 80 ± 8 0.87 0.71 0.88 74 ± 12 0.77 0.47 0.9

Liquids 80 ± 8 0.87 0.73 0.86 66 ± 14 0.77 0.06 1

Nasals 77 ± 8 0.84 0.69 0.84 70 ± 13 0.65 0.41 0.87

Plosives 80 ± 8 0.88 0.71 0.88 70 ± 13 0.73 0.41 0.87

Vowels 78 ± 8 0.84 0.76 0.8 72 ± 13 0.74 0.65 0.77

Table 6.  Results for the three approaches employing GITA and Neurovoz to adapt the UBM created with 
Albayzin.
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Speech 
task

Phonemic 
group. Accuracy ± CI AUC Sens. Spec.

DDK

Fricatives 94 ± 1 0.96 0.9 1

Liquids 94 ± 1 0.95 0.9 1

Nasals 91 ± 1 0.95 0.9 0.93

Plosives 91 ± 1 0.98 0.9 0.93

Vowels 91 ± 1 0.96 0.9 0.93

Table 7.  Results for the third approach employing CzechPD (with no phonemic grouping) to adapt the UBM 
created with Albayzin. Only the DDK task is considered.

Corpus
Speech 
task Combination Accu. ± CI AUC

GITA

TDU plosive-liquid 84 ± 7 0.9

DDK nasal-liquid 83 ± 7 0.88

Monol. liquid-vowel 82 ± 8 0.89

Neurovoz

TDU fricative-vowel 89 ± 7 0.95

DDK liquid-vowel 83 ± 9 0.89

Monol. plosive-nasal-vowel 77 ± 12 0.79

CzechPD DDK fricative-nasal 94 ± 6 0.98

Table 8.  Best results after the fusion of scores for the three parkinsonian corpora separately.The scores were 
obtained using the third approach (phon-raw).

Test corpus
Speech 
task Accu. ± CI AUC Sens. Spec.

GITA DDK 73 ± 9 0.82 0.84 0.62

Neurovoz DDK 75 ± 10 0.82 0.8 0.65

CzechPD DDK 79 ± 14 0.91 1 0.5

Table 9.  Cross-corpora results in GITA, Neurovoz and CzechPD, employing Albayzin for the UBM (Baseline). 
For every trial, two parkinsonian corpora were used for training and the remaining, for testing.

Test 
corpus

Phonemic 
group. Accu. ± CI AUC Sens. Spec.

GITA

Fricatives 74 ± 9 0.86 0.66 0.82

Liquids 69 ± 9 0.79 0.94 0.44

Nasals 75 ± 8 0.84 0.86 0.64

Plosives 74 ± 9 0.8 0.86 0.62

Vowels 72 ± 9 0.81 0.7 0.74

Neurovoz

Fricatives 75 ± 10 0.85 0.76 0.73

Liquids 74 ± 10 0.79 0.87 0.5

Nasals 74 ± 10 0.82 0.78 0.65

Plosives 72 ± 10 0.78 0.93 0.35

Vowels 81 ± 9 0.83 0.91 0.62

CzechPD

Fricatives 79 ± 14 0.93 0.9 0.64

Liquids 82 ± 13 0.9 0.9 0.71

Nasals 82 ± 13 0.86 0.95 0.64

Plosives 79 ± 14 0.87 0.95 0.57

Vowels 82 ± 13 0.95 0.85 0.79

Table 10.  Cross-corpora results in GITA, Neurovoz and CzechPD, employing Albayzin for the UBM with the 
five different types of phonemic grouping.Phon-raw approach was employed. For every trial, two parkinsonian 
corpora were used for adaptation of the UBM and the remaining, for testing. 

https://doi.org/10.1038/s41598-019-55271-y


1 2Scientific Reports |         (2019) 9:19066  | https://doi.org/10.1038/s41598-019-55271-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

collaborate and meet the inclusion criteria, and to the cost of the resources needed to engage more patients from 
different institutions.

Phonemic grouping.  In the first two approaches (raw-phon and phon-phon), only TDU from GITA and 
Neurovoz are employed since these are the only tasks including transcription, which is needed for the forced 
alignment processes. Regarding these approaches, Table 6 and Fig. 8 show that best results are obtained for the 
plosive and vowel categories in GITA, and the fricative and plosive categories in Neurovoz. Therefore, these 

Figure 8.  Best accuracies (A) and AUC (B). Results are referred to the three proposed approaches (marked as 1, 
2 or 3) and speech tasks, where mon stands for monologues and cross for cross-corpora trials.
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results point towards a higher relevance of the plosive segments of speech from parkinsonan patients in automatic 
detection using speech with the proposed methodologies.

Regarding the third approach (phon-raw), the speech tasks used are TDU, DDK and monologues from GITA 
and Neurovoz and DDK from CzechPD, since in this case no speech forced alignment is needed in the parkinso-
nian corpora as the phonemic grouping is applied only to the UBM corpus. When the adaptation-testing corpus 
is GITA in this approach, the best AUC and accuracy are obtained employing plosives, vowels and fricatives with 
TDU and monologues. Something different occurs in the Neurovoz corpus, where the fricative phonemic group-
ing in the UBM always produces the best AUC and accuracy, followed by the plosive and vowel categories. In this 
same corpus, nasal and vowel categories in the UBM corpus provide the best results when employing a DDK task, 
followed closely by plosives. With respect to CzechPD, fricatives provide the highest accuracy of the experimental 
set (94%), while plosives yield the highest AUC (0.98), as indicated in Table 7. Table 6 and Fig. 8 suggest that the 
plosive grouping has a similar behavior in GITA and Neurovoz and provides high accuracy, AUC and sensitivity 
in most of the approaches. The other phonemic groupings have unequal results. For instance, while the fricative 
grouping outperforms the other phonemic groupings in Neurovoz using the third approach, it does not provide 
these good results in GITA.

In general, although Czech and Neurovoz are class-unbalanced, the observed sensitivity and specificity rarely 
differ by more than 0.10 absolute points in the results shown in the cited result tables.

The fusion of scores using logistic regression produces moderate improvements in the trials with Neurovoz 
where the maximum AUC goes from 0.93 to 0.95 for TDU. In the remaining cases, fusion does not produce any 
increase of the accuracy or AUC. This suggests that there is not complementary information among the scores 
of the different systems. Regarding the cross-corpora trials in which the phonemic grouping is applied only to 
the UBM corpus (Table 10), the pairs accuracy-AUC are generally lower than in the rest of the trials. Best values 
using GITA as the test corpus are 74%–0.84 for the nasal category, followed closely by plosives. When Neurovoz 
is the testing corpus, the maximum values are 81%–0.83 with vowel grouping, although in this case fricative 
grouping provides better AUC (0.85). Finally, CzechPD as the testing corpus provides values of 82%–0.95 for 
vowel grouping. In these cases, vowel segments tend to be more decisive. However, only DDK tasks were used in 
the cross-corpora trials. Since DDK tasks are not phonetically balanced, no conclusions about the relevance of 
the different phonemic groups can be obtained. Nevertheless, the results of these trials suggest that the proposed 
approaches can generalize and are not restricted to a single corpus.

The differences between patients and controls are probably related to a smaller VSA in patients caused by an 
incomplete articulation of the vowels, as explained in the introduction of this paper, which in this experimental 
set is indirectly characterized by the PLP features. At the same time, Rasta-PLP derivatives obtained from any 
acoustic segments, but especially from vowels, indirectly characterize the velocity and acceleration of articula-
tion of the speaker. Therefore, approaches employing phonemic grouping of vowels are taking advantage of cer-
tain particularities of parkinsonian speech that have proven to be successful for the detection of PD in previous 
studies21–25,27.

To summarize, results suggest that plosive segments tend to provide better accuracy and AUC in the detec-
tion of PD, followed by vowel and fricative segments. This can be explained by two phenomena described in the 
introduction of this study: spirantization, affecting mainly plosives and fricatives, and VSA reduction, related to 
vowels.

Analysis of approaches.  In general, although the first and second approaches (raw-phon and phon-phon) help to 
reveal which type of phonemic category is more relevant for the detection of PD within the proposed schemes, the 
third one (phon-raw) outperforms the other two in terms of accuracy and AUC, as it can be observed in Table 6. 
This is the only approach in which both corpora, GITA and Neurovoz, provide better results than the baseline, 
since the first two approaches produce improvements only when employing GITA.

One possible reason why the third proposed approach provides better results is the fact that the phonemic 
grouping in the UBM corpus produces GMM-UBM classifiers that are more precise for the selected phonemic 
grouping but are still modeling speech from all of the acoustic segments in the parkinsonian corpora, as explained 
in the methodology. This means that in the third approach, unlike in the other two, no acoustic segment is dis-
carded in the adaptation-testing corpus and all can contribute with complementary information to differentiate 
between the two classes.

In general, the results of this study suggest that GMM-UBM techniques, while being simpler than other 
state-of-the-art schemes such as Deep Neural Networks, demonstrate a good performance even with small cor-
pora and provide generalization.

Speech tasks.  Although the best results in this study are obtained with the DDK test, this occurs in the CzechPD 
corpus, in which this is the only available task. Focusing in the other two parkinsonian corpora, TDU always 
provide the best accuracy and AUC results. The reason for that lies in the fact that TDU contain more speech 
variability than DDK tasks and, at the same time, create more enclosed and precise models than monologues, as 
the type and number of phonemes in the training and testing utterances are always the same, allowing for a better 
comparison between classes.

Other considerations.  In this study, the best results were obtained with CzechPD in both cross-validation and 
cross-corpora trials. The differences between CzechPD results and those for the other corpora can be explained 
by the fact that CzechPD only contains male speakers and the models obtained in the cross-validation trials 
are male-specific. Likewise, as Neurovoz contains more male than female subjects, the cross-corpora models 
adapted using Neurovoz plus GITA are also more male-specific and more suitable to be tested with CzechPD. 
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Also, CzechPD only includes untreated patients, most of them in an early stage, and the lack of treatment can 
contribute to a better detection.

On the other hand, and in relation to the results obtained for the plosive and fricative categories, the 
causes of the misarticulation of plosives and fricatives can be related not only to motor disturbances but to the 
self-perception of the duration of occlusion lengths in phonemes. To this respect, it has been previously reported 
that patients are inclined to perceive occlusion lengths as longer than they really are, causing errors in the identi-
fication of phonemes45. Therefore, one hypothesis is that these perception impairments can aggravate misarticu-
lation during speech production as patients are not perceiving their own articulatory errors. Another hypothesis 
is that the mechanisms related to speech production and perception are related to cortical areas affected by the 
disease45.

Finally, each labelled acoustic segment from the TDU in this study has been considered to canonically belong 
to a certain phonemic category (i. e. category with the same manner of articulation) for all the speakers. This is 
correct for some groups of phonemes such as vowels or nasals, but it can be controversial within other categories 
such as plosives, since two speakers without speaking impairments can pronounce the same phoneme differently 
in the same sentence context due to cultural or regional varieties of the language. Although in the present work 
we assumed that most of the speakers had a similar articulatory behavior, the results for some manner classes 
(especially plosives and fricatives) could be different in different populations.

Future work.  In future work, new corpora in other languages need to be tested in order to evaluate the language 
dependence of the proposed methods, considering that different languages will entail the use of different FAM. In 
general, this methodology can be applied to other languages so as to design language-specific protocols or diag-
nosis systems that focus on the most relevant phonetic groups. In the same sense, new trials based on male- and 
female-specific models must be addressed.

Regarding the frame selection techniques, new types of phonemic groupings must be proposed, focused on 
the transitions of phonemes or on representative articulatory points such as stop release or vowel transitions 
among others.

Also, the use of telephonic speech to train the UBM in the proposed approaches must be assessed in the future. 
The motivation is that there are corpora containing telephonic speech in Spanish such as FisherSP that have more 
hours of recordings than Albayzin, and it is unclear to which extent a larger amount of data could help providing 
better GMM-UBM at the expense of band-width limitation to 300–3400 Hz, noise and distortion in the corpus 
employed to create the UBM.

Additionally, the distinction between PD and other neurological conditions such as Huntington Disease or 
Friedreich’s Ataxia by means of speech analysis systems remains to be investigated, as this might lead to a signifi-
cant reduction in the diagnosis uncertainty and time.

Conclusions
This work presents three different approaches to detecting PD from speech, based on the joint use of GMM-UBM 
schemes and phonemic categorization. The methodological framework proposed in this paper goes deeper into 
the relevance of the different manner classes in the detection of PD.

The approach phon-raw based on phonemic grouping exclusively in the UBM corpus and employing TDU as 
input material provides the best results. This technique is revealed as a new scheme to focus attention on certain 
classes of phonemic segments of the speech during the creation of GMM-UBM models, but without discarding 
the rest of the speech signal; this approach provides better results than the other techniques studied in this work. 
Considering this approach, cross-validation trials (k-folds) provide accuracies between 85% and 94%, with AUC 
between 0.91 and 0.98, while cross-corpora trials provide accuracies between 75% and 82% with AUC between 
0.84 and 0.95, depending on the corpora employed to adapt and test the final models. Likewise, this method pro-
duces a relative improvement of accuracy up to 7.6% in the cross-validation trials and 8.0% in the cross-corpora 
trials (with respect to the baseline), depending on the corpora used to adapt and test the models. In the same 
sense, employment of TDU produces more consistent and accurate models than the use of monologues or DDK 
tasks.

The use of cross corpora trials in this study is new; these types of trials are almost non-existent in the studies 
using speech technologies to detect PD. At the same time, results from these trials suggest that the proposed 
methodologies can generalize and are not highly dependent on the corpus used to adapt the UBM models.

Also, results suggest that the proposed methods can be clinically useful for patients suffering from PD in the 
early stages, since even in the CzechPD corpus, where most of the patients are newly diagnosed, accuracy in the 
cross-validation and cross-corpora trials reaches 94% and 82%, respectively.

Finally, results suggest that plosive, vowel and fricative segments (in this order) are the most relevant for PD 
detection employing the proposed schemes. These findings are related to phenomena reported in previous work, 
such as spirantization or VSA reduction in parkinsonian patients.

Data availability
In order to facilitate the reproducibility of this work and its comparison with further studies, the characterization 
of all the text-dependent utterances from Neurovoz employed in this work (Rasta-PLP coefficients) and associated 
metadata are included in the following repository: https://doi.org/10.5281/zenodo.3401685.
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