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Abstract

castellani.

in virulence regulation.

Background: Legionella pneumophila, the intracellular bacterial pathogen that causes Legionnaires’ disease, exhibit
characteristic transmission traits such as elevated stress tolerance, shortened length and virulence during the
transition from the replication phase to the transmission phase. ClpP, the catalytic core of the Clp proteolytic
complex, is widely involved in many cellular processes via the regulation of intracellular protein quality.

Results: In this study, we showed that ClpP was required for optimal growth of L. pneumophila at high
temperatures and under several other stress conditions. We also observed that cells devoid of c/pP exhibited cell
elongation, incomplete cell division and compromised colony formation. Furthermore, we found that the clpP-
deleted mutant was more resistant to sodium stress and failed to proliferate in the amoebae host Acanthamoeba

Conclusions: The data present in this study illustrate that the ClpP protease homologue plays an important role in
the expression of transmission traits and cell division of L. pneumophila, and further suggest a putative role of ClpP

Background

Legionella pneumophila, a Gram-negative, intracellular
bacterial pathogen, is the opportunistic agent responsi-
ble for a severe form of pneumonia named Legionnaires’
disease and the less severe flu-like Pontiac fever [1,2].
The remarkable capability of L. pneumophila to colonize
a wide range of natural protozoa and mammalian host
cells is mostly attributed to its unique Type IVB secre-
tory system (T4BSS) whose components are encoded by
the dot (defect in organelle trafficking) and icm (intra-
cellular multiplication) genes [3-6]. L. pneumophila uses
the Dot/Icm apparatus to inject effectors into the host
cells to promote invasion and to modulate organelle
trafficking, which in turn leads to formation of replica-
tion-permissive endosomes [7-9].

Similar to a variety of microbes, L. pneumophila
undergoes a life cycle characterized by a biphasic con-
version between a vegetative replicative form and a non-
replicating, infectious and stress resistant transmissive
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form. On one hand, bacteria cultured in broth to either
exponential or stationary phase display many similar
attributes shared by the replicative and transmissive
forms, respectively [10,11]. For example, upon the tran-
sition from exponential phase to stationary phase, L.
pneumophila becomes more infectious and more resis-
tant to various stresses [12]. Furthermore, L. pneumo-
phila in stationary phase also displays shortened cell
body, flagellin expression, pigment accumulation and
reduced sodium sensitivity. These attributes, together
with virulence markers such as cytotoxicity, intracellular
growth and phagocytosis, are recognized as the trans-
mission traits of L. pneumophila [11,13]. On the other
hand, the in vitro-cultured stationary-phase L. pneumo-
phila can achieve further differentiation to the cyst-like,
hyper-infectious and resilient mature intracellular form
(MIF) in aquatic environment or in specific mammalian
cell lines. MIF is considered as an “in vivo stationary-
phase form” while owning different outer membrane
structure and protein composition compared with the
stationary-phase form [14,15]. In addition, an in vivo
transcriptome of L. pneumophila was performed and
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exhibited the genes strongly induced in intracellular
replicative or transmissive phase, respectively, which
also revealed several virulence or transmission related
genes specially induced intracellularly, confirming the
dissimilarity between the in vitro- and in vivo- transmis-
sive/stationary phase [16].

A complicated gene network has been implicated in
the regulation of transmission traits in L. pneumophila.
For example, the sigma factor RpoS, the two-component
system LetA/LetS, and the quorum sensing regulator
LgsR have all been shown to facilitate the expression of
transmission traits [10,11,13,17,18]. CsrA, a global
repressor of transmission [19], also appears to be tightly
regulated by several factors such as PmrA (positive reg-
ulator of several Dot/Icm-translocated effector proteins)
and rsmYZ (two non-coding RNAs) [20,21]. In addition,
CpxR has been found to activate transcription of several
genes encoding components of the Dot/Icm complex as
well as several Dot/Icm-translocated effectors [22,23].
The concerted action of these regulators not only con-
tributes to the display of transmission traits, but also
plays a vital role in the re-entry into the replicative
phase [11,13,19,20,24].

Proteolysis of detrimental and misfolded proteins is
critically important for protein quality control and cellu-
lar homeostasis [25-27]. Four classes of energy-depen-
dent protease systems have been identified throughout
prokaryotes: ClpAP/XP, ClpYQ (also named HslUV),
FtsH and Lon. ClpP and ClpQ, the catalytic cores of the
proteases, require Clp ATPase chaperones for the recog-
nition and unfolding of substrates; on the other hand, in
FtsH and Lon, a single polypeptide contains both
ATPase and proteolytic activity [26,28]. The ClpP pro-
tease and Clp ATPase, which are widely distributed and
highly conserved in various bacteria species as well as
mitochondria and chloroplasts of eukaryotic cells
[27,29,30], have been demonstrated to function in the
regulation of stress response, sporulation and cell divi-
sion [31,32]. For example, ClpXP is responsible for the
degradation of RpoS, the sigma regulator of stress
response in E. coli [26]. In Salmonella enterica serovar
typhimurium, loss of ClpXP has been shown to result in
the over-expression of fliA and fliC, which in turn
induced a hyperflagellate phenotype [33]. In Bacillus
subtilis, ComK/S, the two-component regulator of com-
petence and sporulation, are tightly controlled by the
successive binding and degradation mediated by MecA
and ClpCP [26]. ClpP also seems to regulate virulence
in many pathogens such as Listeria monocytogenes,
Streptococcus pneumoniae and Staphylococcus aureus
[31,34-36]. Finally, ClpP has been demonstrated to play
a role in the biofilm formation [36-38].

As a ubiquitous bacterium in aquatic environment, L.
pneumophila encounters numerous stresses such as
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elevated temperature, low pH and starvation during
both planktonic existence and intracellular replication
[11,12]. We hypothesized that a rapid response to a
changing environment might require an uncharacterized
proteolytic system in L. pneumophila. In the present
study, we explored the role of L. pneumophila ClpP in
growth, stress tolerance, cell morphology and virulence
to amoebae host. We demonstrate that ClpP affects sev-
eral L. pneumophila transmission traits and cell division,
and ClpP might play an important role in virulence
regulation.

Results

cIpP homologue is required for optimal growth of L.
pneumophila at high temperatures

In L. pneumophila, the Ipgl861 sequence was predicted
to encode a putative ClpP homologue. The product of
Ipg1861 consists of 215 amino acids and contains a
highly conserved three-residue sequence Ser-His-Asp
(Figure 1) that was previously reported as the proteolytic
triad site of E. coli ClpP [27,39,40]. To investigate the
physiological role of clpP homologue in L. pneumophila,
we constructed a c/pP-deficient mutant by non-polar
deletion of a 519 bp internal fragment encompassing the
coding sequence for Ser-His-Asp. We first determined
the impact of clpP on growth. As shown in Figure 2, the
growth curves of WT, the LpAc/pP mutant, and the
constitutive complemented strain LpAclpP-pclpP, were
similar at 25°C, 30°C and 37°C (Figure 2A to 2C),
demonstrating that clpP is not required for optimal
growth at lower temperatures. However, the LpAcipP
mutant strain exhibited impaired growth at 42°C relative
to the other two strains (Figure 2D), indicating an
important role of c/pP homologue for optimal growth of
L. pneumophila at high temperatures.

clpP homologue is required for stress tolerance in
stationary phase

L. pneumophila can respond to various environmental
stresses and cope with harsh conditions while entering
eukaryotic hosts [12,41]. To assess whether ¢/pP homo-
logue may be involved in stress response, the above
three strains were grown to logarithmic or stationary
phase and exposed to various stress conditions. When
the logarithmic-phase cells were exposed respectively to
low pH, hydrogen peroxide, potassium chloride, and
heat shock, the survival rates of all three strains were
similar and lower than those of the stationary-phase
cells (data not shown). When treated with pH 4.0 citric
acid for 30 minutes, WT JR32 cells in stationary phase
exhibited approximately 70% survival rate. However,
only about 10% of LpAc/pP mutant cells survived
(Figure 3A). Such a deficiency was rescued in the
LpAclpP-pclpP strain (Figure 3A). This result indicated
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Figure 1 Sequence alignment of the putative CIpP from L. pneumophila with other prokaryotic ClpP proteins. Numbers indicate the
positions of amino acids in the sequences, and dashes show gaps inserted for an optimal alignment. Identical or similar residues are labeled
with asterisks or periods, respectively. The highly conserved catalytic Ser-110, His-135 and Asp-184 are shown as light color. Lla, Lactococcus lactis.
Spn, Streptococcus pneumoniae. Bsu, Bacillus subtilis. Sau, Staphylococcus aureus. Lmo, Listeria monocytogenes. Eco, Escherichia coli. Sty, Salmonella
enterica serovar typhimurium. Ype, Yersinia pestis. Pfl, Pseudomonas fluorescens. Lpn, Legionella pneumophila. Hpy, Helicobacter pylori. Ara,
Agrobacterium radiobacter. Mtu, Mycobacterium tuberculosis.
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that the deletion of c/pP impairs the ability of L. pneu-
mophila to respond to low-pH conditions. Similar
results were also obtained in oxidative stress assay (Fig-
ure 3B). When the cells were treated with 1 mM hydro-
gen peroxide for 30 minutes, the survival rate of the
LpAclpP mutant was 10 + 2.0%, much lower than that
of WT cells (56 + 8.6%; Figure 3B). In contrast,
LpAclpP-pcipP cells displayed a CFU closely resembling
that of WT cells (Figure 3B). Likewise, when cells were
incubated in 57°C water bath for 20 minutes or treated
with 0.3 M potassium chloride for 1 hour, the survival
rate of LpAclpP mutant was lower than that of WT and
the complementation strain (Figure 3C and 3D), indicat-
ing that c/pP is also required for responses to heat
shock and osmotic stress. Collectively, these results indi-
cate that ClpP homologue is involved in tolerance to
multiple stresses in stationary-phase L. pneumophila.

cIpP homologue is required for normal cell division of L.
pneumophila

During stress tolerance assays, LpAclpP generally exhib-
ited 1.5- to 3-fold lower colony formation efficiency
compared with WT JR32 on BCYE plates (data not
shown). However, all three L. pneumophila strains

appeared to have similar growth rates at 37°C, 30°C and
25°C (Figure 2A to 2C), thus excluding significant
reduction in the number of living LpAcipP cells. Pre-
viously, ablation of Clp protease activity has been shown
to lead to abnormal cell wall formation or incomplete
cell division in several Gram-positive bacteria [32]. To
examine the morphology of LpAclpP mutant cells under
normal conditions, we performed cryo-transmission
electron microscopy (cyro-TEM). Cells in stationary
phase were frozen-hydrated by liquid nitrogen and
directly observed at -172°C, and we found that LpAclpP
cell surface was surprisingly indistinguishable from that
of the WT cells (Figure 4A and 4B), contrary to our
results obtained by scanning electronic microscopy
(SEM) (Figure 4D and 4E), indicating that ClpP defi-
ciency did not affect cell wall architecture under normal
growth conditions.

The combined results of SEM and cyro-TEM showed
that unlike the “plump cocoid” shape of the WT or
complemented strains, stationary-phase cells deficient in
clpP were elongated and incapable to divide normally
(Figure 4A to 4E). Furthermore, around 62% of LpAclpP
cells were twins, 23% were hyper-filamentous, and only
15% of cells were single (Figure 4F). In contrast, around
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8% of WT JR32 cells were hyper-filamentous, and
approximately 11% of cells were “twins” (Figure 4F).
The abnormal cell morphology was also reversed by
complementation (Figure 4C and 4F). These results
together suggest that deletion of c/pP lead to abnormal
cell division and consequently aberrant cell morphology
in L. pneumophila.

The LpAclpP mutant is sodium tolerant

Stationary-phase L. pneumophila cells have been shown
to exhibit sodium sensitivity [42,43]. It has been pro-
posed that the assembly of virulence factor translocation
apparatus, such as the Dot/Icm T4SS complex, allows
high levels of sodium to diffuse into the cytoplasm,
which is lethal to the cells [44]. To investigate whether
ClpP homologue also affected sodium sensitivity of L.
pneumophila, JR32, LpAclpP and LpAclpP-pclpP strains
were grown to exponential or stationary phase, diluted
and plated in duplicate on BCYE or BCYE containing
100 mM sodium chloride, respectively. Different dilu-
tions of stationary-phase JR32 and LpAcipP cells were
also spotted on the plates. In the presence of sodium,
exponential-phase cells exhibited indistinguishable
sodium sensitivity, irrespective of the genotype (Figure
5A). However, the LpAc/pP mutant displayed an
approximately 300-fold higher resistance than JR32 in

stationary phase (Figure 5A). The loss of sodium sensi-
tivity as a result of c/pP deletion was again reversed in
LpAclpP-pclpP (Figure 5A). The relationship between
sodium resistance and clpP deletion was further con-
firmed by the plate-spotting assay (Figure 5B). Notably,
while more resitant to sodium in both assays, LpAclpP
required two more days to form colonies on NaCl plates
compared to JR32 (Figure 5; data not shown). Taken
together, these results demonstrate that the deletion of
clpP enhances the sodium resistance of L. pneumophila
in stationary phase with a slower growth rate, implying
a possible role of ClpP in virulence.

Loss of clpP impaires L. pneumophila growth and its
cytotoxicity against A. castellanii

To determine whether ClpP homologue may function in
the virulence of L. pneumophila, we performed the
amoebae plate test (APT) previously used to determine
virulence [45]. The amoebae (A. castellanii) host cells
were spread onto BCYE plates before stationary-phase
L. pneumophila cells were spotted in 10-fold serial dilu-
tions, and the plates were subsequently incubated at 37°
C for 5 days. As shown in Figure 6A, WT JR32 and the
complemented strain LpAclpP-pcipP exhibited robust
growth even at 10® dilution when co-incubated with
amoebae. However, LpAclpP showed a growth defect
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Figure 4 Electron microscopy of stationary-phase L. pneumophila cells revealed cell elongation and abnormal division in the LpAclpP
mutant. Cyro-TEM of (A) JR32, (B) LpAcipP and (C) LpAclpP-pcipP and SEM of (D) JR32 and (E) LpAcipP were carried out. Bar for (A), (B) and (C), 0.2
pm; Bar for (D), 2.0 um; Bar for (E), 1.0 um. (F) The percentages of normal and abnormal cells under cyro-TEM in the three L. pneumophila strains.
Shown are the averages and standard deviations of three independent counts and the number of cells for each count is about 120 (n = 120).
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resembling the phenotype observed in the negative con-
trol AdotA strain which was rendered completely aviru-
lent by an in-frame deletion in the dotA gene [46]. As
an additional control, cells were spotted onto the plates
in the absence of amoebae, and no difference in growth
was observed among the four strains (data not shown).
Cytotoxicity is an important virulent trait of L. pneu-
mophila and correlates strongly with the function of the
Dot/Icm T4SS [13,44,45,47]. We next tested whether

clpP homologue may affect the cytotoxicity of L. pneu-
mophila against A. castellanii. L. pneumophila strains
were used to infect A. castellanii with an MOI of 100.
24 h post infection, cytotoxicity was assayed by PI stain-
ing and quantified by flow cytometry analysis [13,45]. As
shown in Figure 6B, JR32 exhibited robust cytotoxicity
(70% A. castellanii lethality), whereas LpAc/pP resulted
in only 17% cell death, barely higher than that of the
avirulent mutant AdotA (9% cell death). As expected,
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Figure 5 Sodium tolerance of L. pneumophila LpAclpP mutant was enhanced. (A). Overnight bacterial cultures in mid-exponential phase
were inoculated into fresh medium and grew to exponential phase (ODgqo from 1.0 to 1.5) or stationary phase (ODggo from 3.5 to 4.5), then the
CFU was determined by plating duplicate samples of JR32 (black bars), LpAclpP mutant (white bars), and complemented strain (gray bars) on
BCYE and BCYE containing 100 mM NaCl. The experiment was carried out in triplicate. * p < 0.01. (B). For direct visualization, different dilutions
of stationary-phase JR32 and LpAcipP cells were also spotted onto plates in triplicate.

cytotoxicity was restored in the complemented strain
LpAclpP-pclpP (67% PI positive). These results were also
confirmed by fluorescence microscopy (Figure 6C).
Thus, it appeared that loss of clpP seriously impaires
cytotoxicity against the amoebae host.

Loss of cIpP abolishes intracellular multiplication of L.
pneumophila in A. castellanii

The above APT and cytotoxicity assays demonstrated an
important role of clpP in virulence. Next, we examined
whether c/pP homologue also affected the intracellular
replication of L. pneumophila in A. castellanii. Amoebae
cells were infected with stationary-phase L.

pneumophila at an MOI of 10. Under such conditions,
the infection persisted for 3 days and multiplication was
evaluated by plating the amoebae lysate onto CYE plates
to quantify replication. As shown in Figure 7, JR32 and
the complemented strain exhibited essentially identical
replicative capability within A. castellanii cells. In con-
trast, both LpAc/pP and AdotA mutants showed signifi-
cantly impaired multiplication. As a control, the
LpAclpP strain displayed normal growth at 30°C or 37°
C in broth (Figures 2b and 2c).

Taken together, the adverse effects of c/pP deletion on
sodium tolerance, growth on APT, cytotoxicity and
intracellular multiplication suggest that ClpP homologue
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Figure 6 The L. pneumophila clpP mutant was impaired in both cytotoxicity against amoebae A. castellanii and growth on amoebae
plates. (A) Growth of L. pneumophila LpAclpP mutant in the amoebae plate test was impaired. L. pneumophila wild-type strain JR32, LpAcipP
mutant, clpP complemented strain or dotA mutant were spotted respectively in tenfold serial dilutions onto BCYE agar plates containing A.

LpAdotA

LpAcipP-pclpP

castellanii. The plates were incubated at 37°C for 5 days. (B) Cytotoxicity of L. pneumophila against amoebae A. castellanii was quantified by flow
cytometry and (C) detected by PI staining 24 h post infection. The infection was performed using the wild-type strain JR32, LpAclpP mutant, clpP
complemented strain or dotA mutant at an MOI of 100. For fluorescence microscopy, amoebae cells in each well of 24-well plate were stained.

The data shown are representative of at least two independent experiments.

might play an important role in virulence regulation of
L. pneumophila.

Discussion

In the current study, LpAc/pP was shown to exhibit
reduced growth rate at high temperatures (Figure 2D)
and impaired resistance to heat shock (Figure 3C) com-
pared to the wild type. The LpAc/pP mutant also dis-
played impaired resistance to oxidative and low-pH
conditions in stationary phase. As oxidative and acid
stress are generally considered as harsh and detrimental
to DNA [48,49], ClpP homologue may play an impor-
tant role in L. pneumophila DNA repair, consistent with
its demonstrated function in E. coli [50], S. aureus [51]
and Lactococcus lactis [52]. However, while several pre-
vious studies have demonstrated growth defect as a

result of ClpP deficiency over a broad temperature
range [34,35,51], deletion of clpP appeared to compro-
mise the growth of L. pneumophila only at higher tem-
peratures (Figure 2A to 2C), suggestive of a more
restricted role independent of cold response.
Attenuation of ClpP or Clp ATPase activities has been
shown to lead to abnormal bacterial morphology such
as filamentation, aberrant cell wall structure and irregu-
lar cell division [29,32,53-55]. Likewise, results from
SEM and cyro-TEM revealed that the LpAc/pP mutant
cells were elongated and defective in cell division (Fig-
ure 4). Furthermore, SEM results also implicated a role
of ¢lpP in stress tolerance in L. pneumophila. In contrast
to the defective cell surface observed in SEM (Figure 4D
and 4E), largely normal cell surface were found by cyro-
TEM in LpAclpP mutant cells grown under normal
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Figure 7 Intracellular growth of L. pneumophila LpAcilpP
mutant in A. castellanii was abolished. A. castellanii cells were
seeded onto 24-well plates and infected with L.pneumophila at an
MOI of 10. At each time point indicated, amoebae cells were lysed
and the CFU was determined by plating dilutions onto BCYE plates.
The intracellular growth kinetics of JR32, LpAclpP mutant, cipP
complemented strain, and dotA mutant are shown. The infection
assay was carried out in triplicate.

conditions (Figure 4A to 4C), suggesting that the chemi-
cal treatment during SEM sample preparation, not clpP
deletion, may have resulted in the abnormal cell surface.

How ClpP affects cell division is not fully understood.
In C. crescentus, degradation of the cell cycle repressor
CtrA by the ClpXP complex has been shown to contri-
bute to G;-S transition, and deletion of c/pP blocked
cell division [54]. In B. subtilis, cells overproducing
MurAA, an enzyme in peptidoglycan biosynthesis and a
substrate of the Clp protease, displayed a filamentous,
undivided morphology reminiscent of the c/pP mutant
cells, suggesting that degradation of MurAA by ClpP
might contribute to normal cell segregation [56].
Furthermore, through a ClpP-independent pathway, the
B. subtilis ClpX appeared to modulate the assembly of
the tubulin-like protein FtsZ [57], which is known to be
a key process in the replication and division of Gram-
negative bacteria [58]. Identification of the substrate(s)
for ClpP may shed light on the regulatory mechanism of
cell division in L. pneumophila.

ClpP proteolytic complexes play pivotal roles in pro-
tein degradation or modification [26,31,32]. During the
transition of B. subtilis cells to stationary phase, ClpP
degrades massive amounts of proteins previously pro-
duced in exponential growth phase [32]. Notably, L.
pneumophila also undergoes a biphasic life cycle with
mutually exclusive gene expression for replication or
transmission [10,11]. While transiting from replication
(exponential phase in vitro) to transmission (stationary
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phase in vitro), L. pneumophila activates an intricate
network of regulators such as LetA/S, RpoS, PmrA,
CpxR, rsmYZ, CsrA and LgsR [11,13,20,21,59]. As
shown in our results, unlike the stationary-phase wild
type which exhibits transmission traits, LpAc/pP mutant
cells in stationary phase exhibit replicative forms such
as reduced stress tolerance (Figure 2 and 3), cell elonga-
tion (Figure 4), enhanced sodium resistance (Figure 5),
impaired cytotoxicity and growth on amoebae plates
(Figure 6) and severely compromised intracellular multi-
plication in amoebae host (Figure 7). Thus, ClpP may
play an important role in the transition from replication
to transmission in L. pneumophila. On the other hand,
several transmission traits are not affected by c/pP-dele-
tion such as pigment accumulation and transcription
from the flaA (legionella flagellin coding) gene (our
unpublished data), suggesting that the impact of ClpP
on the transition to transmissive form in L. pneumo-
phila is somewhat limited. Considering that ClpP always
executes the post-transcriptional feedback regulation,
and moreover, degrades the same substrates by coop-
erating with other proteases [26,31], one explanation to
such a limitation is that the degradation of ClpP sub-
strates could be compensated by other proteases in
clpP-deletion mutant, thus ClpP cannot govern the tran-
sition just as the global regulators such as RpoS, CsrA
or LetA/S in L. pneumophila.

ClpP plays prominent roles in virulence of various
Gram-positive pathogens such as S. aureus, S. pneumo-
niae and L. monocytogenes [34-36,60]. Furthermore,
ClpP was reported to control the levels of key virulence
factors of type III secretory systems (T3SS) in certain
pathogens such as S. typhimurium and Yersinia pestis
[61,62]. Recently, it was reported that loss of ClpP atte-
nuated the virulence of Helicobacter pylori, a pathogen
owning type IV secretory system (T4SS) [63]. It is inter-
esting that c/pP-deletion severely compromised the L.
pneumophila infection against amoebae host (Figure 6
and 7). In our results, the sodium resistance exhibited
by LpAclpP mutant (Figure 5), which is a phenotype
shared by the mutants without functional Dot/Icm T4SS
[48,64], together with the comparable decline in intra-
cellular multiplication observed in LpAcilpP and AdotA
mutants (Figure 7), suggest a role of ClpP in T4SS-
dependent virulence through degrading a repressor or
activating an up-regulator of the substrate(s) of ClpP.
One possibility is that the ClpP protease has a major
impact on the expression or function of Dot/Icm T4SS
in L. pneumophila. Another possibility is that ClpP
might be required for the expression of some T4SS sub-
strates. In this case, loss of CIlpP would also severely
attenuate the intracellular growth even if the T4SS is
intact, just as the case of L. pneumophila Sigma S factor
(RpoS) [59]. Thus, identification of the substrate(s) of
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ClpP, which is currently underway in our laboratory,
would help to discern the underlying relationship
between ClpP and T4SS-dependent virulence in L.
pneumophila.

Conclusions

In summary, our study shows that the L. pneumophila
ClpP homologue is required for cell division and several
transmission traits including stress tolerance, cell short-
ening, sodium sensitivity, cytotoxicity, growth on amoe-
bae plates and intracellular multiplication. The study
further suggests that the ClpP homologue might be
important for virulence regulation of L. pneumophila.

Methods

Cells and reagents

The bacterial strains, plasmids and primers used in this
work are listed in Table 1. Legionella pneumophila
strains were cultured on buffered charcoal yeast extract
(BCYE) plates, or in N-(2-acetamido)-2-aminoethanesul-
fonic acid (ACES)-buffered yeast extract (AYE) medium,
supplemented with 5 pg chloramphenicol ml™" if neces-
sary [65]. Escherichia coli strains were cultured in Luria-
Bertani (LB) agar plates or broth, supplemented with 30
ug chloramphenicol ml™* or 100 ug ampicillin ml™.
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Acanthamoeba castellanii (ATCC 30234) was grown in
proteose yeast extract glucose medium (PYG) at 30°C
[66]. Bacto yeast exact and proteose peptone were
obtained from Becton Dickinson Biosciences. All other
reagents were from Sigma, unless specified otherwise.

DNA manipulation and chromosomal in-frame deletion
DNA manipulations were performed according to stan-
dard protocols [67]. All restriction enzymes were pur-
chased from New England Biolabs. Pfu or Taq DNA
polymerases were from TaKaRa. Purification of plasmids
and genomic DNA was performed according to the
manufacturer’s instructions (Qiagen).

The in-frame deletion of c¢/pP was performed by a
non-polar strategy as described [68]. Briefly, upstream
and downstream flanking sequences of clpP were ampli-
fied by PCR using the Pxc_r1/Pxc-r1 and Pxc pa/Pxcoro
primer pairs, respectively. The PCR products were
mixed and then used as templates for the subsequent
fusion PCR using the Pxc_f1/Pxc.r2 primers. Fusion
PCR products were digested with Kpnl and Sacl and
sub-cloned into the pRE112 suicide vector [69], yielding
plasmid pREAc/pP. Allelic exchange was performed as
follows. Briefly, pREAclpP was introduced into the wild-
type (WT) JR32 strain by electroporation and

Table 1 Bacterial strains, plasmids and oligonucleotides used in this study.

Strain, plasmid or
primer

Phenotype, genotype or sequence

Reference or
source

E.coli strains

DH5a F endAT hsdRI7 (r, - my ") supE44 thi-1A" recAl gyrA96 (Nal') relAl A (lacZYA-arghU169 deoR ¢ Lab collection
80dlacZ A M15
DH5aApir DH5a. transduced with Apir [69]
L. pneumophila strains
JR32 Virulent L. pneumophila serogroup 1, strain Philadelphia, salt-sensitive isolate of AM511 [43]
LpAcipP JR32 with clpP deletion This study
LpAcipP-pclpP LpAcipP containing pclpP This study
JR32-pBC JR32 containing pBC(gfp)Pmip This study
LpAclpP-pBC LpAcipP containing pBC(gfp)Pmip This study
LpAdotA JR32 with dotA deletion Lab collection
Plasmids
pRET12 Mobilizable suicide vector for construction of gene knockouts in G bacteria, oriT oriV sacB Cm [69]
pMD18-T cloning vector, Ap TaKaRa
pBC(gfp)Pmip ColE1 ori Cm Pmip gfpmut2 [70]
pREACIDP PRE112:¢cIpP for clpP deletion This study
pclpP pBC(gfp)Pmip containing clpP under the control of mip promoter This study
Primers
Pyc-r1 AGAGAGCTCCTGCCAGTAGGTCCTATAAG This study
Pycni TATGACATACAAGTTGCTGGACATTCTAC This study
Pxcr2 CAACTTGTATGTCATAGGAACGCTCACC This study
Pxcr2 GATGGTACCTGGGAAAATTGACAAACCGT This study
Pxtr-clppr TGGTGGAAGCTTTAGGAGTATCTAGCAAAGTTATAAGTC This study
PxH-clppPr TGGTGGTCTAGATGAGAAAAAAGGAGAGTAAGC This study

*Abbreviations: Ap, ampicillin resistant; Cm, chloramphenicol resistant; sacB, sucrose sensitive.
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chloramphenicol®* colonies were selected on BCYE-Cm
plates. Transformants were inoculated into AYE and
then incubated on BCYE containing 5% sucrose for 3
days at 37°C to select for strains devoid of the vector
backbone. Positive colonies were confirmed by PCR and
sequencing.

Complementation assay

A ColEl-type plasmid pBC(gfp)Pmip, carrying an
enhanced GFP gene (gfpmut2) whose transcription was
controlled by Pmip, the promoter of the Legionella-spe-
cific mip (macrophage infectivity potentiator) gene, was
used for the c/pP compensation experiment [70,71]. As
a control, the transcriptional activity of the mip promo-
ter was not discernibly affected by the loss of c/pP in
JR32 (data not shown). pBC(gfp)Pmip was digested with
Xbal and Hindlll to remove the gfp. Sequences of c/pP
were amplified by PCR using the Pxyycippr and Pxiy_cippr
primers, and the products were digested with Xbal and
HindIIl. The digestion products were ligated with the
vector. The constructed plasmid pclpP was then electro-
porated into LpAclpP, providing exogenous expression
to compensate for the loss of clpP.

Growth experiments

The growth experiments were conducted using three L.
pneumophila strains, including JR32 and the clpP defi-
cient LpAclpP derivative, both harboring the pBC(gfp)
Pmip vector, as well as the complemented strain
LpAclpP-pclpP. These strains were first grown in 5 ml
AYE for about 20 h. The cultures were expanded into
30 ml AYE in flasks, incubated to mid-exponential
phase [optical density at 600 nm (ODggp) 1.5-2.5], then
diluted into new flasks to similar optical densities at
approximate ODggo 0.2. These new cultures were then
incubated at 25°C, 30°C, 37°C, and 42°C, respectively.
ODgop was determined by Beckman Du-530 at various
time points.

Stress resistance assays

Resistance to stresses was measured as previously
described [12,65], with minor modifications. Cells from
1 ml broth cultures were centrifuged at 5,000 g for 5
min, and resuspended in AYE supplemented with 1 mM
hydrogen peroxide, 0.1 M citric acid at pH 4.0, or 0.3 M
potassium chloride, respectively. 30 min later (1 h for
osmotolerance assay), cells were washed by centrifuga-
tion and resuspended in AYE. Cultures were subse-
quently serially diluted in water, plated on BCYE for
colony forming unit (CFU) counting.

In heat resistance assays, cells from 1 ml broth cul-
tures were centrifuged at 5, 000 g for 5 min and then
resuspended in AYE. Samples for heat-shock were
placed in a 57°C water bath for 20 min, with the control
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in a 37°C water bath. Cells were washed and serially
diluted in AYE, and spread on BCYE for CFU counting.

Stress resistance was calculated as [(stressed sample
CFU ml™)/(control sample CFU ml™)] x 100.

Sodium sensitivity assay

Sodium sensitivity assay was performed as previously
described [65]. Briefly, cells from 1 ml broth cultures
were centrifuged at 5, 000 g for 5 min and then resus-
pended in AYE. Subsequently, the cell suspensions were
serially diluted in water, and spotted on BCYE and BCYE
containing 100 mM NaCl or spread on plates for CFU
counts. Sodium sensitivity was calculated as [(BCYE-100
mM NaCl CFU ml™)/(BCYE CFU ml™)] x 100.

Electron microscopy

For scanning electron microscopy (SEM), L. pneumo-
phila cells in exponential or stationary phase were col-
lected by centrifugation at 5,000 g for 2 minutes, and
then washed 3 times with 1xPBS. After being fixed by
2% glutaraldehyde (pH 7.4) and 1% osmium tetroxide
followed by dehydration in a graded ethanol series and
isoamyl acetate embedding, the cells were dried by using
a critical point drying method, and mounted on alumi-
num stubs and shadowed with gold. For visualization, a
scanning electron microscope (Hitachi/Oxford S-520/
INCA 300) was used at 10 kV.

For Cryo-transmisson electron microscopy, L. pneumo-
phila cells were collected and washed using the same
method as above. The cells were then resuspended in
1xPBS and 4 pl sample aliquots were directly applied to a
holey carbon film grid (R3.5/1 Quantifoil Micro Tools
GmbH, Jena, Germany), followed by blotting with filter
paper (Whatman #1) for about 3 seconds. The grid was
then immediately flash frozen by plunging into pre-cooled
liquid ethane. The cryo-grid was held in a Gatan 626
Cryo-Holder (Gatan, USA) and transferred into TEM
(JEOL JEM-2010 with 200 kv LaBg filament) at -172°C.
The sample was scanned and observed under minimal
dose condition at -172°C. The micrographs were recorded
by a Gatan 832 CCD camera at a nominal magnification
of 10,000~ 50,000x and at the defocus of 3-5.46 pum.

Amoebae plate test (APT)

APT was performed as previously described [45]. Briefly,
A. castellanii cells were cultured in PYG medium for 3
days prior to the test. A medium change was carried out
one day before the test. The amoebae cells were washed
off from the tissue culture flask, collected by centrifuga-
tion at 2,000 rpm for 5 min and resuspended in PYG to
a density of 2 x 10° ml™. 2 x 10° A. castellanii cells
were spread on BCYE agar plates, and incubated at
room temperature overnight. Series of tenfold dilutions
of stationary-phase bacterial cultures at a starting
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density of 1 ODggo (=107 cells ml™") were prepared. 10
ul of each dilution were spotted onto the amoebae-
CYET agar plates, and incubated at 37°C for 5 days.

Cytotoxicity assay using A. castellanii

To determine cytotoxicity, 2.5 x 10°> amoebae cells were
infected by bacteria at a multiplicity of infection (MOI)
of 100. 24 h post infection, propidium iodide (PI) was
added to 3 mg ml'. A. castellanii cells were detached
from the wells and 2.5 x 10* infected amoebae per sam-
ple were analyzed using a FACSCalibur flow cytometer
(Becton Dickinson) with a scatter gate adjusted for A.
castellanii [13]. Excitation was at 458 nm and fluores-
cence was measured at 495 nm. The data were collected
and analyzed using the CELLQUEST software (Becton
Dickinson). For fluorescence microscopy, the infected
amoebae cells in each well of 24-well plates were stained
with PI, then observed in bright field or by epifluores-
cence with an inverse microscope (Zeiss Axiovert 200
M, 20 x objective).

Intracellular growth in A. castellanii

For intracellular growth assays, exponentially growing A.
castellanii were washed with Ac (A. castellanii) buffer,
resuspended in HL5 medium, seeded onto a 24-well
plate (2.5 x 10° per well) and were allowed to adhere
for 1-2 h. L. pneumophila was grown for 21 h in AYE
broth, diluted in HL5 and used to infect amoebae at an
MOI of 10. The infection was synchronized by centrifu-
gation at 440 g for 10 min, and the infected amoebae
were incubated at 30°C. Thirty minutes post infection,
extracellular bacteria were removed by washing 3 times
with warm HL5 medium [13]. At the time points indi-
cated, culture supernatant was removed and the amoe-
bae cells were lysed with 0.04% Triton. The supernatant
and the lysates were combined, and serial dilutions were
prepared and aliquots were plated on CYE plates for
CFU counting [72].

Statistical analysis

Basic statistical analyses were performed using Excel, and
one-way ANOVA was performed using SPSS followed by
a post hoc Student-Newman-Keul’s test. The alignment
of amino acid sequences was performed using the online
Clustal W2 http://www.ebi.ac.uk/Tools/clustalw2.

Abbreviations

dot: defect in organelle trafficking; icm: intracellular multiplication; mip:
macrophage infectivity potentiator; MIF: mature intracellular form; MOI:
multiplicity of infection; APT: amoebae plate test
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