
Hadoop and PySpark for reproducibility and scalability of 
genomic sequencing studies

NICHOLAS R. WHEELER,
Cleveland Institute for Computational Biology, Department of Population and Quantitative Health 
Sciences, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road 
Cleveland OH 44106, USA

PENELOPE BENCHEK,
Cleveland Institute for Computational Biology, Department of Population and Quantitative Health 
Sciences, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road 
Cleveland OH 44106, USA

BRIAN W. KUNKLE,
John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, 
1501 NW 10th Ave, Miami, FL 33136, USA

KARA L. HAMILTON-NELSON,
John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, 
1501 NW 10th Ave, Miami, FL 33136, USA

MIKE WARFE,
Cleveland Institute for Computational Biology, Center for Advanced Research Computing, 
University Technology, Case Western Reserve University, Wolstein Research Building, 2103 
Cornell Road Cleveland OH 44106, USA

JEREMY R. FONDRAN,
Cleveland Institute for Computational Biology, Center for Advanced Research Computing, 
University Technology, Case Western Reserve University, Wolstein Research Building, 2103 
Cornell Road Cleveland OH 44106, USA

JONATHAN L. HAINES,
Cleveland Institute for Computational Biology, Department of Population and Quantitative Health 
Sciences, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road 
Cleveland OH 44106, USA

WILLIAM S. BUSH
Cleveland Institute for Computational Biology, Department of Population and Quantitative Health 
Sciences, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road 
Cleveland OH 44106, USA

Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons 
Attribution Non-Commercial (CC BY-NC) 4.0 License.

nrw16@case.edu. 
6.Availability
Code and examples are available at http://www.icompbio.net/resources/software-and-downloads/

HHS Public Access
Author manuscript
Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

Published in final edited form as:
Pac Symp Biocomput. 2020 ; 25: 523–534.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.icompbio.net/resources/software-and-downloads/


Abstract

Modern genomic studies are rapidly growing in scale, and the analytical approaches used to 

analyze genomic data are increasing in complexity. Genomic data management poses logistic and 

computational challenges, and analyses are increasingly reliant on genomic annotation resources 

that create their own data management and versioning issues. As a result, genomic datasets are 

increasingly handled in ways that limit the rigor and reproducibility of 1many analyses. In this 

work, we examine the use of the Spark infrastructure for the management, access, and analysis of 

genomic data in comparison to traditional genomic workflows on typical cluster environments. We 

validate the framework by reproducing previously published results from the Alzheimer’s Disease 

Sequencing Project. Using the framework and analyses designed using Jupyter notebooks, Spark 

provides improved workflows, reduces user-driven data partitioning, and enhances the portability 

and reproducibility of distributed analyses required for large-scale genomic studies.

Keywords

Big Data; Spark; Whole-genome Sequence; Rare-variants

1. Introduction

1.1. The Rapid Scale-up of Genomic Data

The scale of modern genomic studies has shifted from the early days of genome-wide 

association studies with 500,000 to 1 million genetic variants on a few thousand people 

(IMSGC, 2007) to imputed studies capturing tens of millions of variants (Lambert et al., 

2013), to whole-genome sequencing studies that routinely capture in excess of 100 million 

genetic variants on several thousand people (C Yuen et al., 2017). While many Genome-

Wide Association Study (GWAS) style analyses of this data are conceptually straightforward 

(Bush & Moore, 2012), the practical implementation of quality control procedures and basic 

regression analyses often increase in complexity with this scale of data due to computing 

requirements. For example, custom scripts are often needed to partition data across multiple 

nodes of a computing cluster, and the creation/destruction of many temporary files is often 

necessary which increases the analysis workload and the number of points of manipulation 

of the data. These practical details of data handling and processing are often omitted from 

methods sections of genomics publications, but this general problem is often addressed in 

descriptions of data workflows. Verma et al. nicely outline multi-step, parallelized 

imputation and quality control (QC) workflows used within the eMERGE network (Verma et 

al., 2014), and Reed et al. specifically outline the need for parallel processing and distributed 

algorithms for basic GWAS processing within an R framework (Reed et al., 2015). The 

practical issues of data partitioning and manipulation often slow the pace of analyses, 

complicate the code needed to complete analyses, and increase the likelihood of data 

handling errors, thus reducing the rigor and reproducibility of many modern genomic 

analyses.

WHEELER et al. Page 2

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.2. Increasing Dependencies on External Information

GWAS-style analyses are typically performed on the variant level, examining the 

independent effect of each non-reference allele in the dataset. Genomic sequencing studies, 

however, are designed to test the ‘rare variant hypothesis’ – that a series of low frequency, 

dominantly and independently acting variants across the genome each confer a moderate but 

readily detectable increase in disease risk (Bodmer & Bonilla, 2008; Schork, Murray, Frazer, 

& Topol, 2009). Because they have low frequency, there is limited power to see frequency 

differences between cases and controls in a population-based study. In fact, studies to date 

suggest that one-third of variants identified will be singletons (occurring in only one person) 

and doubletons (occurring in two people) (Bush et al., 2016; Butkiewicz, Blue, et al., 2017).

To address the issue of statistical power, rare-variants are often grouped into ‘functional’ 

units to generate a test statistic. These tests often rely on external data sources to define units 

of analysis (Lee, Abecasis, Boehnke, & Lin, 2014); for example, burden and collapsing tests 

group low-frequency variants together typically to perform a gene-based test. Gene 

databases -- even the concept of a gene -- have changed substantially over the last 20 years 

(Gerstein et al., 2007), and the choice of gene and transcript definitions have an impact on 

gene-based tests (McCarthy et al., 2014). Similarly, criteria for defining “loss of function” 

variants (Butkiewicz, Haines, & Bush, 2017; MacArthur et al., 2012), and methods for 

assessing and quantifying variant impact can vary (Kircher et al., 2014). These new biology-

driven analyses create dependencies on external information (e.g. transcript reference, 

annotation database versions, scoring approaches, etc). The ability to manage, store, and 

provide version control for these external resource dependencies has now become critical to 

reproduce published genomic analyses.

1.3. Limitations of Replication Analyses make Rigor and Reproducibility Critical

The reproducibility of associations from GWAS has relied on strict control of type I error 

rates and replication of initial findings in an independent dataset. Rare variant studies have 

adopted similar corrections for multiple hypothesis testing (often for the number of genes 

used in a burden test), but replication of rare variant associations using gene-based 

approaches is not as straightforward (Auer & Lettre, 2015; Liu & Leal, 2010). Due to their 

rarity, alleles present in the discovery samples may not exist in the replication samples and 

vice-versa. While under some disease models, this fact improves the ability to replicate a 

gene-level association (Liu & Leal, 2010), it also points out the need for consistency of 

analyses across multiple genomic datasets. Given that some rare alleles will be population-

specific, as in the discovery of an LDLR variant unique to Sardinians (Sanna et al., 2011), 

and the potential to identify globally unique alleles in association with disease, investigators 

can no longer rely on strict replication criteria to judge the reproducibility of genomic 

findings.

Due to the potential increases in data handling and manipulation required for genomic 

studies of scale, increases in data management for information beyond the primary dataset, 

and the limited ability to replicate certain findings, having a computational framework for 

managing analyses on this scale is more critical than ever before. While many new statistical 

approaches for the analysis of rare-variant datasets have been developed, little effort has 

WHEELER et al. Page 3

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



been made to address issues of data scaling and management for sequence-based studies. In 

this paper, we describe an evaluation of the Apache Spark framework for supporting 

scalable, reproducible analyses of rare variant datasets. To our knowledge, this is the first 

application of Spark that allows the use of R and Python-based functions for genome-wide 

unit-based testing.

2. Datasets and Methods

2.1. Study Samples, Variants, and Data Scaling

Workflows developed in this paper are motivated by analyses of data generated by the 

Alzheimer’s disease Sequencing Project (ADSP). For the Discovery Phase of this project, 

details of the study design (Beecham et al., 2017) and genotype quality control (Naj et al., 

2018) have been previously described. From whole-genome sequencing of 578 individuals 

from 111 densely affected late-onset Alzheimer’s Disease families, a dataset containing 

27,896,774 distinct variants was generated (Butkiewicz, Blue, et al., 2017). Expanding this 

dataset from 578 to 1005 individuals increased the variant count to 53,041,134, and a further 

expansion to 4795 individuals increases the variant count again to 123,739,190 – an increase 

of approximately 21,000 variants per sample added. With additional multi-ethnic samples 

being sequenced as part of the ADSP Follow-up Study, we anticipate dataset sizes 

approaching 500 million variants from approximately 20,000 whole-genome sequences. For 

our evaluations, we accessed the ADSP Discovery Whole-Exome Sequencing dataset 

consisting of 5,740 late-onset Alzheimer’s disease cases, and 5,096 cognitively normal 

controls with calls for 1,586,703 variants.

2.2. Variant Annotation Resources

Variants identified by the ADSP are annotated using a custom annotation pipeline 

(Butkiewicz, Blue, et al., 2017), which is a modification of the Ensembl Variant Effect 

Predictor (VEP) (Yourshaw, Taylor, Rao, Martín, & Nelson, 2015). Information about 

variant frequency (Glusman, Caballero, Mauldin, Hood, & Roach, 2011) and scores 

predicting variant functional impact (Kircher et al., 2014; Maurano et al., 2015; Xiong et al., 

2015) are also annotated. For gene-based tests, annotations are critical for assigning variants 

to genes, and for providing classifications of variant impact (i.e. high, moderate, low, or 

modifier). As variant annotations are relative to specific transcripts rather than genes, we 

collapse multiple transcript-specific variant annotations to a most damaging consequence on 

a gene level. While this practice is the most canonical approach, we have previously shown 

that approximately 25% of gene unit tests would be influenced by using variant annotations 

relative to transcripts expressed in disease-relevant tissues (Butkiewicz, Blue, et al., 2017). 

With the expansion from whole-exome to whole-genome sequencing, annotations for non-

genic regions have become more important.

3. Workflow

3.1. The Apache Spark Ecosystem

Given the increasing scale of genomic datasets, the increasing reliance on external 

annotation resources, and the need for streamlined and reproducible analyses, we explored 

WHEELER et al. Page 4

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an analysis workflow within the Apache Spark ecosystem (Zaharia et al., 2016). Spark 

provides an interface for data analysis and programming that utilizes an entire computing 

cluster with built-in data parallelism and fault tolerance. Data is ingested into the Hadoop 

Distributed File System (HDFS), which automatically partitions large files into redundant 

segments over multiple nodes of a computing cluster. The entire dataset, seamlessly 

partitioned across the cluster’s nodes, can be accessed programmatically as a single Spark 

DataFrame instance. A variety of Spark functions can then be applied to the DataFrame for 

data processing, which is inherently parallelized so that each computing node has local 

access to its own partitions of the complete dataset. These data processing operations are 

compatible with traditional Structured Query Language (SQL), more sophisticated machine 

learning and graph-based operations, or custom functions. For genomic data storage and 

analysis, ingesting a large variant call format (VCF) file through a single command 

accomplishes the equivalent of scripts that segment the VCF into individual files by 

chromosome or individual. The complete dataset is then programmatically accessible by 

issuing a single function call.

The Spark framework is deployed on a dedicated Hadoop Cluster consisting of 16 data/

compute nodes, with an overall total of 1.28 TB of RAM and 144 CPU-cores for parallel 

processing. This cluster is configured with standard Apache Spark (version 2.1.0) and 

Hadoop features, including Cloudera server manager (version 5.7.0), HDFS with a capacity 

of 288 TB, and the YARN/MapReduce platform for large scale data processing.

3.2. Genotype Storage and Retrieval

To provide a set of genotype storage and quality control operations, we used the open source 

software Hail (version 0.1–74bf1eb) developed by the Neale Lab at the Broad Institute (Hail, 

https://github.com/hail-is/hail/tree/0.1). Hail operates on top of Spark, and provides 

extensive, efficient functions for processing genomic data. Genomic data is imported from 

VCF and Plink-compatible files stored on the HDFS, and are converted to the Hail Variant 

Dataset (VDS) representation. Both sample and variant attributes can be easily assigned to 

VDS objects, allowing rapid retrieval of data subsets. For example, storing genomic data 

from the 1000 Genomes project (Consortium, 2012) provides the capability to extract VCF 

and Plink-compatible files that contain both sample and variant subsets within minutes.

Hail provides functions for analysis, quality control, and data manipulation, including 

single-variant statistical analyses, principal component analysis for adjusting for population 

stratification, among others. Most critically, Hail also provides interoperability with Python 

and Spark libraries, allowing the generation of Spark DataFrames from collections of 

genetic variants. These capabilities provide the ability to use R and Python packages for 

analysis of segmented genomic data, along with all functions available to Spark DataFrames.

3.3. Annotation Storage and Processing

Hail provides an extensive collection of annotation resources that can be applied to genomic 

datasets. These resources are instantiated as a Hail KeyTable, and when applied add fields to 

the original VDS files. Depending on the size and scale of the variant annotation, directly 

annotating the VDS can inflate file sizes resulting in less efficient operations. Given the need 

WHEELER et al. Page 5

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/hail-is/hail/tree/0.1


for the most current genomic annotation information, and the desire for state-of-the-art 

definitions of regulatory (and other) genomic elements, we used an annotation processing 

pipeline (external to Hail) within the Spark framework.

Spark provides built-in support for creating DataFrames from comma-/tab-separated value 

or JavaScript Object Notation (JSON) text files. JSON-formatted files are especially useful 

in the Spark framework as the information structure is preserved and accessible in query 

operations without additional data parsing operations. Based on our published annotation 

pipeline (Butkiewicz, Blue, et al., 2017), we first generated variant-level annotations using 

VEP, creating a JSON file containing variant consequence predictions relative to all Ensembl 

transcripts. This ‘everything’ annotation was instantiated as a Spark DataFrame, which was 

then subsequently processed to produce derived annotations. For example, a User-Defined 

Function (UDF) was developed to create a ‘most damaging consequence per gene’ for each 

variant, and also supports producing tissue-specific variant consequence predictions using 

tissue-transcript reference sets like those from the Genotype-Tissue Expression project 

(GTEx) (Mele et al., 2015). The DataFrame resulting from the UDF is then used to generate 

a Hail KeyTable by generating a primary key column corresponding to the variant ID. This 

Hail KeyTable can be used to identify variants meeting annotation criteria and extract 

genotypes needed for a given analysis.

3.4. Flexible Gene-based Analyses using Spark User Defined Aggregation Functions

While basic burden tests are supported within Hail, most rare-variant tests, such as the 

sequence kernel association test (SKAT) (Wu et al., 2011) and family-based rare-variant 

tests (Svishcheva, Belonogova, & Axenovich, 2014), are implemented in either the R 

statistical environment or Python. These tests are typically factored to accept a single unit’s 

worth of genomic data as input (e.g. all variants within a single gene). Currently, the Hail 

framework does not support flexible user-defined code for gene- or unit-based analyses, 

limiting analyses to those explicitly implemented in Hail.

To support the broad array of unit-based statistical approaches implemented in R and Python 

within the Spark framework, we created a User Defined Aggregate Function (UDAF) to 

generate unit-level genotype datasets that can be passed to R and Python functions (Figure 

1). Our UDAF can be used to conduct gene-based analyses using the SeqMeta package 

employed by the ADSP analyses of the WES data. We have also tested analyses using elastic 

net regression, and in general our UDAF can be easily adapted to support any R or Python 

function that accepts a genotype matrix as input. Genotype data stored within Hail was first 

processed to group data for variants associated by an aggregating factor, in our case a gene 

identifier. Once stored in this way, the entire genome’s collection of genes can be processed 

in parallel, applying custom code across each group of associated variants’ genotypes. While 

the initial data aggregation step can be time intensive, running subsequent analytics steps on 

the grouped data proceeds rapidly. This works well for the development and tuning of 

analytical methods, and enables truly interactive dataset exploration to proceed genome-

wide.

WHEELER et al. Page 6

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.5. Increasing Reproducibility of Analyses

The quality control (QC) workflows outlined in figure 5 of Verma et al. enumerate seven 

steps from raw data to analysis, each of which likely required writing and reading new 

Plink-compatible files, and a change to any one of the QC criteria would require 

regeneration of each file, requiring file naming strategies, scripts for file cleanup, and careful 

versioning. Similarly, the analysis steps outlined in figure 1 of Reed et al. nicely document 

the R code needed for four analysis steps which rely on the doParallel package to distribute 

association tests over multiple cores. This step was specifically modified by the authors to 

allow for parallel processing, and other steps of the workflow would require similar efforts 

for larger scales of data. Each these steps involves file read and write operations, file 

labeling/tracking, and could involve several thousand of temporary sub-files (totaling more 

than the original gigabyte/terabyte scale data), all to be managed by the user and their 

developed scripts. Each of these file operations represents a potential point of failure. In 

contrast, the Spark-based workflow provides seamless dataset partitioning, and computation 

occurs in parallel across the cluster. This creates a fast and more straightforward single step 

process for users, which allows easier development, testing, and verification.

Code for these Spark-based workflows is developed and deployed within Jupyter Notebooks, 

which provides features for documentation and ease of readability. Jupyter Notebooks are an 

open-source web application that allows users to create and share documents that contain 

live code, equations, and figures alongside formatted narrative text. As a hybrid of a script 

and a document, Jupyter Notebooks allow entire sections of code to be re-executed on the 

Spark cluster, typically in real-time. Analysis results can be written to files, or passed as 

DataFrames to R and Python libraries for immediate visualization. The use of Jupyter 

Notebooks is generally accepted as a way to share and duplicate analysis workflows, and can 

interoperate with R and Python packages for custom code execution. These highly portable 

approaches to utilizing code are well-suited to scientific collaboration and reproducibility.

4. Results

4.1. Validation of the Implementation

To validate the Spark framework, we accessed the final QC+ version of the ADSP Discovery 

Whole-Exome Sequencing dataset, as described in (Bis et al., 2018). Following steps 

outlined in figure 2, we ingested VCF files containing SNV and short INDEL calls, along 

with their variant annotations; we then partitioned this collection of genetic variants using 

our custom UDF, and performed gene-wise seqMeta analyses. All analyses were conducted 

with software packages and settings congruent to Bis et al, and a Manhattan plot of the 

published results alongside results from the Spark implementation are shown in figure 3.

4.2. Approximate Runtimes and Scalability

We compared the Spark implementation to the actual analysis workflow used by Bis et al. 

Using a traditional approach of splitting jobs over a scheduled cluster environment, the 

entire job from start to finish has an estimated max wall time of approximately 19 hours, 

assuming hardware equivalent to our cluster environment (number of nodes, etc). The Spark 

approach as currently configured requires a maximum of approximately 40 hours to execute 

WHEELER et al. Page 7

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from start to finish on the Bis et al dataset. The creation of a Spark dataframes from 

annotation files requires 18 minutes, and creation of Hail VDS files from VCFs requires 10 

minutes. The lengthy step in the process is the generation of aggregated data tables from the 

genotypes, which with the current configuration requires 39 hours to process. Once 

performed, this step returns a single Spark object containing all genotypes and aggregation 

information written to HDFS, and can be used to support any downstream gene-based 

analysis, or multiple variations of a single analysis, with a vastly shorter runtime. Once 

aggregated, the entire seqMeta analysis of all genes requires approximately 42 minutes or 

less, which allows for multiple genome-wide runs using different annotation or filtering 

criteria. While we do not have precise timings for each step of the traditional analysis 

workflow, the bulk of the allocated analysis time is used for file I/O, extracting genotypes for 

each gene and writing these to files for subsequent analysis within R. For the traditional 

approach implemented in Bis et al., any repeat of the analysis requires a complete rerun of 

all computing steps. In contrast, the Spark-based framework is more modular, allowing 

selective execution of individual steps while maintaining a verified state of the analysis.

4.3. Advantages Over Traditional Implementations

While there currently is no timing advantage to the Spark approach, there are a few clear 

advantages in terms of the flexibility of the workflow. Unlike using Hail alone, our workflow 

allows users to incorporate the extensive library of existing R and Python packages that 

support various gene- and unit-based analyses. Because we have employed the Spark 

framework, the functions for performing gene-wise analyses have redundancy and 

operational integrity. Unlike a scheduled cluster environment where jobs are queued, must 

be tracked, and results must be aggregated when jobs are fully completed, the Spark 

environment provides process redundancy where any failed processes are tracked and 

dynamically re-executed in case of failure. Results are aggregated and returned as a single 

distributed dataframe object. The Spark workflow effectively replaces process and file 

tracking tasks usually performed explicitly by an end user (within scripts) with features 

inherent to the Spark environment.

A second advantage of the Spark approach is that aggregated variant tables can be modified 

by adding additional annotations or covariates. In the traditional workflow, this would 

require scripts to process each of the written files to add these columns post-hoc, or more 

likely, a revision of the analysis workflow and a complete re-execution. In fact, any change 

to analysis parameters, variant QC criteria, or variant annotations would require a complete 

re-execution of a traditional workflow, whereas with the Spark workflow only a small 

fraction must be rerun.

Finally, replicating the analysis implemented in the traditional workflow would require 

extensive customization (or a complete re-implementation) before it could be run on a local 

cluster environment. Adaptations are needed to account for different cluster schedulers, 

software package availability and version control, and file locations/disk usage. In contrast, 

the Spark workflow can be executed on an equivalent Hadoop environment and Spark 

implementation using only code contained with Juypter Notebooks and base Hail and 

PySpark functionality. While this does not completely eliminate the need to customize a 

WHEELER et al. Page 8

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computing environment (as Spark setup and configuration is required), it is a step closer 

toward easy transferability and reproducibility of analysis tasks whose size necessitate 

execution within a distributed processing framework. Furthermore, as large-scale studies are 

beginning to provide access to data exclusively through cloud computing environments, 

frameworks like this will be necessary for distributed analysis tasks.

5. Conclusions

We have explored the use of Spark for implementing a typical analysis of genomic sequence 

data, and found the implementation to be a flexible approach for analyses of large-scale 

genomic data that provides built-in parallelization, minimizes data handling, and improves 

reproducibility. By storing variant annotation information alongside study participant 

genotypes, the Spark framework provides a route by which custom variant annotation 

information can be rapidly integrated to support new variant filters, or variant groupings to 

test within unit-based association analyses. For many existing datasets, the distributed Spark 

infrastructure described here is not necessary; however as sequencing studies continue to 

add samples and expand the scope of variant capture, and the breadth of genotype 

imputation panels grow, future genomic studies will require a reproducible parallel 

processing framework for statistical analysis.

7. Acknowledgements

This work was supported by the NIH (U54 AG052427, UF01 AG07133). Support for computational infrastructure 
was provided by the CWRU University Technology division.

References

Auer PL, & Lettre G (2015). Rare variant association studies: considerations, challenges and 
opportunities. Genome Medicine, 7(1), 16 10.1186/s13073-015-0138-2 [PubMed: 25709717] 

Beecham GW, Bis JC, Martin ER, Choi S-H, DeStefano AL, van Duijn CM, … Schellenberg G 
(2017). The Alzheimer’s Disease Sequencing Project: Study design and sample selection. 
Neurology Genetics, 3(5), e194 10.1212/NXG.0000000000000194 [PubMed: 29184913] 

Bis JC, Jian X, Kunkle BW, Chen Y, Hamilton-Nelson KL, Bush WS, … Farrer LA (2018). Whole 
exome sequencing study identifies novel rare and common Alzheimer’s-Associated variants 
involved in immune response and transcriptional regulation. Molecular Psychiatry. 10.1038/
s41380-018-0112-7

Bodmer W, & Bonilla C (2008). Common and rare variants in multifactorial susceptibility to common 
diseases. Nature Genetics, 40(6), 695–701. 10.1038/ng.f.136. [PubMed: 18509313] 

Bush WS, Crosslin DR, Obeng AO, Wallace J, Almoguera B, Basford MA, … Ritchie MD (2016). 
Genetic Variation among 82 Pharmacogenes: the PGRN-Seq data from the eMERGE Network. 
Clinical Pharmacology and Therapeutics. 10.1002/cpt.350

Bush WS, & Moore JH (2012). Chapter 11: Genome-Wide Association Studies. PLoS Computational 
Biology, 8(12), e1002822. 10.1371/journal.pcbi.1002822

Butkiewicz M, Blue E, Leung F, Jian X, Marcora E, Renton A, … Bush WS (2017). Functional 
Annotation of Genomic Variants in studies of Late-Onset Alzheimer’s Disease. Bioinformatics 
(Oxford, England), In Press.

Butkiewicz M, Haines JL, & Bush WS (2017). Introducing COCOS: codon consequence scanner for 
annotating reading frame changes induced by stop-lost and frame shift variants. Bioinformatics, 
33(10), btw820. 10.1093/bioinformatics/btw820

C Yuen RK, Merico D, Bookman M, L Howe J, Thiruvahindrapuram B, Patel RV, … Scherer SW 
(2017). Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum 

WHEELER et al. Page 9

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disorder. Nature Neuroscience, 20(4), 602–611. https://doi.org/10.1038/nn.4524 [PubMed: 
28263302] 

Consortium T 1000 G. P. (2012). An integrated map of genetic variation from 1,092 human genomes. 
Nature, 135(V), 0–9. 10.1038/nature11632

Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO, … Snyder M (2007). What is a gene, 
post-ENCODE? History and updated definition. Genome Research, 17(6), 669–681. 10.1101/gr.
6339607 [PubMed: 17567988] 

Glusman G, Caballero J, Mauldin DE, Hood L, & Roach JC (2011). Kaviar: an accessible system for 
testing SNV novelty. Bioinformatics, 27(22), 3216–3217. 10.1093/bioinformatics/btr540 
[PubMed: 21965822] 

IMSGC. (2007). Risk alleles for multiple sclerosis identified by a genomewide study. The New 
England Journal of Medicine, 357(9), 851–862. 10.1056/NEJMoa073493 [PubMed: 17660530] 

Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, & Shendure J (2014). A general framework 
for estimating the relative pathogenicity of human genetic variants. Nature Genetics, 46(3), 310–
315. 10.1038/ng.2892 [PubMed: 24487276] 

Lambert J-C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, … Amouyel P (2013). 
Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. 
Nature Genetics, 45(12), 1452–1458. 10.1038/ng.2802 [PubMed: 24162737] 

Lee S, Abecasis GR, Boehnke M, & Lin X (2014). Rare-Variant Association Analysis: Study Designs 
and Statistical Tests. The American Journal of Human Genetics, 95(1), 5–23. 10.1016/j.ajhg.
2014.06.009 [PubMed: 24995866] 

Liu DJ, & Leal SM (2010). Replication strategies for rare variant complex trait association studies via 
next-generation sequencing. American Journal of Human Genetics, 87(6), 790–801. 10.1016/
j.ajhg.2010.10.025 [PubMed: 21129725] 

MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, … Tyler-Smith C 
(2012). A systematic survey of loss-of-function variants in human protein-coding genes. Science 
(New York, N.Y.), 335(6070), 823–828. 10.1126/science.1215040

Maurano MT, Haugen E, Sandstrom R, Vierstra J, Shafer A, Kaul R, & Stamatoyannopoulos JA 
(2015). Large-scale identification of sequence variants influencing human transcription factor 
occupancy in vivo. Nature Genetics, 47(12), 1393–1401. 10.1038/ng.3432 [PubMed: 26502339] 

McCarthy DJ, Humburg P, Kanapin A, Rivas MA, Gaulton K, Cazier J-B, & Donnelly P (2014). 
Choice of transcripts and software has a large effect on variant annotation. Genome Medicine, 
6(3), 26 10.1186/gm543 [PubMed: 24944579] 

Mele M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, … Guigo R (2015). The 
human transcriptome across tissues and individuals. Science, 348(6235), 660–665. 10.1126/
science.aaa0355 [PubMed: 25954002] 

Naj AC, Lin H, Vardarajan BN, White S, Lancour D, Ma Y, … DeStefano AL (2018). Quality control 
and integration of genotypes from two calling pipelines for whole genome sequence data in the 
Alzheimer’s disease sequencing project. Genomics. 10.1016/j.ygeno.2018.05.004

Reed E, Nunez S, Kulp D, Qian J, Reilly MP, & Foulkes AS (2015). A guide to genome-wide 
association analysis and post-analytic interrogation. Statistics in Medicine, 34(28), 3769–3792. 
10.1002/sim.6605 [PubMed: 26343929] 

Sanna S, Li B, Mulas A, Sidore C, Kang HM, Jackson AU, … Abecasis GR (2011). Fine Mapping of 
Five Loci Associated with Low-Density Lipoprotein Cholesterol Detects Variants That Double the 
Explained Heritability. PLoS Genetics, 7(7), e1002198. 10.1371/journal.pgen.1002198

Schork NJ, Murray SS, Frazer KA, & Topol EJ (2009). Common vs. rare allele hypotheses for 
complex diseases. Current Opinion in Genetics & Development, 19(3), 212–219. 10.1016/j.gde.
2009.04.010 [PubMed: 19481926] 

Svishcheva GR, Belonogova NM, & Axenovich TI (2014). FFBSKAT: fast family-based sequence 
kernel association test. PloS One, 9(6), e99407. 10.1371/journal.pone.0099407

Verma SS, de Andrade M, Tromp G, Kuivaniemi H, Pugh E, Namjou-Khales B, … Ritchie MD 
(2014). Imputation and quality control steps for combining multiple genome-wide datasets. 
Frontiers in Genetics, 5, 370 10.3389/fgene.2014.00370 [PubMed: 25566314] 

WHEELER et al. Page 10

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wu MC, Lee S, Cai T, Li Y, Boehnke M, & Lin X (2011). Rare-variant association testing for 
sequencing data with the sequence kernel association test. American Journal of Human Genetics, 
89(1), 82–93. 10.1016/j.ajhg.2011.05.029 [PubMed: 21737059] 

Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RKC, … Frey BJ (2015). RNA 
splicing. The human splicing code reveals new insights into the genetic determinants of disease. 
Science (New York, N.Y.), 347(6218), 1254806. 10.1126/science.1254806

Yourshaw M, Taylor SP, Rao AR, Martín MG, & Nelson SF (2015). Rich annotation of DNA 
sequencing variants by leveraging the Ensembl Variant Effect Predictor with plugins. Briefings in 
Bioinformatics, 16(2), 255–264. 10.1093/bib/bbu008 [PubMed: 24626529] 

Zaharia M, Franklin MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I, … Venkataraman S (2016). 
Apache Spark. Communications of the ACM, 59(11), 56–65. 10.1145/2934664

WHEELER et al. Page 11

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Illustration of UDFs and UDAFs for producing typical GWAS association results (A) and 

gene-based aggregation test results (B). User Defined Aggregation Functions (UDAFs) 

partition the genotype data into frames that are programmatically accessible to User Defined 

Functions (UDFs), which can implement R and Python-based code. In this example, 

genotypes are aggregated by gene to produce results from the seqMeta R package.

WHEELER et al. Page 12

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Comparison of the Spark-based versus Traditional workflows for conducting rare-variant 

analyses. Approximate timings are noted in red (timings for individual steps of the 

traditional framework were unavailable). Green labels denote advantages of the Spark-based 

over the traditional framework.

WHEELER et al. Page 13

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Manhattan plots of Skat-O Meta-analysis results from the Spark-based implementation 

versus the results published in Bis et al.

WHEELER et al. Page 14

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	The Rapid Scale-up of Genomic Data
	Increasing Dependencies on External Information
	Limitations of Replication Analyses make Rigor and Reproducibility Critical

	Datasets and Methods
	Study Samples, Variants, and Data Scaling
	Variant Annotation Resources

	Workflow
	The Apache Spark Ecosystem
	Genotype Storage and Retrieval
	Annotation Storage and Processing
	Flexible Gene-based Analyses using Spark User Defined Aggregation Functions
	Increasing Reproducibility of Analyses

	Results
	Validation of the Implementation
	Approximate Runtimes and Scalability
	Advantages Over Traditional Implementations

	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.

