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Abstract

Cocaine craving, seeking, and relapse are mediated, in part, by cocaine-induced adaptive changes 

in the brain reward circuits. The nucleus accumbens (NAc) integrates and prioritizes different 

emotional and motivational inputs to the reward system by processing convergent glutamatergic 

projections from the medial prefrontal cortex, basolateral amygdala, ventral hippocampus, and 

other limbic and paralimbic brain regions. Medium spiny neurons (MSNs) are the principal 

projection neurons in the NAc, which can be divided into two major subpopulations, namely 

dopamine receptor D1- versus D2-expressing MSNs, with complementing roles in reward-

associated behaviors. After cocaine experience, NAc MSNs exhibit complex and differential 

adaptations dependent on cocaine regimen, withdrawal time, cell type, location (NAc core 

versus shell), and related input and output projections, or any combination of these factors. 

Detailed characterization of these cellular adaptations has been greatly facilitated by the recent 

development of optogenetic/chemogenetic techniques combined with transgenic tools. In this 

review, we discuss such cell type- and projection-specific adaptations induced by cocaine 

experience. Specifically, (1) D1 and D2 NAc MSNs frequently exhibit differential adaptations in 

spinogenesis, glutamatergic receptor trafficking, and intrinsic membrane excitability, (2) cocaine 

experience differentially changes the synaptic transmission at different afferent projections onto 

NAc MSNs, (3) cocaine-induced NAc adaptations exhibit output specificity, e.g., being different 

at NAc-ventral pallidum vs. NAc-ventral tegmental area synapses, and (4) the input, output, 

subregion, and D1/D2 cell type may together determine cocaine-induced circuit plasticity in the 

NAc. In light of the projection and cell-type specificity, we also briefly discuss ensemble and 

circuit mechanisms contributing to cocaine craving and relapse after drug withdrawal.
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Introduction

In recent years, our quest for the neural mechanisms underlying substance use disorder 

(SUD) has been greatly empowered by two scientific advancements. Conceptually, 

the neuroadaptation theory identifies SUD as a chronic brain disease of learning and 

memory1–3, prompting the search for key forms of neural plasticity that are engaged in drug 

seeking and relapse. Technically, the development of research tools, particularly optogenetic/

chemogenetic approaches combined with transgenic animals, has enabled projection- and 

cell type-specific understanding of drug-induced adaptations in unprecedented detail. Here, 

we will summarize the most relevant background literature, in order to facilitate a discussion 

of the projection- and cell type-specific adaptations induced by cocaine experience.

Anatomical connections of the nucleus accumbens in the context of cocaine seeking

Located at the ventral striatum, the nucleus accumbens (NAc) is a key hub within the 

mesolimbic reward circuit. It receives dopaminergic input from the ventral tegmental area 

(VTA) and extensive convergent glutamatergic inputs from limbic and paralimbic brain 

regions, including the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), ventral 

hippocampus (vHipp), paraventricular nucleus of the thalamus (PVT), and others4. The NAc 

projects to the ventral pallidum (VP), VTA, and other components of the basal ganglia 

and mesencephalon to regulate motor output and mesencephalic dopamine release4. These 

circuit features position the NAc as an interface bridging and prioritizing emotional and 

motivational arousals for behavioral output, thus regulating reward learning and goal-driven 

behaviors5–7. The behavioral role of the NAc in drug-related behaviors was initially revealed 

by early observations that disruption of NAc DA signaling compromises the acquisition of 

cocaine self-administration (SA)8, 9, and that NAc DA is important for the expression of 

amphetamine-induced locomotor sensitization10, 11 (rodent models see Box 1). Similarly, 

blocking glutamatergic transmission to the NAc compromises multiple forms of reinstated 

drug-seeking after withdrawal from drug SA, as well as the expression of psychomotor 

sensitization following repeated non-contingent drug procedures12, 13. However, excitotoxic 

lesion of the NAc core/shell does not entirely prevent the acquisition of cocaine SA14, 

suggesting that the NAc is not required for the establishment of operant responding, but 

rather regulates the conditioning of the responding by incorporating information pertaining 

to emotional and motivational salience. Taken together, the NAc stands as a critical interface 

of glutamatergic and dopaminergic signaling in regulating the development of drug-related 

behaviors.

Role of NAc glutamatergic synapses

The NAc can be divided into anatomical-functional subregions, such as the core (Co) and 

shell (Sh). While sharing some similarities, the NAcCo and NAcSh often undergo different 

forms of adaptive changes and differentially contribute to the “motor” and “limbic” aspects 

of drug seeking14, 16, 22, 31. Both the NAcCo and NAcSh are composed of ~95% GABAergic 

medium spiny projecting neurons (MSNs), which can be largely sorted into two populations 

based on their predominant expression of either dopamine D1 or D2 receptors, with a 

potential third, small population expressing both receptor subtypes32–35. The remaining NAc 

neurons are non-glutamatergic interneurons36–40.
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Lacking intrinsic pace-making mechanisms, action potential firing of NAc MSNs is 

driven by glutamatergic synaptic inputs. Based on early in vivo recordings and pharmaco-

behavioral studies, it has been long speculated that cocaine-induced changes in the 

NAc glutamatergic transmission critically contribute to various aspects of drug-seeking 

behaviors12, 41, 42. This notion has been supported by numerous empirical results involving 

both the NAcSh and NAcCo. For example, in both NAcSh and NAcCo, MSNs often exhibit 

increased densities of dendritic spines suggestive of increased glutamatergic synapses 

after withdrawal from either non-contingent or contingent cocaine procedures, though 

details on NAcSh/Co differences and spine subcategories are not always consistent43–47. 

In the NAcSh MSNs, electrophysiological recordings combined with molecular tagging 

and imaging suggest de novo synaptogenesis following non-contingent cocaine exposure, 

producing “AMPA-silent” glutamatergic synapses (“silent synapses”)48, 49 (Box 2). Silent 

synapses have since been observed in NAcSh MSNs in neuronal ensembles that accompany 

behavioral sensitization in response to non-contingent cocaine50, 51, as well as following 

cocaine SA (limited-access) (for review see52). Moreover, after withdrawal from either 

non-contingent or contingent cocaine exposure, synaptic recruitment of AMPARs has 

been observed in NAcSh MSN synapses, upon which some of cocaine-generated silent 

synapses mature into fully functional synapses and contribute to the consolidation 

of cocaine-associated memories53–58. Furthermore, upon cue re-exposure after drug 

withdrawal, mature, AMPAR-containing, cocaine-generated synapses become temporarily 

re-silenced, followed by re-maturation several hours later, two synaptic states corresponding 

with the destabilization and reconsolidation of cocaine-associated memories59. Thus, by 

generating nascent synaptic contacts, cocaine experience may redefine the connectivity 

patterns of key glutamatergic projections to NAcSh MSNs, thereby remodeling NAc 

circuits to embed cocaine-associated memories52. In the NAcCo, upregulation of synaptic 

AMPARs also occurs after withdrawal but differs between non-contingent versus contingent 

cocaine regimens22. Following non-contingent exposure and 2–3 weeks of withdrawal, 

typical, calcium-impermeable AMPARs (CI-AMPARs) are upregulated. By contrast, 

following extended-access cocaine SA and long-term withdrawal (after day 25–35), 

atypical, calcium-permeable AMPARs (CP-AMPARs) are upregulated at overall NAcCo 

MSN synapses22, 60, 61 (but see CI-AMPARs recruitment at prelimbic PFC-to-NAcCo 

synapses54). The accumulation of CP-AMPARs at NAcCo synapses is negatively regulated 

by mGluR161–63, and dependent on protein synthesis64, though not necessarily matches 

with spine density changes47. Moreover, pharmacological inhibition of these receptors 

in the NAcCo decreases cue-induced cocaine seeking after long-term withdrawal from 

extended-access cocaine SA60. These and other results (for review see22, 31) highlight 

NAc glutamatergic synapses as key neuronal substrates through which cocaine experience 

produces persistent synaptic and circuit adaptations to promote drug seeking and pave the 

road for cell type- and projection-specific studies of drug-induced circuit adaptations.

Glutamatergic synapses on D1 versus D2 MSNs

The availability of transgenic animals enabling genetic manipulation/marking of specific 

neuronal subpopulations72, 73 has provided extensive demonstrations of how cocaine-

induced plasticity is differentially expressed in NAc D1 and D2 MSNs31, 33, 34, 74, 75. NAc 

D1 and D2 MSNs form divergent yet partially overlapping connections with downstream 
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brain regions76–78. In behaving animals performing reward-seeking tasks, NAc D1 and D2 

MSNs often exhibit differential activity patterns79, and stimulation (or suppression) of D1 

versus D2 MSNs can result in distinct, often antagonistic, regulation over reward-associated 

behaviors80–82. A note of caution is that the “antagonistic” roles of D1 versus D2 MSNs 

in regulating reward-associated behaviors deduced from experimenter-imposed activation 

or suppression of selective neuronal populations may be different from the natural in vivo 
situation83, where D1 and D2 MSNs also exhibit cooperative roles, as demonstrated in 

the dorsal striatum84, and are differentially, but not antagonistically, involved in learning-

associated cellular plasticity85, 86.

Non-contingent cocaine exposure: One week following a single i.p. injection of 

cocaine (20 mg/kg), NAcSh D1, but not D2, MSNs exhibit increased miniature (m) EPSC 

amplitude and frequency (of postsynaptic origin), accompanied by a reduced capacity for 

LTP induction, suggesting cocaine-induced AMPAR insertions selectively in NAcSh D1 

MSNs87. Furthermore, reversing this postsynaptic potentiation in cocaine-exposed mice 

abolishes the expression of cocaine-induced psychomotor sensitization87. Similarly, after 

5-day non-contingent cocaine exposure (15 mg/kg/injection), NAcSh D1, but not D2, MSNs 

exhibit increased spine densities74, 88, which is accompanied by an increase in the frequency 

of mEPSCs in D1 versus a decrease in D2 MSNs. On the other hand, the membrane 

excitability of NAcSh D1, but not D2, MSNs is decreased74. Furthermore, after ~4 weeks 

of non-contingent exposure to high-dose (30 mg/kg) cocaine, densities of dendritic spines 

exhibit a fast-onset and sustained increase in both NAcCo and NAcSh D1 MSNs75, while 

in D2 MSNs, the increase is transient and disappears by withdrawal day 3075. Taken 

together, these results suggest that spine densities and likely numbers of excitatory synapses 

on D1 MSNs are upregulated by either short- or long-term exposure to cocaine, while 

these parameters are only changed in D2 MSNs after prolonged and/or high-dose cocaine 

exposure. These non-contingent procedure-related results prompt the exploration of cell 

type-specific adaptations after contingent exposure to cocaine.

Cocaine SA: There have been limited studies differentiating NAc D1 versus D2 MSNs 

in response to cocaine SA with bulk assessment of glutamatergic inputs. In the NAcSh, D1 

MSNs preferentially exhibit a postsynaptic potentiation at glutamatergic synapses following 

1-month withdrawal from an initial 5-day 2-h daily cocaine SA with a fixed ratio (FR) 

schedule 1 and subsequent 5-day SA with FR289. Furthermore, NAcSh D1 MSNs are 

preferentially enriched with CP-AMPARs following 10 days of short- or extended access, 

regular dose SA, with D2 MSNs only exhibiting similar potentiation after a high-dose, 

extended-access regiment57. In the NAcCo, postsynaptic potentiation occurs preferentially at 

D1 over D2 MSN synapses after a chronic cocaine SA procedure (6–7 weeks of 2-h daily 

sessions, at least 17 sessions), except in a subset of mice in which a greater potentiation of 

D2 MSN synapses is observed that correlates with higher resilience to compulsive cocaine 

use82.

Re-exposure to drug-associated cues after SA: Following long-term withdrawal 

(~45 days) from an overnight session and 5-day 2-h cocaine SA, re-exposure to cocaine-

associated cues induces a transient de-potentiation (“re-silencing”) then recovery of cocaine-
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generated synapses in the NAcSh, which is postulated to mediate the destabilization and 

reconsolidation of cocaine-associated memories59. However, the cell-type specificity was 

not determined in this study. Using a different paradigm, it is shown that 2–3 weeks after 

withdrawal from 10-day cocaine SA, NAcCo D1 and D2 MSNs do not show changes 

in AMPAR/NMDAR ratios. However, upon re-exposure to cocaine-associated discrete 

or contextual cues at this withdrawal time (without extinction training), the AMPAR/

NMDAR ratio of NAcCo D1 (but not D2) MSNs is transiently increased. By contrast, 

in mice that undergo extinction training, re-exposure to the extinguished context selectively 

increased the AMPAR/NMDAR ratio in NAcCo D2 (but not D1) MSNs and decreased cue-

induced cocaine-seeking, implicating this D2 MSN-specific adaptation in cocaine-refraining 

behavior. Furthermore, in mice that undergo extinction training prior to re-exposure to 

cocaine-associated discrete cues, both NAcCo D1 and D2 MSNs show increased AMPAR/

NMDAR ratio, suggesting that cue-induced relapse is effectively balanced by the relative 

activation patterns of these two neuronal populations90. This is partially supported by results 

from the rat NAcSh, wherein there is a transient increase in the AMPAR/NMDAR ratio 

during drug-refraining, presumably driven by D2 MSNs91. However, the same paper found 

no significant differences in the AMPAR/NMDAR ratio of D1 and D2 NAcSh MSNs 

in mice, although there was increased innervation of D2 MSNs relative to D191. Thus, 

these results suggest that differential potentiation of NAcCo D1 and D2 MSN excitatory 

inputs in response to contextual or discrete cocaine-associated cues regulates the balance 

between cocaine seeking or refraining behaviors. The combined discrepancies of NAc D1 

and D2 MSNs and the observed subregion differences thereby prompts a consideration of 

cocaine-induced changes in projection- and cell type-specific manners.

Projection- and cell type-specific changes on NAc glutamatergic inputs

Early in vivo multi-unit recordings provide glimpses of neuronal activity patterns in the 

NAc during cocaine SA and after withdrawal. Specifically, select populations of NAcCo/

ventral striatal neurons exhibit a phasic increase in firing correlated with the initiation 

and maintenance of cocaine SA, as well as an increase in firing upon re-exposure to 

cocaine-associated cues after drug withdrawal92–94. These ensemble-like activities hint at 

the possibility that NAc MSNs are functionally organized, may be preferentially driven 

by different glutamatergic projections at different behavioral moments, and likely undergo 

cocaine-induced changes. These initial results establish strong premises for studying 

projection-specific control of cocaine-induced neural plasticity in the NAc.

Glutamatergic inputs from various cortical and subcortical regions differentially innervate 

NAc sub-regions95–97. At the cellular level, these projections converge on individual MSNs, 

often on the same segments of dendrites98–102. Here, we focus on the mPFC, BLA, vHipp, 

and PVT projections for cocaine-induced changes (Figure 1) and their behavioral correlates.

mPFC-to-NAc: Corticostriatal projections from the mPFC are crucial for the generation of 

adaptive strategies in reward seeking by regulating reward anticipation, reward evaluation, 

and risk assessment6, 103–105. Extensive evidence suggests that the glutamatergic projection 

from the prelimbic mPFC (PL) to the NAcCo functions to promote cue- and drug 

priming-induced reinstatement of cocaine seeking after extinction of SA106–108, whereas 
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the infralimbic mPFC (IL) projection to the NAcSh functions to suppress cocaine seeking 

during extinction training, inhibit cue-induced reinstatement of cocaine seeking, and 

facilitate the consolidation of memories related to extinction learning109–113.

Non-contingent cocaine (15–20 mg/kg/injection): After 5 days of non-contingent 

cocaine administration, mPFC (presumably IL)-to-NAcSh synapses exhibit persistently 

increased presynaptic release probability over the 45-day withdrawal period114. Although 

no postsynaptic changes were detected at IL-to-NAcSh synapses 10–14 days after 5-day 

non-contingent cocaine exposure in one study96, a single injection of cocaine leads to 

the occlusion of LTP in D1 MSNs in both NAcCo and NAcSh at one week, but not a 

month, after administration87 as well as a facilitation of NMDAR-dependent LTD at IL-to-

NAcSh synapses, suggesting cocaine-induced increases in AMPAR transmission within this 

projection. This is further shown to contribute to sensitized locomotor responses during early 

drug withdrawal87.

Limited-access cocaine SA: The limited-access cocaine SA training typically contains 

an extended overnight (O/N) session of unlimited access followed by ~5 days of 2-hr daily 

SA (0.75 mg/kg/infusion). After either short-term (1-day) or long-term (45-day) withdrawal 

from this training procedure, IL-to-NAcSh synapses exhibit increased presynaptic release 

probability114. Moreover, AMPAR upregulation-mediated postsynaptic potentiation occurs 

at both PL-to-NAcCo and IL-to-NAcSh synapses following long-term withdrawal from a 

similar cocaine regimen, though with differential molecular mechanisms and contrasting 

behavioral consequences54. After short-term withdrawal from cocaine SA, AMPAR-silent 

synapses are detected within PFC-to-NAc projections54. After cocaine withdrawal, some 

of the PL-to-NAcCo silent synapses mature by recruiting predominantly CI-AMPARs, 

whereas IL-to-NAcSh silent synapses mature by recruiting predominantly CP-AMPARs54. 

After long-term withdrawal, reversing the maturation of PL-to-NAcCo silent synapses 

decreases cue-induced cocaine seeking, whereas reversing the maturation of IL-to-NAcSh 

silent synapses induces the opposite effect54. Thus, by generating silent synapses, cocaine 

experience simultaneously remodels both the PL-to-NAcCo and IL-to-NAcSh projections, 

resulting in opposing behavioral consequences. Although the above rat studies do not 

distinguish D1 versus D2 MSNs, in mice following long-term withdrawal from a 10-

day mixed FR1/FR2 schedule SA paradigm, mPFC-to-NAcSh synapses are selectively 

potentiated in D1 MSNs by CP-AMPAR insertions89. Reversing this cocaine-induced 

adaptation increases the rate of incorrect operant responding during cue-induced cocaine 

seeking, suggesting an impaired cue-cocaine association89.

Extended-access, high-dose cocaine SA: After a month of withdrawal from 10 

days of 6 hr daily sessions with a high cocaine dosage (1.5 mg/kg/infusion), selective 

postsynaptic potentiation of mPFC-to-NAcSh D1(but not D2) MSNs is detected, likely 

mediated by synaptic insertion of CP-AMPARs57. This conceivably shifts the balance of the 

mPFC inputs toward stronger drive onto D1 MSNs, as compared to the drug-naïve animals, 

where the overall activation of mPFC-to-NAc inputs evokes largely equal postsynaptic 

responses in D1 versus D2 MSNs in both NAcCo and NAcSh88, 115. After high-dose SA 
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paradigms, the magnitude of CP-AMPAR upregulation is positively correlated with the level 

of incubated cocaine seeking57.

BLA-to-NAc: The amygdala is an evolutionarily conserved brain region that encodes 

and relays information pertaining to cues associated with emotional valence, including 

cocaine-associated cues116, 117. The BLA-to-NAc projection may impose either positive 

or negative regulation of reward-elicited behaviors118–122, and plays a crucial role in cue-

induced cocaine seeking123. A population of NAcCo MSNs exhibits increased activities 

upon re-exposure to the cues that are previously associated with reward consumption, and 

formation of this MSN response requires excitation of BLA neurons in conjunction with 

NAcCo dopamine signaling during the cue-reward training124. Furthermore, successive 

excitation of the BLA-to-NAcCo projection increases this cue-induced MSN response 

and facilitates reward seeking124. After extinction from 12 days cocaine SA, optogenetic 

inhibition of BLA-to-NAcCo transmission decreases cue-induced reinstatement of cocaine 

seeking125. These results implicate the BLA-to-NAc projection in cue-conditioned reward 

and cocaine seeking, and raise the question of how this projection interacts with MSNs in a 

cell type-specific manner.

When assessed in bulk using optogenetic stimulation of populational BLA fibers within the 

NAc, the synaptic weights of BLA inputs to NAcSh D1 and D2 MSNs appear unbiased 

in naïve mice88, 126. However, these results do not exclude the possibility of preferential 

innervation of D1 versus D2 MSNs by individual BLA neurons, which has yet to be 

explored.

Non-contingent cocaine (15 mg/kg/injection): In contrast to the mPFC projection, 

BLA-to-NAcSh synapses do not exhibit changes in presynaptic release probability 

following short- (1-day) or long-term (45-day) withdrawal from 5-day non-contingent 

cocaine exposure114. Postsynaptically, the overall AMPAR/NMDAR ratio at BLA-to-NAcSh 

synapses also remains constant after ~2 weeks of withdrawal from 5-day non-contingent 

cocaine exposure96. However, the relative innervation of NAcSh D1 versus D2 MSNs 

by BLA projections appears to be increased after short-term withdrawal from 5-day 

non-contingent cocaine exposure88, 126. Specifically, after 3 days withdrawal from 5-day 

non-contingent cocaine exposure, the BLA-to-D1 MSN transmission in the NAcSh is 

preferentially enhanced, accompanied by increases in the frequency of miniature EPSCs 

and overall density of dendritic spines on D1, but not D2, MSNs, suggesting selective 

strengthening of BLA-to-D1 MSN transmission88. Furthermore, D1 MSNs that exhibit 

potentiated BLA-to-NAcSh transmission are preferentially those that project to the VP in 

relation to those that project to the VTA126, hinting at a projection-specific mechanism that 

warrants further exploration.

Limited-access cocaine SA: The general presynaptic properties of BLA-to-NAcSh 

synapses are not altered after either short- or long-term withdrawal from O/N+5-day 

SA or non-contingent administration of cocaine114. However, a silent synapse-mediated 

postsynaptic adaptation at BLA-to-MSN synapses is detected in rats after short-term 

withdrawal from O/N+5-day cocaine SA53. In mice, while this particular adaptation has 

not been examined, the AMPAR/NMDAR ratio at BLA-to-D1 MSNs in the NAcSh is 
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not changed after withdrawal from a 10-day FR1/FR2 mixed limited-access SA89. In rats, 

CP-AMPARs are inserted to cocaine-generated silent synapses within the BLA-to-NAcSh 

projection after long-term withdrawal from O/N+5-day cocaine SA, indicating that at least 

a portion of BLA-to-NAcSh synapses, located either on D1 or D2 MSNs, are potentiated53. 

Furthermore, an in vivo optogenetic LTD protocol that preferentially removes CP-AMPARs 

from potentiated BLA-to-NAcSh synapses attenuates cue-induced cocaine seeking after 

cocaine withdrawal53, 127. It remains to be determined whether this adaptation is cell-type 

specific.

Extended-access or high-dose cocaine SA: Following 10 days of 6-hr daily regular-

dose cocaine SA (0.75mg/kg/infusion) and long-term (>40-day) withdrawal, local field 

potentials recorded in the NAcCo in response to BLA stimulation (40 Hz trains) are 

increased, to which either a potentiation of the BLA-to-NAcCo transmission or alterations 

in local GABAergic inhibitory circuits may contribute128. In addition, following high-dose, 

extended cocaine SA (1.5 mg/kg/infusion, 6-hr daily for 10 days) and long-term (1 month) 

withdrawal, CP-AMPAR insertion at BLA-to-NAcSh synapses is observed at D2, but not 

D1, MSN synapses in mice57. Such a D2 MSN-selective effect does not occur after SA 

of relatively low doses of cocaine89, suggesting the intensity of drug experience as a key 

factor in determining cell type-specific adaptations. It is speculated that potentiation of 

BLA-to-NAcSh D2 MSN projection may facilitate aversion learning57.

vHipp-to-NAc: The vHipp is a key brain region that encodes spatial information 

related to stress and reward, and its projection to the NAc is important for context-

induced reward seeking, reward-associated evaluations, and other behaviors129–135. In vivo 
optogenetic stimulation or suppression of vHipp-to-NAcSh synapses during non-contingent 

administration enhances or reduces cocaine-induced locomotor activities, respectively96.

The vHipp projection predominately innervates the medial shell of the NAc4, 96. In drug-

naïve mice, the vHipp-to-NAcSh projection forms more synaptic connections onto D1 

MSNs compared to presumed D2 MSNs88, 126. Furthermore, among all D1 MSNs, the 

subpopulation of D1 MSNs that project to the VTA (D1 MSNVTA) receive more abundant 

vHipp inputs compared to those D1 MSNs that project to the VP (D1 MSNVP)126.

Non-contingent cocaine (15 mg/kg/injection): A weakening of vHipp-to-NAcSh 

synapses is initially detected in NAcSh D1 MSNs after 1- or 3-day withdrawal from 

non-contingent cocaine exposure, primarily due to a selective decrease in vHipp-to-D1 

MSNVTA innervation88, 126. By contrast, after 10–14 days of withdrawal from 5-day non-

contingent cocaine exposure, an increased AMPAR/NMDAR ratio is detected at D1 MSN 

synapses within the vHipp-to-NAcSh projection, suggesting a postsynaptic potentiation96, 

while the downstream targets of these D1 MSNs are not determined. This potentiation is not 

associated with changes in the rectification index of AMPAR EPSCs, thus likely mediated 

by upregulation of synaptic CI-AMPARs96. These potentially sequential changes suggest 

dynamic states of these synapses along the proceeding of drug withdrawal.

Limited-access cocaine SA: After 30 days of withdrawal from 10-day, 2-hr daily 

(FR1-FR2) cocaine SA (0.75 mg/kg/infusion), an increase in the AMPAR/NMDAR ratio 
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is observed at vHipp-to-NAcSh D1 MSN (but not D2 MSN) synapses89. Similarly, this 

potentiation is not associated with changes in the rectification index of AMPAR EPSCs 

and is therefore likely mediated by synaptic upregulation of CI-AMPARs89. Moreover, 

optogenetically inducing LTD to reverse cocaine SA-induced strengthening of vHipp-to-

NAcSh synapses after drug withdrawal reduces cue-induced cocaine seeking89.

Taken together, the vHipp-to-NAcSh projection undergoes a range of dynamic adaptations 

with projection and cell-type specificity, likely dependent on the cocaine regimen used and 

withdrawal time.

PVT-to-NAc: The thalamic projections to the NAc have been increasingly recognized 

for their roles in goal-directed behaviors, including drug seeking (for a comprehensive 

review see136). The PVT sends extensive glutamatergic projections to the NAcSh, 

which converge on MSNs with other excitatory synapses or dopaminergic terminals 

from the midbrain137–141, positioning this projection as a potential regulator of cue-

associated behaviors such as drug seeking136, 142–144. Specific to cocaine-elicited 

behaviors, inactivation of the PVT reduces the development of cocaine-induced locomotor 

sensitization145, abolishes the expression of cocaine CPP146 and attenuates cocaine-primed 

reinstatement of drug-seeking following extinction of cocaine SA147, revealing its critical 

role in regulating cocaine-elicited behaviors. Selective ablation of PVT-NAcSh synaptic 

transmission slightly decreases the acquisition of cocaine SA without affecting incubated 

cocaine craving at later withdrawal times148. Results from morphine experiments suggest 

that the PVT-NAcSh D2 MSN pathway contributes to the negative salience associated with 

opiate withdrawal144. Whether the PVT-NAcSh projection plays a similar role in cocaine 

withdrawal symptomology has yet to be determined.

There is limited research on whether and how the PVT-NAcSh projection is altered 

following cocaine exposure. A single non-contingent injection of cocaine increases Fos 

protein expression in the PVT149, as does cue re-exposure following extinction from 

cocaine SA150, 151. Following O/N+5-day limited-access cocaine SA (0.75 mg/kg/infusion), 

an increased level of silent synapses in the PVT-NAcSh projection is detected, which 

returns to basal levels by withdrawal day 45. At withdrawal day 45, these synapses exhibit 

characteristics of CI-AMPARs, and AMPAR/NMDAR ratio is similar to that of cocaine 

naïve animals148. Furthermore, 5-day cocaine SA increases the release probability at PVT-

NAcSh synapses, tested on withdrawal days 1 and 45148. These results suggest a mix 

of transient and persistent alterations in PVT-NAcSh glutamatergic transmission following 

cocaine SA. The cell-type specificity as well as the behavioral consequences of these 

changes remain to be determined.

From silent synapses to projection- and cell type-specific adaptations

AMPAR-silent, NMDAR-containing synapses, often simply referred to as silent synapses 

(Box 2), are highly abundant in the developing brain, but decline to low levels after 

development69. They are thought to be immature, nascent glutamatergic synapses that 

participate in the initial formation of the neural network. As development progresses, 

some silent synapses mature by recruiting AMPARs and consolidate the established neural 
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circuits, while others are eliminated as a process of circuit refinement67, 68. In the adult 

NAcSh, levels of silent synapses are increased after 1-day withdrawal from 5 days of 

either non-contingent exposure or SA of cocaine48, 53, 54. Cocaine-generated silent synapses 

exhibit strikingly common cellular features shared with silent synapses in the newborn 

brain48, 56, 152. Recent results demonstrate that after cocaine SA, an astrocytic signaling 

pathway that mediates synaptogenesis during development is utilized as a mechanism in 

the generation of silent synapse in the NAcSh58. These findings support the hypothesis that 

through utilization of developmental mechanisms and synaptogenesis, cocaine experiences 

create new connectivity patterns within NAc circuits, which underlie cocaine memories52, 70. 

During development, only a portion of newborn synapses mature and are incorporated 

in the neural circuits, while others are pruned away153. A similar scenario might happen 

to cocaine-generated silent synapses such that they are generated throughout afferent 

projections in a relatively nonspecific manner, while their maturation and the concurring 

synapse elimination constitute a refining process for projection and/or cell-type specificity. 

These speculations predict a permissive role of silent synapses in remodeling and refining 

NAc circuits during encoding and expression of cocaine-associated memories.

After 1-day withdrawal from 5-day non-contingent cocaine exposure, high levels of silent 

synapses are preferentially generated in NAcSh D1, but not D2, MSNs55. An acute 

molecular adaptation of the NAc in response to cocaine exposure is an increase of CREB 

activity154. NAcSh levels of silent synapses start to increase as early as after 3 days of 

cocaine exposure, an effect requiring acute elevation of CREB activities48, 56. On the other 

hand, repeated cocaine exposure and withdrawal induces an accumulation of ΔFosB in NAc 

MSNs155. Mimicking this effect by overexpression of ΔFosB leads to opposing synaptic 

changes and spine alterations suggestive of an increase versus decrease in silent synapse 

levels in the NAcSh D1 versus D2 MSNs, respectively156. Compared to CREB, Δ FosB 

accumulation exhibits a slower time course over withdrawal periods157, suggesting that 

ΔFosB-mediated and other transcriptional pathway may preferentially participate in NAc 

circuit remodeling after prolonged cocaine exposure and withdrawal, contributing to the 

persistent increase of glutamatergic transmission to NAc D1 MSNs158.

After withdrawal from cocaine, a portion of NAc silent synapses mature by recruiting 

either CI-AMPARs or CP-AMPARs in a projection-specific manner53, 54, 148. As such, 

multiple inputs that converge onto NAc MSNs undergo differential silent synapse-mediated 

remodeling, with CP-AMPAR insertion at BLA- or IL-to-NAc synapses and CI-AMPAR 

insertion at PL- or vHipp-to-NAc synapses53, 54, 89. If occurring on the same MSNs, these 

differential maturation processes are expected to involve different molecular mechanisms, 

two possibilities being the activity-dependent versus constitutive insertion of AMPARs. In 

the developing hippocampus, strong synaptic activities, such as LTP conditioning, induce 

unsilencing/maturation of silent synapses, mediated by insertion of CP-AMPARs159. On 

the other hand, AMPARs that are constitutively inserted to synapses during metabolic 

turnover are largely CI-AMPARs160. Furthermore, non-contingent versus contingent cocaine 

experience may also contribute to the differential insertion of CP-AMPARs161. Thus, 

the activity states of different NAc afferent projections in response to specific cocaine 

experiences may trigger different machineries for AMPAR insertions. In addition, the 

synaptic stability of CP-AMPARs in the NAcCo MSNs is critically regulated by the tonic 
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activity of mGluR1 signaling63, 89. It is also possible that silent synapses within different 

NAc projections dwell in different local tones of mGluR1 signaling162, 163, resulting in 

receptor subtype-selective insertions and maintenance. Compared to CI-AMPARs, insertion 

of CP-AMPARs at synapses not only increases AMPAR transmission, but also enhances 

synaptic Ca2+ conductance at resting membrane potentials, sometimes enacting new rules 

for synaptic plasticity, as demonstrated in the VTA164. Equipped with CP-AMPARs after 

cocaine withdrawal, matured silent synapses may not only change the connectivity pattern of 

NAc circuits, but also how information flows through these circuits.

NAc D1 and D2 MSNs output-specific changes

Cocaine-induced cellular adaptations in NAc MSNs are ultimately conveyed through 

GABAergic outputs to downstream targets, including the VTA, substantia nigra (SN), and 

VP, where another set of cocaine-induced changes occur. NAc-to-VTA/SN projections are 

predominantly composed of D1 MSNs, whereas both D1 and D2 MSNs project to the 

VP with further differentiation at the target cell types34, 76, 77. Currently, there is ongoing 

anatomical debate as to what extent the D1 MSN projection to the VP arises from axonal 

bifurcation versus a separate D1 MSN population34, 76, 78, 126.

Non-contingent cocaine (15–20 mg/kg/infusion): Within the D1 MSN-to-VTA 

projection, 5 days of non-contingent cocaine exposure results in an increase in spontaneous 

IPSCs in postsynaptic VTA GABAergic neurons after 1-day withdrawal, an effect that may 

favor reduced inhibition of dopaminergic neurons and increased dopamine release in the 

NAc165. D1 MSNs also synapse directly onto VTA DA neurons166, 167, although the role of 

this projection has not been selectively examined in cocaine models168. Within the NAcSh-

to-ventromedial (vm) VP projection, 5-day non-contingent cocaine administration increases 

D1 MSN-to-vmVP synaptic transmission while simultaneously decreasing D2 MSN-to-

vmVP transmission on withdrawal day 10. These changes occlude the induction of LTP at 

D1 MSN-to-vmVP synapses and LTD at D2 MSN-to-vmVP synapses169, suggesting shared 

mechanisms between experience-dependent synaptic plasticity and cocaine-induced synaptic 

changes. Furthermore, the differential adaptations in NAcSh D1 versus D2 MSN-to-vmVP 

synapses mediate different aspects of cocaine-elicited behaviors. Whereas potentiation of 

NAcSh D1 MSN-to-vmVP transmission drives cocaine-induced locomotor sensitization, 

depression of NAcSh D2 MSNs-to-vmVP transmission impairs hedonic (sucrose) reward 

seeking, tested 10 days after cocaine cessation169.

Limited-access cocaine SA and reinstatement: Following cocaine SA (2 h/day over 

10–15 days; 0.75 mg/kg/infusion) and extinction, LTD at NAcCo D2 MSN-to-dorsolateral 

VP synapses is occluded, suggesting suppression of this projection, which leads to the 

facilitation of cue-induced reinstatement of cocaine seeking170. Although cocaine-induced 

changes at NAcCo D1 MSN-to-VP synapses have not been examined, following the same 

cocaine SA and extinction procedure, chemogenetic inhibition of the NAcCo D1 MSN-to-

VP projection reduces cue- as well as drug-induced reinstatement of cocaine seeking76. By 

contrast, inhibiting the NAcCo D1 MSN-to-SN projection does not affect reinstatement76. 

Further complexity is added to the NAc-to-VP projections in that NAcCo D1 versus D2 

MSNs exhibit overlapping but differential innervation of VP glutamatergic, GABAergic, and 
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enkephalinergic neurons, which then impose distinct impacts on cue-induced reinstatement 

of cocaine seeking after extinction77. Whether and how cocaine SA, extinction, and cue 

re-exposure induce differential neural adaptations in these functionally opposing sub-circuits 

remain to be determined.

NAc interneuron-specific changes

Though NAc interneurons comprise but a small fraction of the total neuronal population, 

they powerfully influence dopaminergic, glutamatergic, and GABAergic transmission in the 

NAc31, 37, 40. Based on genetic and electrophysiological characteristics, NAc GABAergic 

interneurons can be largely categorized into two heterogenous classes, fast-spiking 

interneurons (FSIs) expressing parvalbumin and/or CB1 receptors, and low-threshold 

spiking interneurons expressing a combination of somatostatin, neuropeptide Y, and 

neuronal nitric oxide synthase, often referred to as SST-NPY-nNOS interneurons (SSTIs)37. 

The NAc also contains a population of large, tonically active cholinergic interneurons 

(CINs)31. While an increasing number of interneuron subtypes have been discovered in 

the dorsal striatum, it has yet to be determined if these neuronal types are mirrored in 

the NAc38, 39. Here we focus on cholinergic and GABAergic interneurons, which undergo 

differential adaptive changes after cocaine experience31, 39, 40, 171.

Cholinergic interneurons: CINs provide an intrinsic source of cholinergic innervation 

within the NAc172. Through a widely distributed and rich variety of receptors, CINs 

regulate many glutamatergic, GABAergic, and dopaminergic transmissions in the NAc, 

through which they critically influence the processing of reward, satiation, aversion, and 

other affective responses7, 171, 173, 174. Our understanding of CINs in cocaine-elicited 

behaviors has been greatly facilitated by the availability of optogenetic tools. For example, 

optogenetically inhibiting CINs in the NAcCo/Sh during cocaine CPP training slows 

down the acquisition of cocaine CPP175. Moreover, after cocaine CPP is established and 

during initial extinction training, optogenetic activation of medial NAc CINs enhances 

the extinction of cocaine CPP without affecting food CPP, while inhibiting NAc CINs 

suppresses the extinction of cocaine CPP176. These roles of NAc CINs in cocaine-elicited 

behaviors as revealed in optogenetics studies are not entirely consistent with results from 

ablation studies, where bilateral ablation of NAcCo/Sh CINs augments locomotor responses 

to cocaine and decreases the dose threshold for inducing cocaine CPP177. These results, 

taken together, suggest a complex and, possibly, dynamic role of NAc CINs in behavioral 

responses induced by acute cocaine administration.

NAcSh CINs are directly responsive to cocaine to increase spontaneous firing upon 

cocaine perfusion in brain slices175. Moreover, increased levels of acetylcholine (ACh) are 

observed in both the NAcSh and Co following in vivo intra-NAc infusion of cocaine178. 

Likewise, ACh levels increase following low-dose cocaine SA, with higher levels and 

longer-lasting effects being observed in SA groups compared to the yoked controls179. 

Following a 1-hour cocaine SA session, the number of Fos-expressing NAcSh CINs is 

increased, and this increase is positively correlated with the amount of cocaine intake during 

SA180. It is not known, however, whether these cocaine-elicited responses may lead to 

longer-term adaptations in the NAc cholinergic system. Nonetheless, NAc CIN activity 
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modulates long-term plasticity of glutamatergic transmission to NAc MSNs181, 182, which 

may impose long-term modulation of NAc activity after cocaine experience. Remarkably, 

strong activation of NAc D1 MSNs, which likely occurs following cocaine experience, leads 

to long-term potentiation of AMPAR transmission to D2 MSNs through recruiting local CIN 

activity182. Though speculative, these effects of CINs may serve as part of the mechanisms 

by which high-dose and/or chronic cocaine exposure induces potentiation of glutamatergic 

transmission to NAc D2 MSNs57, 82.

A sustained increase in NAc levels of ACh persists after withdrawal from nicotine, 

morphine, or alcohol, which may contribute to certain withdrawal symptoms183. While 

levels of NAc ACh have not been explored during withdrawal from cocaine SA, increased 

gene expressions of choline acetyltransferase, nAChRs, and mAChRs are observed in mouse 

NAc after 28 days of withdrawal from a 7-day non-contingent cocaine procedure184. 

However, after prolonged, excessive-access (~90 mg/kg/day) cocaine SA, the activity 

of choline acetyltransferase in the NAc is persistently decreased up to 3 weeks into 

withdrawal185. These seeming discrepancies may reflect the procedural and subregional 

differences171, as neither of the above studies distinguished between the NAc core and 

shell subregions. It is not known whether these changes may mediate changes in DA 

and/or glutamate signaling in the NAc after withdrawal from cocaine exposure, although 

dopaminergic regulation of ACh levels in the NAcCo and Sh during non-contingent infusion 

has been demonstrated178.

SST-NPY-nNOS interneurons: SSTIs represent <1% of the NAc neuronal 

population36, 186. In non-contingent drug models, optogenetic stimulation or inhibition 

of SSTIs in the NAc (Co/Sh), facilitates or suppresses the acquisition of cocaine CPP, 

respectively186, revealing a regulatory role of these neurons in rewarding-associated 

learning. After 7 days of non-contingent cocaine exposure, the intrinsic membrane 

excitability of SSTIs is decreased, together with changes in a wide range of transcripts 

including protein-coding genes, as well as regulatory RNAs186. These results present NAc 

SSTIs as a potential neuronal target for cocaine to induce prolonged local circuit and 

behavioral adaptations.

While it remains unclear how NAc SSTIs are affected following cocaine SA, important 

clues exist in studies of NAc nNOS signaling, for which SSTIs provide a critical local 

source. NAcCo nNOS signaling regulates relapse-like behaviors by inducing S-nitrosylation 

of GluA1 subunits of AMPARs, AMPAR auxiliary subunit stargazin, extracellular 

endopeptidases matrix metalloproteinase (MMP)-2 and MMP-9, and other key molecules 

critical for synaptic stability and plasticity31, 187–190. Therefore, by engaging nNOS 

signaling, SSTIs may participate in the synaptic remodeling of NAc MSNs and regulate 

related behaviors.

Fast-spiking interneurons: FSIs represent ~1% of NAc neuronal population37. They 

exert powerful feed-forward inhibition onto MSNs, and are thought to orchestrate NAc 

MSN functional ensembles during behavior40. After 1 day or 40 days of withdrawal from 

repeated non-contingent cocaine procedures (15 mg/kg/injection), the membrane excitability 

of NAcSh FSIs is increased in mice191. By contrast, the membrane excitability of 
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NAcSh MSNs is decreased following similar non-contingent as well as contingent cocaine 

procedures, a prominent cellular change that contributes to incubation of cue-induced 

cocaine craving after drug withdrawal192–196. Thus, an increased membrane excitability of 

FSIs may strengthen the inhibitory control over MSNs, aggravating the hypoactive state of 

NAcSh MSNs after cocaine withdrawal.

After short (1-day)- or long (40–45 day)-term withdrawal from either 5 days of non-

contingent (15 mg/kg/injection) or 10 days of limited-access cocaine SA (0.75 mg/kg/

infusion), the basal FSI-to-MSN synaptic transmission in the NAcSh, as well as the 

CB1-mediated short-term plasticity of this transmission, are not altered191, 197. However, 

the excitatory drive to NAcSh FSIs is increased after cocaine. Specifically, glutamatergic 

inputs from the BLA to NAcSh FSIs exhibit increased release probability after 45 days 

of withdrawal from 10-day cocaine SA197. Furthermore, optogenetically-induced LTP that 

mimics this projection-specific synaptic strengthening expedites the acquisition of cocaine 

SA40, 197. Thus, although the basic framework of FSI-mediated feedforward circuit is 

‘immune’, the excitatory drive to FSIs undergo adaptive changes after cocaine, tweaking 

the functional output of NAc MSNs favoring cocaine-motivated behaviors.

A glimpse of neuronal ensembles

Behavioral adaptations following exposure to drugs of abuse are thought to be mediated 

by distinct neuronal ensembles in the reward circuitry198, 199, which are separate from 

those directing natural reward seeking, and further distinguished along different aspects 

of SUD-associated behaviors199, 200. For example, cocaine versus sucrose seeking in 

response to reward-associated cues engage distinct sets of NAcCo D1 MSNs in the 

same animals199. Moreover, combining Fos-labeling of neuronal ensembles and Daun02 

inactivation procedure, it is shown that context-induced reinstatement of cocaine seeking, 

tested following extinction from 12 days of cocaine SA, is mediated by context-specific 

ensembles in the NAcSh (but not NAcCo)201. Using a similar approach, it is shown in 

mice after 14 days of cocaine SA that separate vmPFC ensembles, connecting to NAcCo 

or NAcSh respectively, control cocaine SA versus extinction76. These results underscore a 

highly selective feature of individual NAc-associated ensembles.

Remarkably, categorizing MSNs along the anatomical-by-genetic dimensions appears to 

match, to a certain degree, with the neuronal ensembles in the NAc. For example, cocaine 

CPP-encoding ensembles in the vHipp CA1 may strengthen their synaptic connections 

with a select population of NAcCo D1 (but not D2) MSNs to form a large, circuit 

level ensemble202. Conversely, cocaine CPP also leads to increased coupling between 

hippocampal place cells and a subset of NAc D2 MSNs203. Taken the two studies together, 

the vHipp-to-NAcCo D1 MSN projection may preferentially encode contextual information, 

while the vHipp-to-D2 MSN projection may facilitate the behavioral execution after the 

memory is reactivated by cocaine-associated context.

Formation and organization of neuronal ensembles encoding drug experience may 

rely on Hebbian and other plasticity mechanisms198, 204–206, and are likely boosted 

by developmental mechanisms as postulated by the rejuvenation hypothesis70. While 

ensemble-specific synaptic potentiation has been observed following cocaine CPP202, 203, a 
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demonstration of NAc ensemble-specific potentiation following cocaine SA is still missing. 

Similarly, the role of silent synapses has not been directly assessed when cocaine-encoding 

NAc ensembles are formed. However, silent synapses are revealed in ensemble-specific 

neurons following re-exposure to cocaine context-associated cues after 6–11 days of 

withdrawal from non-contingent cocaine (15–20 mg/kg, 5 d)50, 51, perhaps reflecting a 

destabilization of ensemble synapses and internalization of synaptic AMPARs upon drug-

cue re-exposure, analogous to that following cocaine SA59. These results provide indications 

that silent synapses may participate in the formation and/or reorganization of neuronal 

ensembles mediating SUD-associated behaviors.

An important feature of Fos-based identification of cocaine ensembles is that only a small 

fraction of NAc MSNs (2%−5%) is labeled, which exhibit distinct electrophysiological 

properties from the non-labeled but otherwise identical neighboring neurons50, 51, 207, 208. 

Thus, the large-scale generation and maturation of silent synapses in the NAcSh detected 

after contingent or non-contingent cocaine exposures may serve a permissive role in 

facilitating ensemble evolvement in response to cocaine.

Until recently, most of our focus had been aligned with the anatomical-by-cell type 

dimensions, which represents our best efforts to dissect cocaine-induced changes in NAc 

circuits. However, reward learning and seeking typically orchestrate both D1 and D2 MSN 

activities52, 79. It is conceivable that cocaine-encoding NAc ensembles are not limited 

by the cell types, pathways, or anatomical locations. As such, the different adaptations 

observed following different cocaine regimens (non-contingent versus contingent; short, 

long, versus intermittent access; incubation, extinction, versus reinstatement; etc.) may 

represent different cellular means through which different NAc ensembles are formed. Thus, 

detecting, differentiating, and monitoring ensemble formation, interaction, and plasticity 

over the course of cocaine-induce behaviors will help better conceptualize cocaine-induced 

plasticity, and target cocaine-induced plasticity with precise behavioral correlates.

Concluding remarks

Extensive preclinical research has demonstrated that cocaine experience induces adaptive 

changes in the brain reward circuit, exemplified by both acute and long-term changes 

at various glutamatergic synapses converging onto the NAc. These changes often exhibit 

projection and cell-type specificity, are mediated by different AMPAR subtypes, may 

organize into different functional ensembles, and differentially regulate cocaine-elicited 

behaviors. Beyond cocaine, projection and cell-type specificities of NAc circuits have 

also been observed in seeking behaviors induced by other drugs of abuse as well as 

natural rewards, with similar and yet differential cellular and circuit features in each 

case55, 120, 209–211. It is important for future studies to define both the uniqueness and 

common ground underlying the ensemble, circuit, and behavioral correlates induced by 

these drug/reward experiences.

Compared to where we stood two decades ago, our understanding of cocaine-induced 

neuroadaptations in the NAc with cell-type and projection specificities starts to depict 

a framework for revealing the complexity of neural networks that underlie SUD. Future 

efforts at circuit and systems levels are needed to understand how these projection- 
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and cell type-specific changes coalesce into neuronal and circuit ensembles underlying 

cocaine memories. At the moment, molecular and genetic innovations to define and capture 

extensive behaviorally relevant neuronal ensembles, as well as the rapidly evolving large-

population, chronic in vivo imaging and computational innovations to depict ensemble 

interactions and plasticity are forging new frontiers to substantially move the field forward.
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Box 1:

Rodent models of cocaine-induced behaviors.

A wide array of rodent models has been used to study drug seeking, relapse, and other 

SUD-related behaviors. Excellent in-depth reviews can be found elsewhere15–19. Broadly 

defined, the procedures can be categorized as non-contingent versus contingent models, 

with the latter frequently referred to as self-administration (SA). In a non-contingent 

model, cocaine is administered by the experimenter, usually through intraperitoneal 

(IP) or subcutaneous injections, and can therefore be considered passive exposure to 

drugs of abuse. Non-contingent administration can elicit behaviors such as locomotor 

sensitization and conditioned-place preference (CPP), the latter of which is often used 

to infer the rewarding effect of cocaine. SA paradigms can be categorized as limited 

versus extended access based on the daily session duration (e.g., 2, 6, or 12 hour) and 

the total number of sessions used in an experiment (e.g., 1-day, 1-week daily, 1-month 

daily, etc.). A third model, intermittent SA, mimics cycles of drug use by utilizing distinct 

drug- and no-drug-trials within a daily session. This model, while not discussed here, is 

reviewed elsewhere20. SA paradigms can employ fixed or progressive ratio reinforcement 

schedules, with progressive ratios multiplicatively increasing the required number of 

operant responses for a reward. The progressive ratio procedure tests how much the 

animal is willing to work to gain a reward and is thus often used to assess levels of 

motivation to obtain a drug15, 21. In humans, drug craving refers to an affective state of 

increased propensity to relapse17, 22–24. Though not directly measurable in rodents, drug 

craving can be inferred from the experimentally measurable parameter ‘drug seeking’ 

following SA25. An important form of drug seeking is induced by re-exposure to cues 

that are previously associated with the drug, thus called cue-induced drug seeking26. 

The degree of drug craving after withdrawal can therefore be reflected by comparing 

the intensities of cue-induced drug seeking (i.e., the number of drug-related operant 

responses) between animals or between different time points of the same animals after 

withdrawal27. Cue-induced drug seeking after withdrawal measured in the absence of 

extinction training (see below) often exhibits persistent and progressive intensification 

after withdrawal from drug SA, which is termed the incubation of drug craving17, 28, 29. 

On the other hand, drug seeking can be reduced by extinction training, during which 

operant responding no longer results in drug delivery. Extinction training is often 

performed in the absence of drug-associated cues, which preferentially disconnects the 

operant responding with drug seeking. After such extinction training, operant responding 

(i.e., drug seeking) can be reinstated upon re-exposure to conditioned cues, stress, or 

a drug primer to model drug relapse26. Thus, cue-induced reinstatement test differs 

from the above-mentioned “incubation” test by including an extinction training before 

reinstatement. While the extinction-reinstatement paradigm has contributed enormously 

to the SUD research, the extinction training component is not readily applicable to the 

human situation, thereby necessitating the development of new behavioral models with 

improved translatability20, 30. In response to this necessity, the ‘punishment-induced’ and 

‘voluntary’ abstinence models have been developed, in which drug cessation is driven 

by punishment avoidance or the pursuit of an alternative reinforcer, both of which better 

reflect motivators of drug abstinence in humans18. These two models can be integrated 
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with some other models mentioned above and create unique behavioral angles for future 

SUD research.
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Box 2:

Silent synapses.

Silent synapses are glutamatergic synapses that possess NMDARs but lack functionally 

stable AMPARs65–68. These synapses are abundant during development but decline to 

low levels in the adult brain69. Following either non-contingent or contingent cocaine 

exposure, silent synapses, which resemble nascent synapses in the developing brain, are 

detected in NAcSh MSNs48, 49, 52–55. Although silent synapses are minimally activated 

near resting membrane potentials, their abundance in NMDARs, especially GluN2B-

containing ones, make them excellent glutamate-depolarization coincidence detectors 

and a presumed substrate for long-term potentiation65, 67. Moreover, the subsequent 

maturation of silent synapses through AMPAR recruitment (allowing synaptic activation 

and conductance) re-organizes the functional connectivity of related neural circuits 

by bringing cocaine-induced adaptations “on-line”. The similarities between cocaine-

induced silent synapses and nascent synapses led to the “rejuvenation hypothesis” of 

SUD – that exposure to drugs of abuse reopens developmental mechanisms at the 

molecular, cellular, and circuit levels to redevelop glutamatergic reward circuits, thus 

resulting in the durable, maladaptive alterations that underly SUD70, 71.
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Figure 1. 
Cocaine-induced projection- and cell type-specific neural adaptations in the NAc circuit. A: 

Schematic diagram of the NAc circuit. Prior to cocaine exposure, glutamatergic inputs are 

largely unbiased between D1 and D2 MSNs, with the exception of vHipp inputs which are 

stronger at D1 than D2 MSN-synapses88, 126. The majority of glutamatergic synapses onto 

D1 or D2 MSNs contain CI-AMPARs. B: Shortly after repeated non-contingent cocaine 

exposure, silent synapses are detected in the mixed populations of NAc MSNs48, 49 as 

well as at mPFC inputs54. At withdrawal day ~3, an increase of BLA-to-D1 MSNVP 

transmission and a decrease of vHipp-to-D1VTA transmission are observed in the NAcSh, 

both of which are likely transient changes88, 126. At withdrawal day ~7 following a single 

injection protocol, an LTP-like potentiation of IL-to-D1 synapses occurs in the NAcSh, 

which contributes to the development of locomotor sensitization87. At around the same 
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withdrawal time, one study found selective CP-AMPAR potentiation in D1 MSNs when 

assessed in bulk57. At withdrawal day 10–14, vHipp-to-NAcSh synapses show increased 

AMPAR transmission mediated by CI-AMPARs96. Behavioral sensitization on withdrawal 

day 21 is associated with increased surface expression of GluA1 and GluA2/3 (thus likely 

CI-AMPARs) in the core22, 212. On both withdrawal day 1 and 45, an increase in presynaptic 

glutamate release probability is observed at mPFC-to-NAcSh synapses114. C: Cocaine SA 

results in the transient formation of GluN2B-NMDAR-rich “silent synapses” in the core 

and shell, as examined at mPFC, BLA, and PVT projections53, 54, 148. Cocaine-induced 

silent synapses undergoing AMPAR-insertion after withdrawal are likely to be found 

predominantly on D1 MSNs, with D2 MSNs potentially undergoing a brief or incomplete 

synapse generation during early withdrawal55, 57, 74, 89. Silent synapses undergo maturation 

in a projection specific manner: PL-to-NAcCo synapses undergo CI-AMPAR insertion, 

which promotes incubation of cocaine craving. IL-to-NAcSh synapses display CP-AMPAR 

insertion, most likely on D1 MSNs, which reduces incubation54, 55 (but see89). Likewise, 

BLA-to-NAc silent synapse maturation with CP-AMPARs has been demonstrated in rats 

following limited-access SA and long-term withdrawal, which contributes to incubated 

cocaine craving53. vHipp-to-NAcSh synapses undergo potentiation via the selective insertion 

of CI-AMPARs in D1 MSNs, and potentiation of this projection facilitates cue-induced 

cocaine seeking89. Both IL-to-NAcSh and PVT-to-NAcSh synapses show increased 

glutamate release probability after cocaine SA and long-term withdrawal114, 148. Following 

extended-access to regular-dose cocaine SA and long-term withdrawal, CP-AMPARs are 

upregulated in the NAcCo MSNs through mGluR1-regulated, protein synthesis-dependent 

mechanisms, which critically mediates incubation of cocaine craving22, 60–64. Following 

extended-access to high-dose cocaine SA and long-term withdrawal, selective potentiation 

of mPFC-to-NAcSh D1(but not D2) MSNs is detected, likely mediated by synaptic insertion 

of CP-AMPARs57. By contrast, following the same cocaine regimen and withdrawal, 

CP-AMPARs are inserted selectively at BLA-D2 MSN synapses, which concurs with 

incubation and is thought to be related to negative affect and aversion learning57. D: Re-

exposure to cocaine-associated cues induces additional AMPAR plasticity. For instance, cue 

re-exposure after withdrawal preferentially potentiates D1 MSNs in the NAcCo, whereas 

extinction training prior to cue re-exposure preferentially strengthens D2 MSNs90. In the 

NAcSh, cue re-exposure temporarily re-silences cocaine-generated synapses, which can 

be followed by a re-maturation process accompanying the reconsolidation of cocaine-cue 

associations59. E: Downstream at NAc outputs, VTA GABAergic neurons that receive 

from NAc D1 MSNs show increased spontaneous IPSCs following repeated non-contingent 

cocaine, disinhibiting dopaminergic neural activity165; D1 MSN-to-VP transmission is 

strengthened following repeated non-contingent cocaine and withdrawal, while D2 MSN-to-

VP transmission is weakened (and/or loses plasticity following non-contingent cocaine or 

SA and extinction)169, 170. Thus, the outcomes of these adaptive changes are potential shifts 

in the inhibitory network balance established by D1 and D2 MSNs, which are shaped at the 

NAc inputs, as well as at downstream outputs onto the VP and VTA. PLC, prelimbic PFC; 

ILC, infralimbic PFC; WD, withdrawal day.
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