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Bacillus thuringiensis Cry3Aa and Cry3Ca proteins have been reported to be toxic against the African
sweetpotato pest Cylas puncticollis. In the present work, the binding sites of these proteins in
C. puncticollis brush border vesicles suggest the occurrence of different binding sites, but only one of
them is shared. Our results suggest that pest resistance mediated by alteration of the shared Cry-receptor
binding site might not render both Cry proteins ineffective.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Cylas puncticollis (Boheman) (Coleoptera: Brentidae) is one of
the major pests of sweetpotato (Ipomoea batatas (L.) Lam.) in
Eastern Africa (Smit, 1997). The sweetpotato weevil larvae make
tunnels in roots and stems causing extensive damage (Stathers
et al., 2005) which can cause yield losses of up to 60e100%
depending on the severity of the infestation (Chalfant et al., 1990).
Chemical control is not effective enough due to the cryptic habit of
the larvae (Reddy et al., 2012). Hence, the use of transgenic plants
which express Bacillus thuringiensis proteins (Bt crops) can be an
useful alternative to control C. puncticollis insect pest as they have
been shown to effectively control stem borers, ear feeders and
rootworms (Loseva et al., 2002; Walters et al., 2008). Nowadays,
genetically modified sweetpotato plants expressing Cry3Aa, Cry3Ca
or Cry7Aa proteins, which have been reported to be active against
C. puncticollis (Ekobu et al., 2010), have been developed in order to
control different sweetpotato weevils of the genus Cylas (Mor�an
et al., 1998; Rukarwa et al., 2013a, 2013b).

Themode of action of Cry proteins from B. thuringiensis has been
extensively studied, especially for lepidopteran-active Cry proteins
(Bravo et al., 2007; Vachon et al., 2012; Adang et al., 2014), whereas
much less is known for coleopteran-active Cry proteins
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(Hern�andez-Martínez et al., 2014; Ochoa-Campuzano et al., 2012;
Rausell et al., 2004, 2007; Slaney et al., 1992). The proposed model
starts after the ingestion of the crystals by susceptible insect larvae,
followed by crystal solubilization and protease activation in the
midgut environment. Finally, the toxic fragment binds, as a key
step, to specific receptors on the brush border membrane of the
midgut epithelium columnar cells and that leads to toxin insertion
into the membrane producing lytic pores which causes cell lysis
and insect death (Federici et al., 2010).

The study of the Cry binding site model can help to maintain the
long-term efficacy of Bt-crops, since binding site alteration has
been described as the basis of cross-resistance when different Cry
proteins share the same binding site (Ferr�e and Van Rie, 2002; Ferr�e
et al., 2008). Recently, the existence of common binding sites for
three B. thuringiensis proteins, Cry3Ca, Cry3Bb, and Cry7Aa proteins
to C. puncticollis brush border membrane vesicles (BBMV) has been
proposed (Hern�andez-Martínez et al., 2014). Thus, from a resistant
management standpoint, combinations of these three proteins do
not seem to be suitable for development of Bt sweetpotato plants.
However, there is no information available about Cry3Aa protein
binding sites in C. puncticollis. For this reason, the aim of the present
study was to assess whether Cry3Aa and Cry3Ca proteins share
binding sites in this pest to predict possible cross-resistance pat-
terns for these Cry proteins which have been already introduced
separately into sweetpotato plants.
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Cry3Aa and Cry3Ca proteins were obtained from the
B. thuringiensis strains BGSC-4AA1 (provided by ARS Culture
Collection) and BTS02109P (provided by Bayer CropScience, Gent,
Belgium), respectively. Cry3 protein solubilization and activation,
either with bovine pancreas trypsin (type I) (Sigma-Aldrich) or
bovine pancreas a-chymotrypsin was performed as described by
Hern�andez-Martínez et al. (2014). Processing of Cry3Aa protoxin
with either trypsin or chymotrypsin renders a single main poly-
peptide with a mass of about 55 kDa (Fig. S1). Similar results were
described previously, though a second fragment of about 49 kDa
was also described to occur together with the 55 kDa fragment
when Cry3Aa protoxin was processed in vitro with chymotrypsin
(Carroll et al., 1997; Martínez-Ramírez and Real, 1996). These dif-
ferences could be attributed to differences in the experimental
conditions used.

Processing of the Cry3Ca protein with either trypsin or
chymotrypsin renders a fragment with a mass of about 53 kDa
(Rausell et al., 2004) (Fig. S1). Additionally, processing of Cry3Ca
protein by either C. puncticollis gut fluid or BBMV also rendered a
fragment with a mass of about 53 kDa (Martínez-Solís et al.,
2011).

Cry3 proteins (73 kDa) are considered as truncated versions of
the lepidopteran-active proteins (130 kDa) (Park et al., 2009).
However, to be active the Cry3 protoxins must be processed at the
N-terminal part of the protein (Carroll et al., 1989; Rukmini et al.,
2000). In general, it has been proposed that serine proteases such
as trypsin-like or chymotrypsin-like proteases are involved in the
processing of B. thuringiensis Cry protoxins (Carroll et al., 1989,
1997; Mohan and Gujar, 2003; Oppert et al., 1996). In the present
study, the N-terminal sequence of either trypsin or chymotrypsin-
activated Cry3Ca proteins was determined as described by
Hern�andez-Martínez et al. (2014). Briefly, protein bands were cut
out from the membrane and sent for N-terminal amino acid
sequencing by the Edman method at the Alphalyse A/S, Odense,
Denmark, using an ABI Procise 494 sequencer. The N-terminal
sequence of the trypsin-activated fragments was SQGRI, corre-
sponding to the position 159, whereas the N-terminal sequence of
the chymotrypsin-activated fragment was TLRDG at the position
153. The N-terminal sequences of the trypsin- and chymotrypsin-
activated Cry3Aa proteins was described by Carroll et al. (1997)
and correspond to the aminoacid positions 159 (sequence
NPHSQ) and 162 (sequence SQGRI), respectively.

Previous studies (Slaney et al., 1992; Rausell et al., 2004) have
shown that some Cry3 proteins are able to bind to BBMV from some
Fig. 1. Homologous competition binding assays on C. puncticollis BBMV. Biotinylated trypsi
(250x) of unlabeled trypsin or chymotrypsin-activated proteins. A, biotinylated trypsin-ac
tinylated trypsin-activated Cry3Ca (3CaT); D, biotinylated chymotrypsin-activated Cry3Ca (3
coleopteran insect pest including C. puncticollis (Hern�andez-
Martínez et al., 2014). Interestingly, some reports have shown
that only the chymotrypsin-activated Cry3Aa, and not the trypsin-
activated, was able to bind specifically to BBMV from
L. decemlineata (Martínez-Ramírez and Real, 1996). In contrast,
Rausell et al. (2004) did not observe differences in the binding
ability of either trypsin- or chymotrypsin Cry3Aa protein to BBMV
from the same insect species. To clarify the active binding fragment
for Cry3Aa and Cry3Ca proteins in C. puncticollis, competition as-
says were carried out with either trypsin- or chymotrypsin-
activated proteins. BBMV were prepared from whole last-instar
C. puncticollis larvae based on the differential magnesium precipi-
tation method (Wolfersberger et al., 1987) as modified by Escriche
et al. (1995). Trypsin- and chymotrypsin-activated Cry3 proteins
were biotinylated with a protein biotinylation kit (GE HealthCare)
according to the manufacturer's instructions. The working condi-
tions for the binding experiments were set up in preliminary ex-
periments. Competition experiments were performed incubating
5 mg of BBMV with 18 nM of biotinylated trypsin or chymotrypsin-
activated Cry3 proteins in binding buffer (phosphate-buffered sa-
line, pH 7.4, 0.1% BSA) in the absence or the presence of an excess of
unlabeled Cry proteins. Incubations were carried out for 1 h at 25 �C
in a final volume of 100 ml. Moreover, control binding assays con-
ducted without BBMV showed practical absence of protein pre-
cipitation (Fig. S2).

At least three replicates were performed to each competition
assay. Binding was detected as previously described by Hern�andez-
Martínez et al. (2014) using streptavidin-conjugated horseradish
peroxidase (1:2000).

Homologous competition assays showed that either trypsin or
chymotrypsin-activated Cry3Aa and Cry3Ca proteins bound spe-
cifically to the C. puncticollis BBMV since they exhibited competi-
tionwith an excess of their respective unlabeled Cry protein (Fig 1).
In order to test the role of proteolytic processing by commercial
enzymes on binding ability, labeled Cry3Aa and Cry3Ca trypsin or
chymotrypsin-activated proteins were competed with unlabeled
chymotrypsin or trypsin-activated Cry3Aa or Cry3Ca proteins,
respectively. In all cases, the results showed a similar reduction on
the binding of the biotinylated Cry3 proteins suggesting that
independently of the protease treatment the Cry3 protein binds to
the same receptor (Fig 1).

Thus, the differences in the N-terminal sequence described by
other authors to either trypsin- or chymotrypsin-activated Cry3Aa
(Carroll et al., 1997) or by ourselves to either trypsin- or
n or chymotrypsin-activated Cry3 proteins were incubated in absence (�) or presence
tivated Cry3Aa (3AaT); B, biotinylated chymotrypsin-activated Cry3Aa (3AaCh); C bio-
CaCh). Input indicates biotinylated Cry3 proteins.



Fig. 2. Heterologous competition binding assays on C. puncticollis BBMV. Biotinylated
chymotrypsin-activated Cry3 proteins were incubated in absence (�) or presence
(400x) of unlabeled chymotrypsin-activated proteins. A, biotinylated Cry3Aa; B, bio-
tinylated Cry3Ca. All lanes came from a single experiment, but the vertical lines
indicate that these lanes were not consecutive. The arrow indicated the presence of not
fully processed Cry3 labeled protein. Input indicates biotinylated Cry3 proteins.
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chymotrypsin-activated Cry3Ca are not essential for the binding
ability at least in C. puncticollis.

Heterologous competition binding assays were performed with
the chymotrypsin-activated Cry3 proteins. The results showed that
the majority of the labeled Cry3Aa was competed off by a 400-fold
excess of Cry3Ca (Fig. 2A). Unlabeled Cry3Aa was not able to
completely displace labeled Cry3Ca when a 400-fold excess was
used in the assay (Fig 2B). These results suggest that Cry3Aa and
Cry3Ca proteins may have two different binding sites and only one
of them is shared among them. Thus, an alteration of the shared
binding site in C. puncticollis might not confer resistance to both
proteins, since both Cry3 proteins have an unshared binding site.
The occurrence of shared binding sites on C. puncticollis BBMV for
two Cry3 proteins (Cry3Bb and Cry3Ca) was previously described
(Hern�andez-Martínez et al., 2014). Moreover, this common binding
site is also shared with the Cry7Aa protein. Shared binding sites for
three Cry3 proteins were also reported on Colorado potato beetle
BBMV (Rausell et al., 2004). Nevertheless, this is the first study that
demonstrated the occurrence of shared and unshared binding sites
between Cry3Aa and Cry3Ca proteins.

In summary, based on the results of binding site interactions, the
development of cross-resistance between Cry3Aa and Cry3Ca
proteins due to a single binding site modification appears to be
unlikely in C. puncticollis, since both proteins have unshared bind-
ing sites. Thus, from a resistant management standpoint, combi-
nations of Cry3Aa and Cry3Ca can be suitable for development of Bt
sweetpotato plants.
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