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Meta-analysis of genome-wide association for migraine
in six population-based European cohorts

Lannie Ligthart1,2,16, Boukje de Vries3,16, Albert V Smith4, M Arfan Ikram5, Najaf Amin6, Jouke-Jan Hottenga1,
Stephany C Koelewijn3, V Mathijs Kattenberg1, Marleen HM de Moor1, A Cecile JW Janssens6,
Yurii S Aulchenko6, Ben A Oostra6, Eco JC de Geus1, Johannes H Smit7, Frans G Zitman8,
André G Uitterlinden9, Albert Hofman5, Gonneke Willemsen1, Dale R Nyholt10, Grant W Montgomery11,
Gisela M Terwindt12, Vilmundur Gudnason4,13, Brenda WJH Penninx7,8,14, Monique Breteler5,
Michel D Ferrari12, Lenore J Launer15, Cornelia M van Duijn6,16, Arn MJM van den Maagdenberg3,16

and Dorret I Boomsma1,16 for the Dutch Icelandic migraine genetics consortium (DICE)

Migraine is a common neurological disorder with a genetically complex background. This paper describes a meta-analysis of

genome-wide association (GWA) studies on migraine, performed by the Dutch–Icelandic migraine genetics (DICE) consortium,

which brings together six population-based European migraine cohorts with a total sample size of 10 980 individuals (2446

cases and 8534 controls). A total of 32 SNPs showed marginal evidence for association at a P-valueo10�5. The best result was

obtained for SNP rs9908234, which had a P-value of 8.00�10�8. This top SNP is located in the nerve growth factor receptor

(NGFR) gene. However, this SNP did not replicate in three cohorts from the Netherlands and Australia. Of the other 31 SNPs,

18 SNPs were tested in two replication cohorts, but none replicated. In addition, we explored previously identified candidate

genes in the meta-analysis data set. This revealed a modest gene-based significant association between migraine and the

metadherin (MTDH) gene, previously identified in the first clinic-based GWA study (GWAS) for migraine (Bonferroni-corrected

gene-based P-value¼0.026). This finding is consistent with the involvement of the glutamate pathway in migraine. Additional

research is necessary to further confirm the involvement of glutamate.
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INTRODUCTION

Migraine is a common neurological disorder that is characterized by
severe attacks of headache accompanied by symptoms such as nausea,
vomiting and photophobia and phonophobia.1 Two main types of
migraine are distinguished based on the presence of an aura that can
precede the headache: migraine with aura (MA) or without aura
(MO). Although MA and MO have been considered distinct disease
entities,2,3 it is now more and more accepted that they represent
different manifestations of the same disease.4–6

Genetic studies in familial hemiplegic migraine (FHM), a rare
monogenic subtype of MA that is considered a suitable model for
common migraine,7 revealed three genes (CACNA1A,8 ATP1A29 and
SCN1A10) that are involved in ion and neurotransmitter transport in
the brain. Despite considerable efforts, linkage and candidate-gene
association studies in common migraine have had limited success,
with only a few consistently replicated linkage findings.11–16 A recent

genome-wide association study (GWAS), using data from migraine
patients who were recruited through headache clinics, found evidence
for a role of the metadherin (MTDH) gene in common migraine.17

The associated SNP in that study affects MTDH gene expression and
thereby indirectly regulates the expression of the glutamate transporter
gene SLC1A2 (also known as EAAT2 or GLT-1), encoding a major
glutamate transporter in the brain. This fits in well with the theory
that increased glutamate release or reduced glutamate uptake increases
the risk of migraine attacks.18–22

Here, we present a GWA meta-analysis for common migraine by
the Dutch Icelandic migraine genetics consortium (DICE). This is the
first population-based GWAS for common migraine, including 2446
migraine cases and 8534 controls from six Dutch and Icelandic
samples. For replication, two population-based samples of Dutch
and one of Australian origin were available. De novo genotyping was
performed in the two Dutch replication cohorts (N¼769 and 337
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cases; 940 and 826 controls, respectively). In addition, an in silico
replication study was performed in the Australian replication cohort
(N¼1851 cases, 4008 controls).

METHODS

Populations: subjects, phenotypes and genotyping
The five Dutch samples that were used for the meta-analysis came from the

Erasmus Rucphen Family (ERF) study,23,24 The Netherlands Study of Depression

and Anxiety (NESDA),25 The Netherlands Twin Registry (‘NTR1’ and ‘NTR2’)26

and the Rotterdam study,27 and included 330, 756, 378, 276 and 349 migraine

cases, respectively. The Icelandic sample came from the AGES-Reykjavik Study

and included 357 migraine cases.28 In addition to the 2446 migraine cases, 8534

non-migraine controls (2862 Icelandic and 5672 Dutch controls) from the

respective cohorts were included (for details, see Table 1). All individuals came

from population-based samples and were unrelated, with the exception of

the ERF participants, who are part of a genetically isolated population in the

Southwest of the Netherlands. Data on migraine symptomatology were collected

by means of questionnaires (ie, AGES, NESDA, NTR1–2, Rotterdam), or a

combination of questionnaires and telephone interview follow-up (ie, ERF).

Three additional independent samples were available for replication; two

Dutch population-based samples (the GEM sample29 and a third sample from

the NTR), and one Australian sample, the Australian Twin Migraine (ATM)

GWA study.30,31 The Dutch GEM sample included 769 migraine cases and 940

non-migraine controls. The NTR replication sample consisted of 337 cases and

826 non-migraine controls, and the Australian sample consisted of 5859

unrelated individuals (1851 migraine cases, 1631 non-migraine controls and

2377 additional unselected controls).

Genotyping was performed using a variety of SNP genotyping platforms.

To ensure sufficient overlap between studies?, genotypes for B2.5 million

HapMap SNPs were imputed using MACH32 or IMPUTE33 software. An

overview of the samples, including details on sample size, genotyping and

imputations, is provided in Table 1. More details on the background of the

studies, phenotyping strategies and genotyping procedures can be found in the

Supplementary data.

GWA and meta-analysis
In each sample, a logistic regression association test was carried out. Next, a

meta-analysis was performed combining the GWA results of the six samples

(total number of individuals: 10 890) using the METAL program (http://

www.sph.umich.edu/csg/abecasis/metal/). As different phenotype definitions

were used in the different samples, the effect sizes may not be directly

comparable between studies. Therefore, a pooled Z-score approach was used.

With the pooled Z-score method, an overall Z-score is calculated based on the

summed Z-scores from the individual studies, weighted by each study’s sample

size. The weights are calculated as the square root of (Nstudy/Ntotal), and the

squared weights sum to one. The direction of effect is indicated by the sign of

the Z-score. To ensure that meta-analysis results were based on SNP data of a

large enough number of individuals, 184 350 SNPs that were available for

o70% of all participants were excluded from the meta-analysis. This left a total

of 2 394 913 autosomal SNPs for analysis. Annotation of meta-analysis results

was performed with WGA viewer version 1.26E (Dongliang Ge and David B

Goldstein; http://people.genome.duke.edu/~dg48/WGAViewer/).34 P-valueso5�10�8

were considered genome-wide significant.35

Replication studies
A replication study was performed with direct genotyping in the GEM and the

NTR replication samples. The top SNP was genotyped with a TaqMan assay in

both GEM and the NTR replication sample. In addition, another 18 SNPs with

a P-valueo1�10�5 were selected based on informativeness given the LD

structure. These SNPs were genotyped in the GEM sample using an in-house

Sequenom iPLEX Mass-ARRAY platform (Sequenom Inc., San Diego, CA,

USA). Logistic regression was performed to test for association between these

SNPs and migraine status. Third, all DICE SNPs with a P-valueo1�10�4 in the

meta-analysis were selected, and for these SNPs, an in silico replication study

was performed in the ATM GWA data set. Finally, the 19 SNPs that were

genotyped in GEM and the NTR replication sample and measured or imputed

in the ATM GWA replication sample were meta-analysed together with the

discovery data sets. A more detailed description of the genotyping procedures

and association analyses can be found in the Supplementary data.

Post hoc analyses
Text mining. Relationships between genes (emerging from the meta-analysis)

and migraine were studied using the Anni text-mining program (Anni version 2.1;

http://www.biosemantics.org/anni).36 For details see the Supplementary data.

Comparison of results with migraine genes and loci from previous studies.

Genome-wide linkage studies and association studies for migraine were

identified with a literature search in PubMed. We examined which SNPs with

a P-valueo1�10�4 coincided with a region containing a published migraine

Table 1 Sample descriptives

Ages ERF NESDA NTR1 NTR2 Rotterdam

Subjects

Total, N 3219 1546 1530 1593 1094 1998

N cases (#, ~) 357 (71, 286) 330 (81, 249) 756 (165, 591) 378 (69, 309) 276 (59, 217) 349 (79, 270)

N controls (#, ~) 2862 (1281,1581) 1216 (615, 601) 774 (322, 452) 1215 (509, 706) 818 (396, 422) 1649 (805, 844)

Mean age (SD) 51.22 (±6.33) 48.4 (±14.6) 42.9 (±12.5) 44.8 (±15.0) 48.6 (±14.4) 55.37 (±4.51)

Genotyping and imputation

Platform Illumina 370CNV Illumina

HumanHap300

HumanHap370

Affymetrix 250K

Nsp array

Perlegen/

Affymetrix 600K

Perlegen/Affymetrix

600K

Illumina

Human660W-Quad

BeadChip

Illumina Infinium II

HumanHap550

version 3.0

Software used

for imputation

MACH 1.0.16 MACH IMPUTE IMPUTE IMPUTE MACH 1.0.15

Reference set HapMap CEU HapMap CEU HapMap CEU HapMap CEU HapMap CEU HapMap CEU

NCBI build 36 36 36 36 36 36

Hapmap release 22 22 22 22 24 22

Number of SNPs analyzed 2 408 991 2 135 034 2 432 125 2 431 993 2 542 087 2 450 030

Software for association

analysis of imputed data

ProbABEL ProbABEL SNPTEST SNPTEST SNPTEST ProbABEL
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linkage peak. In addition, a selection of migraine candidate genes was made and

inspected in our meta-analysis data set by calculating a gene-based P-value for

each of the selected genes using the VEGAS program.37 More details can be

found in the Supplementary methods.

RESULTS

Meta-analysis
GWA analyses were performed in the six population-based samples
and the results were meta-analyzed using a pooled Z-score approach.
As shown in Figure 1, no systematic deviation from the expected
distribution of P-values was observed in the Q–Q plot, which is
reflected by a genomic inflation factor (l) of 1.022. A total of 32 SNPs
had a P-valueo1�10�5 (Table 2). None of these SNPs exceeded the
threshold for genome-wide significance (Figure 2). A total of 10 SNPs

were located within genes; 8 in the metastasis associated in colon
cancer 1 (MACC1) gene (7p21), 1 in the immunoglobulin lambda-like
polypeptide 1 (IGLL1) gene (22q11) and 1 in the nerve growth factor
receptor (NGFR) gene (17q21–q22). The most significant result was
obtained for SNP rs9908234 (P¼8.00�10�8) in the NGFR gene, with
the strongest evidence coming from the AGES and NESDA studies
(Supplementary Table S1). Data for 17 additional SNPs in this
gene were available, but none of these were associated with migraine
(all P-values40.05). These SNPs were not in LD with rs9908234.
Next, we performed text mining with the Anni program. The concept
‘migraine’ was matched against the genes located within or close to
our top SNPs (P-valueo1�10�4). Remarkably, the NGFR gene
surfaced as the best migraine candidate gene.

Replication analysis of the top SNPs
From the 32 top SNPs with P-valueso1�10�5, we selected 19 SNPs
for genotyping in the GEM sample. The selection was made such that
the genotyped SNPs were maximally informative given the LD
between them. The top SNP rs9908234, located in the NGFR gene,
was genotyped in one additional replication sample from the NTR.
The association observed in the discovery samples could not be
replicated for rs9908234 (GEM: OR¼0.86, P¼0.31; NTR replication
sample: OR¼0.89, P¼0.579; see Supplementary Table S2). The find-
ings for the other 18 SNPs were not replicated either. None showed a
P-valueo0.05 in the GEM sample: the smallest P-value observed was
0.10, but this effect was in the opposite direction compared with the
meta-analysis.

Figure 1 Q–Q plot showing the expected and observed distribution of

P-values in the meta-analysis that included the five Dutch samples and the

Icelandic sample. The genomic inflation factor (l) for the meta-analysis was

1.022.

Table 2 Selected SNPs with P-valueso1�10�5 in the meta-analysis

SNP Chr P-value

Base-pair

position Type of SNP Nearest gene

Distance to

gene (kb) A1 A2 Frequency A1

Direction

of effecta
Number of SNPs

in region (Po1�10�5)

rs9908234 17 8.00�10�8 44 932 347 Intronic NGFR 0 A G 0.93 ������ 1

rs11636768 15 3.23�10�7 85 496 515 Intergenic AGBL1 164.2 A G 0.15 ++++?+ 1

rs10275320 7 1.56�10�6 20 148 579 Intronic MACC1 0 A G 0.15 ������ 8

rs4939879 18 1.82�10�6 45 399 981 Intergenic LIPG 26.7 A G 0.47 ++++++ 1

rs4861775 4 3.28�10�6 180 553 645 Intergenic AGA 1953.1 A C 0.81 ������ 1

rs986222 10 3.37�10�6 91 920 867 Intergenic KIF20B 396.2 A G 0.46 ++++++ 16

rs6107848 20 5.90�10�6 6 539 116 Intergenic BMP2 157.6 A G 0.37 +++++� 1

rs140174 22 6.98�10�6 22 252 983 Intronic IGLL1 0 A G 0.75 ������ 1

rs1146161 1 9.27�10�6 115 460 299 Intergenic TSPAN2 26.7 A C 0.18 ++++++ 1

rs4742323 9 9.70�10�6 7 276 743 Intergenic KDM4C 111.1 C G 0.61 ������ 1

Abbreviations: Chr¼chromosome; A1¼effect allele in meta-analysis; A2¼non-effect allele.
A total of 32 SNPs had a P-valueo1�10�5. In case multiple SNPs were located close together in the same region, the most significant SNP is reported. In the last column, the number of
neighboring SNPs that exceeded the threshold is shown (chromosome 7: 8 SNPs within a 43.7kb region; chromosome 10: 16 SNPs in a 104.3kb region).
aThe direction of effect of the respective SNP is given for each of the six samples in the following order: AGES, ERF, NESDA, NTR1, NTR2, Rotterdam. A question mark indicates that a SNP
was not tested in a particular sample (because it was removed during quality control). Positions are based on NCBI Build 36. The frequency of A1 was calculated as a weighted average across
all samples.

Figure 2 Manhattan plot showing the P-values by chromosome for the

meta-analysis.
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An in silico replication study was performed in the ATM GWA
sample. This analysis included all SNPs with P-values o1�10�4 in the
DICE meta-analysis. In the ATM GWA sample, there were data for 327
out of 340 SNPs with P-valueso1�10�4. None of these SNPs had
a P-valueo0.01 in the ATM GWA data set. A total of 11 SNPs
had P-values between 0.01 and 0.05, but for only 3 SNPs, the effect was
in the same direction as in the DICE cohorts (rs6919479, P¼0.045;
rs9363693, P¼0.045; and rs9294736, P¼0.037; all on chromosome 6).
These results were not significant after correction for multiple testing.

Finally, a new meta-analysis was carried out in the DICE discovery
samples, the GEM sample and the ATM GWA sample, for the 19 SNPs
genotyped in GEM. For rs9908234, the meta-analysis also included the
NTR replication cohort. The P-values for these SNPs did not decrease
compared with the first meta-analysis (Supplementary Table S2).

Comparison of meta-analysis results with previous genetic findings
in migraine
The large sample size of the present study provided a unique
opportunity to further investigate previous findings from linkage
and candidate gene studies on a larger scale, and to try and replicate
the findings recently reported in a large clinic-based GWAS for
migraine.17

First, we investigated whether there were any SNPs with
P-valueso10�4 that were located in previously identified migraine
linkage regions (Supplementary Table S3). Five SNPs were located on
chromosome 10q22–q23, a locus that has been reported for migraine
several times.11,15,16 However, none were located in or near a gene that
could easily be linked to migraine pathophysiology. Interestingly, one
SNP (rs1972860, P¼6.02�10�5) was located in the glutamate recep-
tor, ionotropic, delta 2 (GRID2) gene on chromosome 4q22, a region
reported in several different migraine linkage studies.11–14

In addition, we performed a gene-based association test for selected
candidate genes for migraine (Table 3). Seven candidate genes were
selected based on the results of previous candidate gene association
studies for common migraine. Furthermore, a recently published
GWAS of clinic-based migraine identified an SNP (rs1835740) that
was located between two interesting candidate genes: the MTHD gene
and the plasma glutamate carboxypeptidase (PGCP) gene.17 An eQTL
analysis revealed that rs1835740 most likely affects migraine through
cis-regulation of MTHD, which in turn downregulates SLC1A2,
a gene that encodes an important glutamate transporter in the
brain. Therefore, we selected MTHD, PGCP and SLC1A2 as candidate
genes, and also inspected SNP rs1835740 and two nearby correlated
SNPs (rs982502 and rs2436046). Finally, the three FHM genes
(CACNA1A, ATP1A2 and SCN1A) were included in the analysis.

Gene-based tests were performed for each of the selected candidate
genes, using the meta-analysis results of all SNPs tested in the
respective genes (Table 3). A gene-based test result was considered
significant at an alpha level of 0.05, with Bonferroni correction for 13
tests, which corresponds to a gene-based P-value of 0.05/13¼0.0038.
None of the genes identified through candidate gene association
studies was significantly associated with migraine in the meta-analysis.
Although there were nominally significant SNPs in the LTA, ESR1 and
INSR genes, results were not significant after correction for the
number of SNPs tested within the respective genes. The PGCP and
SLC1A2 genes also had several nominally significant SNPs, but again
were not significant in the gene-based test. However, in the MTHD
gene, 19 of the 28 tested SNPs had a P-valueo0.01 in the meta-
analysis (Supplementary Table S4). The gene-based P-value for MTDH
was 0.002, which remained significant after Bonferroni correction.
The SNP that showed association in the clinic-based GWA study T
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(rs1835740)17 did not show significant association with migraine in
the meta-analysis (P¼0.64). Two nearby SNPs (rs982502 and
rs2436046) reported in the same GWAS were also not associated
with migraine in the present study.

Finally, we tested the three FHM genes, and found several nominally
significant SNPs within CACNA1A and ATP1A2. The gene-based test
for CACNA1A (best SNP rs3764615, P¼0.004) was not significant
(P¼0.30). The gene-based P-value for ATP1A2 (best SNP rs2854248,
P¼3.62�10�4) was 0.006.

DISCUSSION

This study describes the first meta-analysis of GWAS for population-
based migraine, and contains a total of 2446 migraine cases and 8534
controls. The best P-value was obtained for SNP rs9908234, which is
located in the NGFR gene. A replication study was performed in two
Dutch replication cohorts that were available for wet replication; the
GEM cohort (769 cases, 940 controls) and the NTR replication cohort
(337 cases, 826 controls). In addition, the ATM GWA cohort (1851
cases, 1631 controls) was available for in silico replication. Although
the NGFR gene is an interesting candidate gene for migraine, the
association of NGFR with migraine could not be replicated in these
cohorts. A total of 18 additional top SNPs (P-valueo10�5) from the
meta-analysis were tested in the GEM cohort and the ATM GWA
cohort, but none could be replicated successfully.

There are several possible explanations for the lack of replication.
First, several different genotyping platforms were used, which made
imputation necessary to ensure sufficient overlap between the studies.
Also, two different programs (MACH and IMPUTE) were used for
imputation. However, given that MACH and IMPUTE use very
similar imputation algorithms, and have been reported to be very
similar in imputation accuracy,38 we do not expect this to have a
major effect on our results. Second, there were some differences
between the samples in the precision of the migraine diagnoses, and
in most samples, a clinical migraine diagnosis was not available. This
is often the case in population-based studies because, for reasons of
efficiency, diagnoses are commonly made with (short) headache
questionnaires. Unlike in clinic-based studies, they are not usually
further evaluated with more extensive questionnaires or interviews by
specialized physicians. Less accuracy of diagnosis may result in
reduced power to detect association. The phenotypic differences also
extend to the control groups, as all non-migraine individuals were
included as controls. These differences between studies mean that
effect sizes may not be directly comparable. To address this, a pooled
Z-score meta-analysis was performed. This type of analysis does not
require a direct comparison of effect sizes.39 Third, population-based
cohorts also include many patients who have less severe migraine and
a lower attack frequency. This means that they might be a genetically
more heterogeneous group than patients from clinic-based cohorts. In
addition, they are likely to have a lower genetic risk of migraine than
the more severely affected patients in clinic-based cohorts. As a
consequence, population-based studies may require a larger number
of patients for sufficient power. Given that this study replicates
previous findings, but does not produce genome-wide significant
results, insufficient power (possibly because of the reasons above)
seems the most likely explanation for the lack of replication of our top
results. A lack of power makes it difficult to distinguish between true
associations and false-positive findings in the original meta-analysis.
Therefore, when the discovery samples have insufficient power, SNPs
selected for replication based on small P-values may not replicate
(even in sufficiently large replication samples) because they are false
positives. Finally, it should be mentioned that the NESDA sample

differed from the other samples because the majority of NESDA
participants were selected for major depression. Because of the
comorbidity of migraine and major depression, there is a higher
prevalence of migraine in this sample than in the other samples.
However, given that the percentage of MDD was similar in the
migraine cases and the controls (94.3 vs 86.6%), any associations
detected in this sample will be related to migraine and not to MDD.

In the present study, we also investigated SNP rs1835740 that was
found to be significantly associated with MA in the first GWA study of
clinic-based populations.17 This SNP is located on 8q21 between the
MTDH and PGCP genes. The SNP itself was not associated with
migraine in our study, but our gene-based analyses provided modest
support for an association of MTDH with migraine.

In summary, although this study does not provide genome-wide
significant association of an SNP with migraine, it provides suggestive
evidence for an association with the MTDH gene, which is involved in
the glutamate pathway, previously hypothesized to have a role in
migraine based on findings in FHM.40 Clearly, even though a large
number of patients and controls were included, the present study
suffered from a lack of power. In addition to simply increasing the
sample size, additional strategies aimed at minimizing phenotypic and
genetic heterogeneity may be necessary. Strategies to achieve this can
include the identification of reliable biomarkers or stratification of
samples based on phenotypic similarity (eg, by looking at trait
components,11 specific symptoms16,41 and/or comorbid pathology).
In addition, in future studies it may be worth focusing specifically on
the glutamate pathway to assess whether genetic variants affecting
glutamate levels are systematically associated with migraine.
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