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Abstract

Along with specialized functions, cells of multicellular organisms also perform essential functions common to most if not all cells. Whether
diverse cells do this by using the same set of genes, interacting in a fixed coordinated fashion to execute essential functions, or a subset of
genes specific to certain cells, remains a central question in biology. Here, we focus on gene coexpression to search for a core cellular net-
work across a whole organism. Single-cell RNA-sequencing measures gene expression of individual cells, enabling researchers to discover
gene expression patterns that contribute to the diversity of cell functions. Current efforts to study cellular functions focus primarily on identi-
fying differentially expressed genes across cells. However, patterns of coexpression between genes are probably more indicative of biolog-
ical processes than are the expression of individual genes. We constructed cell-type-specific gene coexpression networks using single-cell
transcriptome datasets covering diverse cell types from the fruit fly, Drosophila melanogaster. We detected a set of highly coordinated
genes preserved across cell types and present this as the best estimate of a core cellular network. This core is very small compared with
cell-type-specific gene coexpression networks and shows dense connectivity. Gene members of this core tend to be ancient genes and
are enriched for those encoding ribosomal proteins. Overall, we find evidence for a core cellular network in diverse cell types of the fruit
fly. The topological, structural, functional, and evolutionary properties of this core indicate that it accounts for only a minority of essential
functions.
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Introduction
Life on Earth has gone through many transitions in organiza-
tional complexity (Szathmáry 2015). Among these, the evolution
of multicellularity stands out as a key milestone. This transition
has occurred independently multiple times across the tree of life
and paved the way for tremendous phenotypic expansion and bi-
ological diversification (Parfrey and Lahr 2013). Although multi-
cellularity led to the evolution of cell-type-specific functions and
regulatory pathways, all cells must also carry out common func-
tions that are essential for cell survival. Whether these common
functions are supported by a shared network of coexpressed
genes remains a central question in biology (Hart and Alon 2013;
Lim et al. 2013). In particular, do all cells utilize the same set of
genes in a coordinated fashion—a core network—to accomplish
common functions?

Cellular phenomena can be characterized by different
endophenotypic domains or levels of biological organization,
such as the genome, epigenome, transcriptome, proteome, etc.
Investigating core functions from these different levels not only
provides insight into essential functions of cellular life but also
helps to reveal the evolutionary forces acting at different levels of
biological organization (Wagner 2012; Sorrells and Johnson 2015;

Ghadie et al. 2018). To identify core functions at the transcrip-
tional level, researchers have often sought genes that are
expressed constitutively over temporal or spatial scales, and
across environments. These genes are typically referred to as
“housekeeping genes” and are thought to perform essential func-
tions. Housekeeping genes tend to be evolutionarily ancient (Zhu
et al. 2008), highly conserved (Zhang and Li 2004), and are
enriched for certain functions, including metabolism, RNA bind-
ing, protein degradation, and cytoskeleton functions (Lehner and
Fraser 2004; Zhang and Li 2004). Using somewhat circular logic,
core functions are often described based on housekeeping genes.
However, we recognize that genes do not work in isolation, but of-
ten work with each other to carry out biological processes. In this
way, coexpression is an indicator of functional relationships
(Hughes et al. 2000), and so analysis of coexpression offers insight
into gene function and biological organization.

High-throughput methods that generate high-dimensional
“omic” data have greatly increased our understanding of cellular
function and organization, in particular through the analysis of
molecular networks based on coexpression (Barabási and Oltvai
2004; Promislow 2005; Proulx et al. 2005; Thompson et al. 2015).
Networks consist of nodes connected to one another by edges. In

Received: June 26, 2022. Accepted: August 03, 2022
VC The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

G3, 2022, 12(10), jkac212

https://doi.org/10.1093/g3journal/jkac212
Advance Access Publication Date: 17 August 2022

Neurogenetics

https://orcid.org/0000-0002-3532-7324
https://orcid.org/0000-0002-4268-7686
https://orcid.org/0000-0001-7088-4495
https://academic.oup.com/


the search for the underlying network structure of cells,
researchers have explored many different kinds of edges, includ-
ing but not limited to gene coexpression, protein–protein interac-
tions (PPI), interactions among transcription factors (TFs), TF
chromatin occupancy, microRNA-target gene interactions, me-
tabolite covariation, and metabolic reactions (Mitra et al. 2013).
Many studies have focused on tissue-specific networks (Greene
et al. 2015; Sonawane et al. 2017), and some have also examined
networks that show some level of conservation within and across
organisms. For example, coexpression network analysis of hu-
man and Arabidopsis bulk transcriptome data have found a sub-
stantial number of gene pairs whose coexpression spans
independent studies (Lee et al. 2004; He and Maslov 2016). In both
analyses, gene pairs expressed across samples were enriched for
translation, DNA replication, and regulation of transcription
functions, all generally considered to be core cellular functions.
Additionally, Skinnider et al. (2021) constructed tissue-specific PPI
networks using coimmunoprecipitation within each of 7 mouse
tissues (Skinnider et al. 2021). They discovered cellular modules
present in all mouse tissues. These modules were composed of
evolutionarily ancient proteins, which contrasts with evolution-
arily novel accessory modules that are found within individual
tissues.

A major drawback of most previous studies investigating core
functions from a network perspective is that the networks were
inferred from bulk data, which profiles heterogeneous cell popu-
lations of an organism, organ, or tissue. Bulk samples face 2 main
limitations for network construction. First, differences in cellular
compositions between samples may confound covariation analy-
sis (Farahbod and Pavlidis 2020). Second, measurements that are
averaged over thousands of cells in bulk samples make it difficult
to detect interactions between genes in individual cells, such as
the presence of coexpression patterns and the cell specificity of
these interactions. The compendium of housekeeping genes, ini-
tially characterized based on the ubiquity of their expression,
may need revision based on analyses of gene–gene relationships.
Housekeeping genes may show clear evidence of coexpression in
all cell types; or alternatively, interactions among housekeeping
genes may be relatively weak or even cell-type-specific. To distin-
guish these possibilities requires that we build and compare gene
networks at a cellular level.

With the advent of single-cell RNA-sequencing (scRNA-seq),
we have an unprecedented opportunity to reveal gene networks
in specific cellular contexts (Trapnell 2015; Tanay and Regev
2017). One recent study used scRNA-seq of the mouse brain to
construct gene coexpression networks, comparing the topology
of networks built from different levels of cell-type hierarchy (i.e.
from broad to specific classes; Harris et al. 2021). Their results
show well-preserved gene–gene relationships at each level and
suggest the existence of a core coregulatory network in the brain.
However, they did not directly compare cellular networks across
cell types, which leaves the possibility that what appear as core
networks at more integrated levels may not manifest when ex-
amined by cell type, or by individual cell.

Identifying coexpressed gene pairs from single-cell data is not
a trivial task (Chen and Mar 2018; Blencowe et al. 2019). A central
challenge is the sparsity in expression count data due to either
real variation in gene expression levels among cells, or the lim-
ited capacity of scRNA-seq technology (Sarkar and Stephens
2021; Jiang et al. 2022). scRNA-seq typically captures only 5–15%
of the transcriptome of each cell (Kim et al. 2015). Such imperfect
measurement leads to significant zero inflation and background
noise (Pratapa et al. 2020; Kang et al. 2021). Considerable

computational effort has been expended to circumvent these
challenges (Iacono et al. 2019; Pratapa et al. 2020; Feregrino and
Tschopp 2021; Xu et al. 2022). For instance, one approach is to im-
pute data to replace zero values (Huang et al. 2018; Li and Li 2018;
van Dijk et al. 2018). While imputation eliminates zeros, whether
or not it preserves or alters true gene–gene relationships remains
unclear (Steinheuer et al. 2021; Ly and Vingron 2022). Another ap-
proach is to aggregate cells with similar transcriptome profiles,
often called a “pseudocell” approach (Tosches et al. 2018; Han
et al. 2020; Feregrino and Tschopp 2021; Xu et al. 2022). For exam-
ple, single-cell weighted gene correlation network analysis adapts
weighted gene correlation network analysis (WGCNA) to scRNA-
seq using pseudocells (Langfelder and Horvath 2008; Feregrino
and Tschopp 2021). This procedure first partitions cells into
groups based on a cell-to-cell transcriptome similarity graph, and
then merges cells of the same group into one pseudocell. The re-
sultant pseudocells are fed into the WGCNA pipeline for network
construction and gene module identification. While the genera-
tion of pseudocells decreases the number of zero values and ena-
bles robust identification of correlated gene pairs, the subsequent
network construction is performed under constraining model
assumptions, such as a scale-free network following a power law
distribution (Barabási and Albert 1999), which may not be a uni-
versal phenomenon (Broido and Clauset 2019). In this study, we
used the bigScale2 algorithm (Iacono et al. 2019), another pseudo-
cell technique that clusters cells and calculates z-scores for each
gene based on their differential expression pattern between pairs
of clusters. The bigScale2 then uses z-scores to calculate gene–
gene correlations, circumventing the zero-inflation problem and
increasing the power to detect gene pairs (Blencowe et al. 2019;
Cha and Lee 2020; Gao et al. 2020). Considering the state of the
field and the considerable amount of scRNA-seq data now avail-
able, we are led to ask several fundamental questions. First, can
we identify shared coexpression patterns between pairs of genes
across different cell types; second, how common are these shared
coexpressed gene pairs among cell types? Lastly, do these shared
coexpressed genes point to a core cellular network, and if so,
what properties does this core network manifest?

While the search for a core network using single-cell data is a
promising means to examine commonality in cellular function,
such endeavors depend on the organization of biological systems
and face limitations due in part to statistical power. We expect
that functions carried out by all cells will be reflected by the com-
mon network structure at the molecular level. However, such
functions may not involve strongly correlated transcript abun-
dance among genes. For these reasons, rather than attempting to
strictly define the core network, we seek to estimate the structure
of such a core network by assessing the characteristics of net-
works that are shared across cells.

With this goal in mind, we analyzed multiple single-cell or
single-nucleus datasets covering diverse cell types across a whole
organism to estimate the core network in the fruit fly. To begin,
we developed our method using an scRNA-seq dataset derived
from the whole fly brain (Davie et al. 2018). These brain data have
both high coverage relative to other data, and they also comprise
the widest diversity of cell types in the fly (Li et al. 2022). We con-
structed cell-type-specific gene coexpression networks and then
looked for shared edges across cell types. We found a population
of gene pairs that are more common across cell types than
expected by chance, and yet, none of these edges were found in
all cell types. We then determined that those edges that were
common among most but not all cell types tended to be near, but
below, the correlation threshold we used to construct the
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networks in the remaining cells, suggesting that some edges oc-
cur in all or nearly all cell types, but with varying coexpression
strength. We identified a network shared among brain cell types
and described its topological properties, functional enrichment,
and the evolutionary ages of the constituent genes. We then ex-
tended our analysis to 3 independent datasets, one based on cells
from the fly brain (Baker et al. 2021), another from the fly head (H.
Li et al. 2022), and the last from the remaining fly body (Li et al.
2022). While each dataset presented a network shared among cell
types in that dataset, we found that as we expanded the range of
cell types surveyed, the overlap among these networks dimin-
ished. Finally, across the cells of the entire fly, we identified a
core network that only contained genes encoding ribosomal pro-
teins. To our knowledge, this is the first study of a core cellular
network among cell types using single-cell transcriptome data in
the fly, and marks a conceptual shift in the search for commonal-
ities in an endophenotypic domain, one where shared networks
may be a very small component, even of essential cell functions.

Methods
Dataset collection and preprocessing
We downloaded the fly brain atlas data from NCBI Gene
Expression Omnibus (GEO GSE107451). The original dataset con-
tains expression data for 17,473 genes in 56,902 high-quality
brain cells grouped into 116 cell clusters. As a quality control
step, we first removed 668 cells in a cell cluster named “Hsp,” as
they appear to be cells stressed by fly brain dissection and cell
isolation, and so may not reflect the activities in an intact organ-
ism (Davie et al. 2018). We then removed cells that had fewer
than 200 expressed genes, fewer than 500 total unique molecular
identifier counts, or a total fraction of mitochondrial gene expres-
sion exceeding 30%. These criteria led to the removal of another
42 cells, leaving 56,192 cells. These cells were assigned to 115 cell
clusters, out of which 74 were annotated to known fly brain cell
types. We selected 37 cell clusters in females (17 were annotated
to known fly brain cell types) and 31 cell clusters in males (11
were annotated to known fly brain cell types) that had at least
200 cells each (Supplementary Fig. 1).

We filtered genes for each cell cluster in each sex individually
by removing genes that were either expressed in less than 15
cells, or in fewer than 0.5% of cells in that cell cluster whichever
was larger. This gene filtering procedure led to 7,795 genes as
expressed in at least one cell cluster, 2,088 of which were com-
monly expressed in all 68 cell clusters (Supplementary Fig. 2a).
We measured sparsity at a cell cluster level by calculating the
percentage of zeros in the respective gene count matrix limited to
commonly expressed genes. Excluding cell cluster 32 in males
with a sparsity level of 69.10% (Supplementary Fig. 2a), 67 cell
clusters remained for further gene coexpression network
analysis.

Constructing cell-type-specific gene coexpression
networks
We used the bigScale2 algorithm (Iacono et al. 2019) to compute a
gene–gene correlation matrix for each cell cluster in each sex.
This algorithm was tailored to mitigate the impact of sparse
counts at the single-cell level. It first groups cells into homoge-
nous cell clusters, then performs differential expression analysis
between all pairs of clusters. With N clusters, we obtain N*(N�1)/
2 unique comparisons, and each comparison generates one z-
score for each gene, indicating the likelihood of an expression
change between the corresponding 2 clusters. Finally, bigScale2

uses transformed z-scores instead of original expression values
to calculate Pearson correlation coefficients. This z-score trans-
formation allows us to detect correlations that would otherwise
be missed by drop-out events and other technical artifacts.
Example scatter plots of z-scores of gene pairs within cell clusters
are presented in Supplementary Fig. 3. In Section 1 of
Supplementary Material, we further demonstrate the ability of
this algorithm to provide robust estimates even with sparse data
(Supplementary Fig. 4). To select highly correlated gene pairs for
inclusion in a gene coexpression network, we employed a signal-
to-noise ratio approach and calculated this ratio across various
top percentile-based threshold values in each cell cluster sepa-
rately. The highest signal-to-noise ratio frequently occurs at a
threshold value taking the top 5% of edges across cell clusters
(Supplementary Figs. 5–7). Thus, we ranked gene pairs by their
absolute correlation values in each cell cluster separately, and
placed the top 5% of correlated gene pairs into a cell cluster-
specific coexpression network, with the corresponding absolute
correlation values ranging from r¼ 0.39 to 0.85.

Evaluating gene and edge commonality
distributions
To evaluate commonality and specificity across cell cluster-
specific networks, we plot the node and edge commonality distri-
butions. The commonality of a node (gene) refers to the number
of cell clusters in which this gene is found to be coexpressed
(forming an edge) with at least one other gene. We define the
commonality of an edge linking a given pair of genes as the num-
ber of cell clusters in which that specific edge is detected. We de-
rived a mathematical approximation for the probability of a gene
pair to be coexpressed in a given number of cell types. As we fo-
cused on 2,088 commonly expressed genes and selected the top
5% of highly correlated genes in each cell type, in randomized
data, a gene pair would have a probability P ¼ 0.05 of being coex-
pressed in any one cell type. Examining 67 cell clusters and using
the binomial distribution, the probability P(k) of a gene pair being
coexpressed in k cell types would equal

PðkÞ ¼ Cð67; kÞ � 0:05k �ð1� 0:05Þ67�k;

where C(67, k) is the combinatorial number describing the num-
ber of ways of picking k items from a pool of 67 cell clusters (that
is, 67 choose k, or 67!

k!ð67�kÞ!). Following this equation, the probability
of a gene pair not being coexpressed in any cell type is 0.0321 at
k¼ 0. Given the 2,088 commonly expressed genes, 2,108,888 non-
redundant gene pairs were expected to coexpress in at least one
cell type.

Network randomization
To obtain a null distribution for edge commonality distributions,
we used a network randomization approach. We randomized the
edges in each cell-type-specific network individually, keeping the
gene connectivities fixed using the rewire function from the R
package iGraph (Csardi and Nepusz 2006). A set of randomiza-
tions for all 67 cell clusters resulted in one pseudo-edge common-
ality distribution. We performed the randomization procedure
100 times and used the ensemble of the 100 pseudo-edge com-
monality distributions as the null distribution.

Rank aggregation analysis
Each gene pair or edge has a rank based on its absolute correla-
tion value in a given cell cluster. To determine if one edge is
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ranked consistently high across a set of cell clusters based on its
absolute correlation value, we used the aggregateRanks function
from the R package RobustRankAggreg (Kolde et al. 2012). This
function is based on a probabilistic model of order statistics and
computes a P-value for a ranking vector. Specifically, we
extracted edges from a given edge commonality group k (they be-
long to the top 5% in k cell clusters) with k ranging from 1 to 64,
covering the spectrum of edge commonalities scores, and exam-
ined each edge’s ranking vector in the remaining 67-k cell clus-
ters. The rank aggregation algorithm estimated a P-value per
edge ranging from 0 to 1, with a small value indicating an edge is
ranked consistently higher across cell clusters in which it falls be-
low the 5% threshold, and a larger value meaning an edge’s rank
distribution over cell clusters follows a random pattern. We
chose edge commonality groups covering the full range of edge
commonality scores. To enable fair comparison between edge
commonality groups, we randomly sampled 100 edges in each
group if it contained at least 100 edges, and otherwise used all
available edges. The P-values were corrected for multiple testing
using the p.adjust function in R with the Bonferroni method, re-
ferred to as adjusted P-values hereafter. We plotted the adjusted
P-value distribution of the sampled edges for each edge common-
ality group separately. The set of adjusted P-values from the
same edge commonality group was combined into one single
value using Fisher’s method and then corrected with the
Bonferroni method, referred to as Bonferroni corrected P. We
plotted the Bonferroni corrected P across edge commonality
groups and applied a cutoff at 0.01 on edge commonality scores
to select edges forming a shared network.

Module decomposition and functional annotation
To decompose the cellular network into highly connected mod-
ules, we used the cluster_walktrap function from the R package
iGraph (Csardi and Nepusz 2006) which implements a random
walk algorithm to find highly connected groups of nodes in a net-
work. After module detection, we performed Gene Ontology (GO)
enrichment analysis of genes in each module using the R package
clusterProfiler (Wu et al. 2021), with a Bonferroni correction and
an adjusted P-value cutoff of 0.05. Significant GO terms were
identified and refined to reduce redundant GO terms via the sim-
plify method from the clusterProfiler package.

Assigning genes into evolutionary age groups
We downloaded data from a previous study to assign genes into dif-
ferent evolutionary age groups using a phylostratigraphy frame-
work (Domazet-Lo�so et al. 2017). This framework allows us to date
the evolutionary origination time of a gene by identifying its homo-
logs across the tree of life. There were 13,794 genes assigned to 12
age groups in the original publication, 2,002 of which overlapped
with the 2,088 expressed genes in this study, including 911 genes in
the oldest age group “CellLife,” 641 in “Eukaryota,” 87 in
“Opisthokonta,” 122 in “Metazoa,” 32 in “Eumetazoa,” 73 in “Bilateria,”
14 in “Protostomia,” 16 in “Arthropoda,” 13 in “Pancrustacea,” 43 in
“Insecta,” 39 in “Diptera,” and 11 in the youngest age group
“Drosophila.”

Additional single-cell or single-nucleus
transcriptome datasets
Fly brain data from Baker et al. (2021)
We downloaded the raw data from the GEO database with acces-
sion number GSE152495. This dataset was generated from flies
that consumed fixed amounts of sucrose or sucrose supple-
mented with cocaine, in both sexes, using single-cell libraries on

the 10X Genomics platform (Baker et al. 2021). The downloaded
dataset contains 8 samples, 2 replicates per sex per food
condition. We integrated the 8 samples following the source code
provided by the authors (https://github.com/vshanka23/The-
Drosophila-Brain-on-Cocaine-at-Single-Cell-Resolution), and
focused our analysis on the 4 samples in females and males
under the sucrose food condition, which contains 10,949 gene
expression data in 43,824 brain cells grouped into 39 cell clusters
(Supplementary Fig. 1). After data quality control, 1,738
commonly expressed genes in 22 female cell clusters and 25
male cell clusters were kept for the gene coexpression network
analysis (Supplementary Fig. 5, Section 2 of Supplementary
Material).

Fly head data from Li et al. (2022)
We downloaded the fly head atlas data from the Fly Cell Atlas
website (https://flycellatlas.org/). This dataset was generated us-
ing single-nuclei libraries on the 10X Genomics platform (Li et al.
2022). The downloaded dataset contains expression data for
13,056 genes in 100,527 female or male head cells grouped into 82
cell clusters (Supplementary Fig. 1). After data quality control,
842 commonly expressed genes in 23 female cell clusters and 16
male cell clusters were kept for the gene coexpression network
analysis (Supplementary Fig. 5, Section 2 of Supplementary
Material).

Fly body data from Li et al. (2022)
We downloaded the fly body atlas data from the Fly Cell Atlas
website (https://flycellatlas.org/). This dataset contains expres-
sion data for 15,267 genes in 96,926 female or male cells grouped
into 34 cell clusters (Supplementary Fig. 1). After data quality
control, 869 commonly expressed genes in 17 female cell clusters
and 14 male cell clusters were kept for the gene coexpression net-
work analysis (Supplementary Fig. 5, Section 2 of Supplementary
Material).

Results
Construction of cell cluster-specific gene
coexpression networks
We analyzed published fly brain atlas data obtained from whole-
cell fly brain samples of female and male Drosophila (Davie et al.
2018). After quality control, we selected 68 cell clusters, 37 from
females and 31 from males (Supplementary Fig. 1, Methods). To
avoid bias toward characterized cell types, we analyzed cell clus-
ters annotated to known cell types, as well as any unmapped cell
clusters meeting our quality control threshold, which were given
arbitrary numbers (cell cluster #). The number of genes expressed
per cell cluster ranged from 2,683 in the Tm5ab cell cluster of
females to 6,727 in cell cluster 0 of males (Supplementary Fig. 2).
In total, there were 7,795 genes expressed in at least one cell clus-
ter, 2,088 of which were expressed in all 68 cell clusters
(Supplementary Fig. 2). scRNA-seq data are typically sparse, with
the expression of many genes falling below the limits of detec-
tion. Sparsity, measured as the percentage of zeros in the data for
the 2,088 commonly expressed genes, was below 50% for all but
one cell cluster (cluster 32 in males, Supplementary Fig. 5,
Supplementary Material, Section 1). After excluding this cell clus-
ter, the remaining cell clusters had <48% sparsity. Throughout,
we focus on the 2,088 commonly expressed genes to identify co-
varying gene pairs and coexpression networks, within and across
these 67 cell clusters.
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An overview of our pipeline is shown in Fig. 1. We used the
bigScale2 algorithm (Iacono et al. 2019) to compute cell
cluster-specific gene correlation matrices and then built cell
cluster-specific gene coexpression networks by thresholding
these gene correlation matrices with a top percentile-based cut-
off approach (Methods and Supplementary Fig. 4). While there is
no objective criterion for choosing a gene correlation threshold,
we used signal-to-noise analysis to measure the consistency of
networks constructed using subsets of the original data at a given
threshold to guide the threshold selection (Supplementary
Material, Section 1). With a top 5% threshold, we transformed
gene correlation matrices into gene coexpression networks
(Supplementary Material, Section 1, Supplementary Figs. 4–7). At
this threshold, 1,942,694 coexpressed gene pairs (89.16% of all
possible pairs among 2,088 genes) occurred in at least one of the
67 cell cluster-specific networks. To broadly characterize the sim-
ilarity in networks among cells, we clustered cell-type-specific
networks and found broad grouping primarily by fly brain cell
types, such as glia and neurons, indicating that the gene coex-
pression networks among shared genes retain cell-type specific-
ity (Supplementary Fig. 8).

Coexpression networks in fly brain cells are
highly context-dependent
If a core cellular network exists, we expect its edges to be present
in all cell types. The distribution of edge commonality was right
skewed, with more than 75% of the edges specific to fewer than 5
cell clusters and only 0.4% of edges common to more than 30 cell
clusters (Fig. 2a). The largest observed commonality was 64, ob-
served for only 2 edges. Given that 67 cell clusters were analyzed,
no edges were found in every cluster. As a complement to the ob-
served edge commonality distribution, we also plotted the gene
commonality distribution, where gene commonality indicates
the number of cell clusters in which a given gene shared an edge
with at least one other gene. The gene commonality distribution
showed that most genes had one or more edges in the majority of

cell clusters, and 613 genes had at least one edge in all 67 cell
clusters (Fig. 2a). Thus, commonly expressed genes were fre-
quently coexpressed with other genes, though the specific coex-
pression partners vary among different cell clusters.

Recurrently coexpressed genes in multiple cell
clusters
The fact that no edges were found in all cell types suggest either
that a core cellular network does not exist or that perhaps our
method for detecting coexpression was unable to identify all
edges of a core network. To determine if our method uncovers
gene pairs that recurrently coexpress in multiple cell clusters, we
next asked to what extent the observed edge commonality distri-
bution differed from the null expectation, where gene coexpres-
sion occurs randomly among pairs of commonly expressed
genes. We evaluated this in 2 ways. First, we derived a mathe-
matical expectation for the probabilities of edge commonality us-
ing the binomial distribution (Methods). This calculation shows
that most gene pairs were expected to coexpress in only a few
cell clusters. For example, for a gene pair to be coexpressed in ex-
actly 2, 3, or 4 cell clusters, the probability values were 0.1970,
0.2247, or 0.1892, respectively, and the probability became
smaller than 0.0001 for cell cluster �14 (Methods). In a null model
based on random gene coexpression, the probability of any given
gene pair not being coexpressed in any of the 67 cell types is
0.0321. Thus, we would expect to find 2,108,888 unique gene pairs
to occur in one or more clusters, among the 2,088 commonly
expressed genes (Methods), a number larger than the observed
1,942,694 gene pairs. A full comparison of this analytically pre-
dicted distribution and the observed edge commonality showed
that the observed and null distributions agreed well at lower,
more cell-specific commonality. However, we observed a clear
excess of observed shared edges relative to the frequency
expected from a null distribution for those expressed in 7 or more
clusters (Supplementary Fig. 9). Second, we compared the devia-
tion between the observed edge commonality distribution and a

(a) (b) (c)

Fig. 1. Pipeline overview of cell cluster-specific gene coexpression network construction. The pipeline starts with a gene expression count matrix (a) and
computes a gene correlation matrix for each cell cluster using the bigScale2 algorithm (b, Iacono et al. 2019). Signal-to-noise ratios are used to evaluate
network robustness at different percentile thresholds for each absolute gene correlation matrix individually, out of which a global optimal threshold is
selected (c). Applying the selected threshold, gene correlation matrices are transformed into gene coexpression networks.
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null distribution sampled using network randomization

(Methods). This comparison showed that the observed distribution

was enriched for high commonality edges. For instance, none of

the randomizations generated an edge commonality larger than

36, while the observed distribution included hundreds of such

edges (Fig. 2b), further supporting our observation of excessively

common gene pairs. This pattern is also robust to the threshold

used in network construction (Supplementary Fig. 10). Relaxing

the coexpression threshold incorporated more edges in each cell

cluster network and led to edge commonality distributions that

more closely resembled random networks (Supplementary Fig.

10). These results therefore suggest that there exists a set of co-

varying genes that occur more repeatedly than expected by

chance across diverse cellular contexts, pointing to a core cellular

network composed of genes that are coexpressed across cell

types.

Rank aggregation analysis reveals a shared
cellular network with subthreshold edges
An ideal core network would consist of edges that appear in every

cell cluster. However, in practice, the identification of gene coex-

pression edges based on gene expression data involves the risk of

false positives and false negatives. In the datasets we analyzed,

no edges were present in every surveyed cell cluster. This could

be due to our parameter value choices, such as the correlation

matrix thresholding cutoff, or alternatively, these edges or gene

pairs could truly be cell cluster specific, and not coexpressed in

all cell clusters. We hypothesized that if a core network exists but

certain edges are missing as false negatives, these edge members

should be consistently highly ranked among the gene pairs in all

cell clusters, even if they are ranked below the significance

threshold in some cell clusters.

The rank aggregation analysis showed an enrichment of
highly ranked edges with increasing edge commonality scores, in-
dicating that edges in high commonality groups are consistently
highly ranked among the gene pairs across cell clusters, despite
being below the threshold cutoff in some cell clusters (Methods,
Fig. 2c). We assessed each edge commonality group by Fisher’s
combined P-values and found that for edge commonality >11,
edges were highly enriched among the top of all edges across the
remaining cell types (Methods, Fig. 2c). We therefore chose a con-
servative cutoff of Bonferroni-corrected P < 0.01, corresponding
to edge commonality �12, to select edges in a shared network.
This cutoff resulted in a shared network in the Drosophila brain
with 1,428 genes and 69,664 edges (Supplementary Table 1).

While we define the shared network based on edges found in
at least 12 cell clusters, it is possible that these edges are limited
to a subset of cell types, and so perhaps they may have more cell
specificity than we might expect for a hypothetical core network,
whose structure should be nearly the same regardless of cell
type. To explore this possibility, we clustered cell types based on
the rank of 100 randomly sampled edges from edge commonality
group 12 (Supplementary Fig. 11). This analysis revealed network
edges that were shared across cell clusters, as well as edges that
had some level of cell-type specificity, yet the majority of sam-
pled edges remained highly ranked among most cell types.

Topological, functional, and evolutionary
signatures of the brain shared cellular network
Having defined a shared cellular network in the fly brain, we next
examined its topological, functional, and evolutionary properties.
To evaluate the topological properties of the shared network, we
calculated its clustering coefficient and compared it to an ensem-
ble of coefficients from pseudo-shared networks each with the
same number of genes, edges, and degree distribution as the

(a) (b)

(c)

Fig. 2. Cell cluster-specific coexpression networks share many more edges than random networks. a) Edge and gene commonality distributions. The
commonality of an edge indicates the number of cell clusters in which that edge is detected (top). The commonality of a gene refers to the number of
cell clusters in which that gene is coexpressed with at least one gene (bottom). The y-axis shows the frequency of genes or edges in the corresponding
commonality score group. The numbers on top of each bar indicate the number of edges or genes in that commonality group. b) The observed edge
commonality distribution (yellow) compared with the null expectation derived from network randomization (gray). Network randomization was
performed 100 times for each cell cluster individually with network size (number of nodes and edges) and degree distribution (the number of
coexpressed gene partners per gene) fixed. c) Yellow points and violin plot shows the adjusted P-value distributions of 100 sampled edges in each edge
commonality group using a rank aggregation method. Edge commonality groups were selected to cover the full range of edge commonality scores. Each
point represents a sampled edge, with black points indicating median values. The black curve line shows the Bonferroni-corrected combined P-value
(Fisher’s method) above each commonality group, values corresponding to the right axis.
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observed one. A high-clustering coefficient indicates that nodes
of a network are densely connected to each other. The observed
clustering coefficient value, which has a range of 0–1, was 0.50,
much higher than the mean simulated value of 0.17 (range 0.16–
0.18, Supplementary Fig. 12), suggesting the shared network is
densely interconnected.

We next decomposed the shared network into distinct mod-
ules. In total, we identified 6 modules, each with at least 5 gene
members (Fig. 3; Supplementary Table 2). We then annotated
each module’s biological function through GO enrichment analy-
sis. The results revealed an array of housekeeping functions
enriched within different modules (Fig. 3b; Supplementary Table
3), including pathways associated with synaptic signaling, protein
targeting, ATP metabolism, translation, and proteostasis. The
largest module (module 3) contained 397 genes and was enriched
for ATP metabolic functions, which suggests highly coordinated
expression of genes involved in energy production. Module 5 con-
tained 225 genes and was enriched for ribosome-related func-
tions, such as cytoplasmic translation, suggesting tight
correlation of expression among genes encoding ribosomal pro-
teins across cells. We note that this analysis was limited to

mRNA, and so this module does not contain the stoichiometri-
cally synthesized rRNAs. Module 4 is the second largest module,
containing 323 genes associated with endosomal transport,
which mediates a large number of processes in neurons, such as
axonal pathfinding during development and synaptic plasticity
(Yap and Winckler 2012). Module 1 (237 genes) and Module 6 (6
genes) were related to neuronal functions, such as synaptic sig-
naling and neuroblast proliferation.

To characterize the evolutionary signature of each module, we
used phylostratigraphy, assigning each gene in each module to
one of 12 different evolutionary time periods (Domazet-Lo�so et al.
2017; Supplementary Table 4). Broadly speaking, different gene
modules show distinct gene age distributions and their constitu-
ent genes were enriched for different evolutionary origins
(Fig. 3c). Gene members of the ATP metabolic (module 3), ribo-
somal (module 5), and protein folding (module 6) modules were
enriched for genes with ancient origins, while synaptic signaling
(module 1), protein targeting (module 2), and endosomal trans-
port (module 4) were enriched for genes with recent evolutionary
time periods. While this analysis measures the age of the gene
members at the network nodes, rather than the age of network

(a) (c)

(b)

Fig. 3. Gene modules in the shared network identified from Davie et al. (2018) data. a) Heatmap of gene coexpression relationships and decomposed
modules in the defined shared cellular network (left) and network visualization of the shared modules (right). Modules that have at least 5 gene
members are highlighted in different colors and numerically indexed. b) Enriched GO terms for each shared module. We used the R package
“clusterProfiler” to perform gene set enrichment analysis of GO with a Bonferroni correction and an adjusted P-value cutoff of 0.05. In each module, the
top terms are shown (up to 6). c) Evolutionary signatures of gene modules. Rows show the age distribution of gene members of commonly expressed
genes (the first row) or gene modules. The size of each circle represents the proportion of genes in that evolutionary age group in the corresponding
module. Filled circles indicate significant enrichment of gene members in that age group at empirical P-value cutoff of 0.01 except for the first row,
where commonly expressed genes were used as a background. The significance of enrichment per age group for each module was accessed through
permutation. We randomly sampled an equal number of genes of one module from all commonly expressed genes and recorded the age distribution.
We performed 1,000 permutations for each gene module separately and calculated the empirical P-value for each age group as the proportion of
permutations that has a larger value than the observed one.
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edges, these diverse age signatures of different modules suggest
that some modules arose by integration of both young and old
genes, perhaps involving step-wise recruitment of young genes
into ancestral core modules.

A core network at the organism level
Of all Drosophila organs, the brain contains the greatest diversity
of cell types that are currently resolved by scRNA-seq (Li et al.
2022). Having identified a network that is shared across cells of
the Drosophila brain, we then extended our analysis across 3 inde-
pendent studies, one of the fly brain (Baker et al. 2021), one of
whole heads (H. Li et al. 2022), and lastly of cells from headless fly
bodies, which we refer to as the body (Li et al. 2022; Methods,
Supplementary Material, Section 2). Following the network con-
struction pipeline and shared network identification based on
rank aggregation analysis as above, we identified a network of
39,032 edges and 1,169 genes among 47 cell clusters in the brain
(Baker et al. 2021; Fig. 4a, Supplementary Table 5). In the analysis
of the entire fly head, among the 39 cell clusters, we identified a
network of 29,413 edges and 630 genes (Fig. 4a, Supplementary
Table 6), and for 31 cell clusters in the body, coexpression among
869 commonly expressed genes identified a core network in the
Drosophila body with 244 genes connected by 2,357 edges (Fig. 4a,
Supplementary Table 7; Supplementary Material, Section 2).

As in the analysis described at length for the first brain dataset,
each of the additional analyses had several common features. In
each, there were edges shared more broadly than expected by
chance, yet no network contained edges found in all cell types
(Supplementary Fig. 13). Moreover, the edges found in most cell
types ranked higher than expected by chance in the remaining cell
types (Supplementary Fig. 14). Together these results indicate that
a core network in all cells may exist, but that it must be detected
among many edges that have some level of cell specificity. Given
this caveat, we proceeded to look for a single core network shared
across cells of the fly by looking for genes and edges common to
all of these networks. We found 64 genes and 775 edges that inter-
sect the networks from all 4 analyses (Fig. 4b, Supplementary
Tables 8 and 9). The core genes were enriched in the cytoplasmic
translation biological process. In particular, 62 out of the 64 genes
in this intersecting network encode ribosomal proteins (Fig. 4c,
Supplementary Table 8). All core genes are also evolutionarily an-
cient, suggesting a core network shared across cells of the fly that
may have deep evolutionary roots (Fig. 4d).

Discussion
To what extent do all cells in an organism rely on a common core
of interacting genes? Would such a network be detectable among
the expression patterns of diverse cell types? To investigate these
questions, we examined cell-type-specific gene coexpression net-
works using single-cell transcriptome data. We describe an ap-
proach to find shared edges across cellular coexpression
networks, and we resolve a shared network among cells first in
the fly brain, and then extend this analysis across the whole fly.
The brain network is highly modular, composed of genes with a
range of evolutionary ages, and each module is enriched for cell
functions thought to be essential to all brain cells (Fig. 3). When
we apply this approach to an independent study of the brain, and
to an increasingly wider range of cell types sampled from the
adult fly head and from the body, we find structurally and func-
tionally similar networks in these 3 additional datasets. We then
identify a core network of 64 genes and 775 edges shared among
cells across the entire fly (Fig. 4). This core network is highly

enriched for genes encoding ribosomal proteins from the most
ancient gene age classes, suggesting that this ancient functional
group of genes maintains a pattern of coexpression across cells
of the fly. Notably, we failed to see enrichment for genes involved
in any other fundamental cellular process, such as transcription,
ATP production, or protein folding.

While the search for core networks is not new (Almaas et al.
2005; Neph et al. 2012; Skinnider et al. 2021), our study is distinct
in at least 3 ways from previous work. First, instead of relying on
constituent expression of individual genes to identify core func-
tions across cell types, we examined covariation between genes
in an attempt to more accurately reflect functional relationships
(Hughes et al. 2000). Along with a stricter criterion than gene ex-
pression level to infer gene function, this approach may also cap-
ture conserved gene regulatory networks (Segal et al. 2003; Stuart
et al. 2003; Yu et al. 2003). Second, many studies have relied on PPI
data to derive biological networks and find commonalities (Liu
et al. 2020; Huttlin et al. 2021; Skinnider et al. 2021). While these
studies are informative, they suffer from bias in PPI data, which
often lack information on the degree of cell specificity of interac-
tions, and are enriched for highly studied proteins (Gillis et al.
2014; Schaefer et al. 2015; Skinnider et al. 2018). In our study, we
analyzed transcriptome data, which cover almost all genes in the
fly genome and whose interactions are unbiased with respect to
prior knowledge or existing literature. Third, we identified co-
varying gene pairs using single-cell transcriptome data, which
unlike bulk transcriptome data, or broad-scale PPI data, can be
defined by cell type, even within a single biological sample. In
contrast to bulk transcriptomic analysis and PPI data, where the
cellular specificity of each interaction is largely ambiguous,
single-cell transcriptomics enabled us to build cell-type-specific
networks at a resolution that was previously impossible.

Topological, functional, and evolutionary
properties of shared networks
With our current parameter choices, the core network we esti-
mate is small when compared to the much larger network of cell-
specific interactions. For example, in the head dataset of Li et al.
(2022), there were 842 genes expressed in all cell types, and
17,703 edges (the top 5%) among these genes in each cell type.
We found that only 775 (4.4%) of these 17,703 edges occurred in
the core network. This relative size is similar to that of core bio-
logical networks from different endophenotypic domains. For ex-
ample, Skinnider et al. (2021) constructed tissue-specific PPI
networks for 7 mouse tissues and found that universal PPIs
shared by all tissues typically occupy less than 4% of the total
number of PPIs in a tissue (Skinnider et al. 2021). Neph et al. (2012)
built TF interaction networks for 41 cell types in humans and
found that 5% of interacting TFs were common to all cell types
(Neph et al. 2012). Almaas et al. (2005) used flux-balance analysis
to study active metabolic reactions of Escherichia coli in 30,000 di-
verse simulated environments and predicted that 90 of 758
(11.9%) reactions were always active (Almaas et al. 2005).

It is likely that factors not examined here also contribute to
the size and structure of a core network. A core network may dif-
fer by sex, genotype, age, and so forth. For example, one recent
study using bulk RNA-seq data to examine gene coexpression
network dynamics with age in bats identified a small core net-
work whose size decreases with age (Bernard et al. 2022). In our
own analysis, we built sex-specific networks and, even though
we only analyzed cell types found in both sexes, the shared net-
work is unevenly represented in the 2 sexes, with females show-
ing a stronger enrichment of shared edges than males in the
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body network (Supplementary Fig. 14). We suspect that cell-type-
specific gene coexpression may be more pronounced in male
flies, rendering edges not as highly ranked as those in females. In
contrast to the body, the representation of edges in the shared
network in fly brains is less sex-specific (Supplementary Figs. 11
and 14a), consistent with previous studies reporting the fly brain
transcriptome to have low sexual dimorphism relative to other
organs (Ingleby et al. 2014; Huylmans and Parsch 2015).

Another prominent feature of shared networks is their dense
connectivity, with clustering coefficients greatly exceeding those of
randomized networks (Supplementary Fig. 12). This gene network
architecture, which has extensive cell-type-specific interactions
along with a densely connected core, echoes findings from other
types of biological networks. For example, Liu et al. (2020) identified
13,764 PPIs in yeast across 9 environments and found that 60% of
PPIs were found in only 1 environment (Liu et al. 2020). They also
showed that PPIs that were present in 8 or more environments
formed “tight” modules of high node degree, while PPIs present in 3

or fewer environments formed less-connected modules of smaller
node degree. Similarly, PPI networks based on just 2 human cell
lines revealed that shared interactions tend to reside in dense sub-
networks and correspond to known protein complexes such as the
exosome and the COP9 signalosome (Huttlin et al. 2021). Also, net-
work analyses of gene coexpression from bulk transcriptomics in
Arabidopsis or in humans suggest a highly connected core, which
appears alongside an extensive number of condition-specific gene
interactions (Lee et al. 2004; He and Maslov 2016). Taken together,
these results support a universal organizing principle in biological
systems, where widely shared components of interaction networks
are relatively small and densely connected (Milo et al. 2002, 2004;
Csermely et al. 2013).

We anticipated that a core network would reflect several fun-
damental cellular processes such as transcription, protein syn-
thesis, and energy production (Eisen et al. 1998; Lee et al. 2004,
2020). The core network we identify across the whole fly, how-
ever, is composed primarily of genes encoding ribosomal

(a) (b)

(c)

(d)

Fig. 4. A shared core network across 4 datasets. a) Adjusted P-value distributions of 100 sampled edges in different edge commonality groups using a
rank aggregation method for each data set. Edge commonality groups were selected to cover the full range of edge commonality scores. Each violin plot
illustrates the distribution of adjusted P-values for the sampled edges for each edge commonality group. Each dot represents an edge, with black dots
indicating median values. The black curve line shows the Bonferroni corrected P-value combining all adjusted P-values of one edge commonality group
with the Fisher’s method. Using Bonferroni corrected P-value cutoff at 0.01, shared networks were identified for each data set and visualized. Each
shared network was plotted as 2 components, with the right-side smaller component illustrating the shared core network among all 4 shared networks.
b) The intersections between the 4 identified shared networks. The number on top of each bar indicates the number of edges. c) Enriched GO terms for
the 64 genes in the shared core. d) Evolutionary signatures of genes in the shared core.

M. Yang et al. | 9

academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac212#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac212#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac212#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac212#supplementary-data


proteins. Initial analysis of the network shared across the brain
suggested that several cellular processes may be shared more
universally, such as protein folding and ATP metabolism. One
reason for their appearance in the brain network and not across
the whole body might be the specific profiling techniques
employed, as the fly brain data were generated using scRNA-seq
profiling and the body data were generated using single nuclear
RNA-seq. Data from captured cells rather than nuclei may be bi-
ased toward respiratory- and metabolic-related transcripts due
to the accumulation of mitochondrial and other cellular meta-
bolic transcripts in the cytosol (Lake et al. 2017). We note that we
removed all mitochondrial transcripts during data quality control
to avoid this bias. Of course, the ATP metabolic module in the fly
brain and head network might simply be explained by cellular ac-
tivity, as the brain is among the most energy-consuming of
organs (Raichle and Gusnard 2002). This explanation seems
likely, as other modules in the brain network were enriched for
synaptic function and neuronal cell proliferation, a clear indica-
tion that some of this network was likely brain-specific.
Interestingly, the core network that we estimated after incorpo-
rating shared networks from cells across the fly also lacked mod-
ules enriched for other canonical housekeeping functions, such
as transcription and the proteasome, which were detected in pre-
vious network analyses of bulk data (Stuart et al. 2003; He and
Maslov 2016; Lee et al. 2020). This difference may be due to the
ambiguous nature of bulk RNA data and highlights the potential
for single-cell analysis to reveal more detailed networks (Dvinge
et al. 2019; Iacono et al. 2019).

Together, these results support 2 alternative scenarios that re-
late coexpression networks and essential cell functions. First, we
could posit that there is a core network in all cells and that this
core involves at least some portion of essential cell functions. In
the second scenario, there is no core network shared across all
cells, even among genes involved in functions that each cell must
perform (Fig. 5). Either scenario is entirely consistent with our
observations. We note that a true core network would be very dif-
ficult to observe given the extensive cell-type-specific gene pairs
on one hand, and the noise inherent in transcriptional data on
the other. While a core coexpression network shows a modest
organismal-wide signal, is small in size, and covers a limited set
of cellular functions, we do not know how these features com-
pare to core networks at other layers of biological organization,
such as the proteome or metabolome (Barabási and Oltvai 2004;
Proulx et al. 2005; Fraser et al. 2013).

Limitations and future directions
In this study, we sought a core of interacting genes found across cells
in the fly. While the work described here benefits from access to
high-quality single-cell transcriptome data, there are still several cav-
eats worth noting. Firstly, data sparsity is a common analytical chal-
lenge for scRNA-seq data, and little consensus has been reached on
how to handle it (Lähnemann et al. 2020). The proportion of missing
data in bulk RNA-seq data has been estimated at 10–40%, while in
scRNA-seq data it can be as high as 90% (Jiang et al. 2022). Such spar-
sity may occur both for technical reasons, such as low efficiency in
capturing the single-cell transcriptome during library preparation,
and for biological reasons, such as the stochastic nature of gene ex-
pression (Sarkar and Stephens 2021). Our analysis shows that the
stochasticity and sparsity inherent in single-cell analysis must be
handled in order to identify commonality among cells
(Supplementary Figs. 2, 4, and 5). To handle sparsity in this study, we
excluded cell types with few expressed genes and genes with low lev-
els of detectable expression, and we used both a pseudocell approach

and a signal-to-noise analysis to identify cell types and coexpression
thresholds for network construction (Supplementary Fig. 5).
Secondly, we also found that a commonly employed thresholding
approach has clear shortcomings. After finding clear indications of
gene pairs that were shared more widely than expected by chance,
but which were not universal, we used a rank-aggregation method
among subthreshold edges and found that a substantial number of
edges appear to be conserved among the remaining subthreshold
edges. Simply lowering the threshold, however, returned networks
that were no different from random networks (Supplementary Fig.
10). All of these issues suggest that perhaps a probabilistic frame-
work for identifying gene coexpression, rather than a binary thresh-
old criterion, may yield new insight into core functions. Thirdly,
while aiming to reveal a network shared across cells of an individual,
data analyzed here were collected at different ages, in different labs,
across technical platforms, and sometimes across genotypes and
sexes. These data therefore differ in ways beyond cell type. Future
studies targeting individual genotypes and/or specific age groups
might uncover a more dynamic picture of how core networks vary by
condition. Lastly, we inferred coexpressed gene pairs from gene ex-
pression data statistically. Gene coexpression is not always equiva-
lent to gene coregulation nor to shared function, and so further
experimental work is needed to validate the functional implications
of these gene pairs.

We focus on identifying gene pairs common to all cells.
However, insights into essential functions and gene coexpression
can also be gleaned from gene pairs that are preserved across
species. Comparative analysis of coexpression has detected edges
or functional categories that are enriched among coexpressed
genes across species, presumably due to evolutionary conserva-
tion (Stuart et al. 2003; Lee et al. 2004; Feregrino and Tschopp
2021; Tanay and Sebé-Pedrós 2021; Crow et al. 2022). Given that
multicellularity arose multiple times in eukaryotes (Parfrey and
Lahr 2013), a mapping of core networks across species might help
delineate how ancestral cellular modules evolve as species diver-
sify (Arendt et al. 2016). In these analyses, however, a gene pair
need not be coexpressed in every cell, tissue, or even in every

Fig. 5. The 2 scenarios describe the extent of network sharing across
cells. In this cartoon, the nodes and edges inside each cell indicate
commonly expressed genes and their coexpression, respectively. In
Scenario 1, there is a core network in all cells, highlighted by red nodes
and edges, which may be responsible for essential cell functions and
contrasts with the many conditional or cell-specific edges shown in
grayscale. In Scenario 2, there is no core network shared across all cells,
however, there are network edges (in red) that may be shared broadly
enough to be detected in our analysis.

10 | G3, 2022, Vol. 12, No. 10

academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac212#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac212#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac212#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac212#supplementary-data


sample to be detected. Thus, work to identify conserved gene

pairs across species is complementary, but not as directly appli-

cable to our aim of identifying gene pairs conserved among cells.

One implication of our work is that core networks, even within a

species, could be quite small and indeed may not be detectable.

Identifying core networks across species therefore may require

significant methodological advances.
Although current single-cell techniques yield data with high lev-

els of sparsity, somewhat ambiguous cell-type resolution, and other

challenges, we anticipate that similar and more complete data are

on the horizon. We expect that more comprehensive knowledge of

gene expression in all cells may reveal that a core coexpression net-

work, shared by all cells under all conditions, may be very limited

in size, perhaps even nonexistent. This possibility does not rule out

the idea that all cells share common functions that are required for

cell survival, but that these functions are not always dependent on

gene coexpression, or that the coexpression within such a network

is weak relative to the many conditional coexpression relationships

that occupy cellular networks.
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