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Abstract

Background: Vaccines are one of the most important public health successes in last century. Besides
effectiveness in reducing the morbidity and mortality from many infectious diseases, a successful vaccine
program also requires a rigorous assessment on their safety. Due to the limitations of adverse event (AE) data
from clinical trials and post-approval surveillance systems, novel computational approaches are needed to
organize, visualize, and analyze such high-dimensional complex data.

Results: In this paper, we proposed a network-based approach to investigate the vaccine-AE association network from
the Vaccine AE Reporting System (VAERS) data. Statistical summary was calculated using the VAERS raw data and
represented in the Resource Description Framework (RDF). The RDF graph was leveraged for network analysis.
Specifically, we compared network properties of (1) vaccine - adverse event association network based on reports
collected over a 23 year period as well as each year; and (2) sex-specific vaccine-adverse event association network. We
observed that (1) network diameter and average path length don’t change dramatically over a 23-year period, while
the average node degree of these networks changes due to the different number of reports during different periods of
time; (2) vaccine - adverse event associations derived from different sexes show sex-associated patterns in sex-specific
vaccine-AE association networks.

Conclusions: We have developed a network-based approach to investigate the vaccine-AE association network from
the VAERS data. To our knowledge, this is the first time that a network-based approach was used to identify sex-specific
association patterns in a spontaneous reporting system database. Due to unique limitations of such passive surveillance
systems, our proposed network-based approaches have the potential to summarize and analyze the associations in
passive surveillance systems by (1) identifying nodes of importance, irrespective of whether they are disproportionally
reported; (2) providing guidance on sex-specific recommendations in personalized vaccinology.

Background
Vaccines are one of the most cost-effective public health
interventions to date, leading to at least 95–99 % de-
crease of most vaccine-preventable diseases in the
United States [1]. While their benefits far overweigh
their risks and costs, vaccines are accompanied with
specific adverse events (AEs). Assessment of vaccine
safety usually starts at the pre-approval stage, when in-
formation about AEs is collected during Phase I-IV of

clinical trials. However, there are several limitations of
such information. First, clinical trials usually have small
sample sizes which are insufficient to detect rare AEs. Sec-
ond, clinical trials are usually carried out in well-defined,
homogeneous populations within relatively short follow-
up periods, which may limit the generalizability of their ef-
fect in all populations. Therefore, the complete safety pro-
files associated with a vaccine cannot be fully established
only through clinical trials. Post-approval surveillance of
vaccine AEs is needed to assess the vaccine safety
throughout its life on the market.
The Vaccine AE Reporting System (VAERS) is a pas-

sive surveillance system to monitor vaccine safety after
the administration of vaccines licensed in the United
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States [2]. The VAERS is co-managed by the United
States Food and Drug Administration (FDA) and the
Centers for Disease Control and Prevention (CDC). By
the end of 2013, the VAERS contains more than 200,000
reports in total, including 72 vaccine types and 7368
reported symptoms/AEs. However, there are several
limitations we need consider in the analyses of spontan-
eous reporting systems such as VAERS, including lack
of verification of reported diagnoses, lack of consistent
diagnostic criteria for all cases with a given diagnosis,
wide range of data quality, underreporting, inadequate
denominator data, and absence of an unvaccinated con-
trol group [3]. To address some of these limitations,
various data mining approaches have been developed to
identify potential signals in the data [4]. Most of these
approaches focus on disproportionality of reporting,
which aims to identify conditions that comprise a larger
proportion of reported events for a given vaccine, com-
pared to other vaccines in the same reporting system
[3]. However, such disproportionality methods still have
difficulties to identify potential vaccine-AE associations
due to the limitations of VAERS data. In Bate et al. 2009
[5], the authors suggested that a single drug-AE should
be analyzed in the context of all drug-AE associations.
Harpez et al. proposed a clustering approach to identify
drug groups that were reported to have same AEs [6].
However, this approach didn’t account for all co-
administered drugs and co-occurring AEs. Since VAERS
receives more than 14,000 reports every year, there is a
pressing need to develop novel approaches to organize
these high-dimensional VAERS data and identify poten-
tial vaccine-AE associations.
In recent years, network analysis emerges as a very

promising approach for simultaneous representation of
complex high dimensional data. Specifically, these
network-based computational approaches gained popular-
ity and have become a new paradigm to investigate associ-
ations among biological entities (e.g., drugs, diseases, and
genes). Applications of these approaches include drug
repositioning [7, 8], disease gene prioritization [9–11],
and identification of disease relationships [12, 13].
These network analysis approaches are usually devel-
oped based on the observations from real-world net-
works. First, most real-world networks (e.g., WWW
network, protein-protein interaction network, and so-
cial network) are not randomly organized but are
driven by preferential attachment and growth (e.g.,
some nodes have more connections than others). Such
networks are called “Scale-free” networks. In the
“scale-free” network, the most highly connected nodes
are called “hub’ nodes. Second, most real world net-
works are modular, comprised of small, densely con-
nected groups of nodes. Network analysis metrics and
algorithms have been designed to identify network hub

nodes and modules in a scale-free network. Ball and Botsis
proposed a network-based approach to aid visualization of
patterns in VAERS data that a medical expert might
recognize as clinically important [14]. In our previous
work, we developed a network analysis approach to den-
tify vaccine-related networks and their underlying struc-
tural information from PubMed literature abstracts, which
were consistent with that captured by the Vaccine Ontol-
ogy (VO) [15]. The modular structure and hub nodes of
these vaccine networks reveal important unidentified
knowledge critical to biomedical research and public
health and to generate testable hypotheses for future
experimental verification.
In this paper, we proposed a network-based approach

to investigate the vaccine-AE association network from
VAERS data. First, we extracted and represented data
summarized from VAERS database using Resource
Description Framework (RDF). We calculated overall
proportional reporting ratio (PRR), yearly PRR and sex-
specific PRR for each vaccine-AE association in the
VAERS. We then applied a series of network approaches
to the network consisting of significant vaccine-AE asso-
ciations (i.e., PRR > 1). Specifically, we compared network
properties of (1) vaccine-AE association network based on
reports collected over a 23 year period as well as each year;
(2) sex-specific vaccine-AE association network. We ob-
served that (1) network diameter and average path
length don’t change dramatically over a 23-year period,
while the average node degree of these networks
changes due to the different number of reports during
different period of time; (2) vaccine-AE associations de-
rived from different sexes show sex-associated patterns
in sex-specific vaccine-AE association networks.
The rest of the paper is organized as follows. In

Section Materials and methods, we introduce our meth-
odology on data collection, summarization, representa-
tion, and analysis. In Section Results, we present the
result of our study. In Section Discussions, we discuss
the potential scientific contributions of this study. In
Section Conclusions and future work, we conclude the
paper and discuss future directions.

Materials and methods
In this section, we first describe the data resources and
preprocessing method in this work. We then introduce
our proposed network-based approach for investigating
vaccine-related associations derived from VAERS. Figure 1
illustrates the steps of the proposed approach.

VAERS database
We downloaded raw data from the VAERS system in
comma-separated value (CSV) format (https://vaers.hhs.-
gov/data/data). All the data from 1990–2013 was loaded
to a mySQL relational database for further processing.
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The VAERS database contains three tables: Data, Data
sources and preprocessing Symptom, and Vaccine. The
Data table contains general information about each report
including VAERS report ID, date the report was received,
the state patient was in, age and sex of the patient, and de-
tailed description of the symptom (e.g., if the symptom
was life threatening, if the patient in the report died and
if-so the date of death, if the patient ever attend the ER for
treatment, and if so, how many days was the patient ad-
ministered at the hospital.). The Symptom table contains
a list of symptom terms (MedDRA terms) involved in
the report. Completed information about one report
can be jointed from the three tables using VAERS ID.
The Vaccine table includes information about the vac-
cine administered to the patient such as vaccine manu-
facturer, type of vaccine, dosage of the vaccine,
vaccination route, vaccination site, and vaccination
name.

Statistical summary of VAERS data
As we discussed above, the VAERS is a spontaneous
reporting system which contains unverified reports with

inconsistent data quality. Symptoms reported occurring
after vaccination do not necessarily indicate a causality
association with the vaccine. Therefore, we used statis-
tical methods to summarize meta-level features of
vaccine-symptom pairs. For each vaccine-symptom pair,
we calculated the following features (1) the number of
reports that contains the pair; (2) the number of reports
that contains the pair each year; (3) the demographic
distribution among the reports that contain the pair
(total and yearly) grouped by gender and age groups;
and (4) overall proportional reporting ratio (PRR) and
yearly PRRs [16]. A PRR is the ratio between the
frequency with which a specific symptom (e.g., AE)
occurs for a vaccine of interest (relative to all symptoms
reported for the vaccine) and the frequency with which
the same symptom occurs for all vaccines reported to
the VAERS (relative to all symptoms for all vaccines
reported to VAERS) [3]. A PRR greater than 1 suggests
that the post-vaccination symptom (AE) is more
commonly observed for individuals administrated with
the particular vaccine, relative to all other vaccines
reported to the VAERS.

Fig. 1 Overview of the proposed study. VAERS: Vaccine AE Reporting System; RDF: Resource Description Framework; VAE: Vaccine-AE; PRR: Proportional
Reporting Ratio
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The overall PRR ratio of a vaccine (V) and a symptom
(S) association was calculated by (Numreports for V that con-

tainsS/Numall thereports for V)/(Numtotalreports that con-

tains S/Numtotal reports in VAERS).
The yearly PRR ratio of a vaccine (V) and a symp-

tom (S) association in Year (Y) was calculated by
(Numreports for V that contains Sin year Y/Numall the re-

ports for V in Year Y)/(Numtotalreports that con-

tains S in Year Y/Numtotalreports in VAERS in Year Y).
The sex-specific PRR ratio or a vaccine (V) and a symp-

tom (S) association in Gender (G) was calculated by
(Numreports for V that contains S forpatient with G/Numall there-

ports for V for patient with G)/(Numtotalreports that contains S for pa-

tient with G/Numtotalreports in VAERS for patient with G).

RDF conversion
The statistical summary introduced in the previous sec-
tion was stored in a relational database and converted to
the Resource Description Framework (RDF) format. We
have introduced detailed information about how to
represent vaccine symptom pairs with meta-information
in RDF and our vision on linking heterogeneous
vaccine-related data sets using linked data approach in
our previous work [17].
Figure 2 shows the meta-level RDF graph representation

of a vaccine symptom association. Each unique association
(vaccine-symptom pair) has an unique identifier. The cor-
responding vaccine, symptom, demographic distribution,
and PRR values are also represented in RDF. SPARQL

queries can be conducted to retrieve useful information
for network analysis which we will introduce in the next
section.

Network analysis
The analysis of network properties was performed using
the “Network Analyzer” plugin in Cytoscape [18]. Cytos-
cape is an open-source platform for integration,
visualization, and analysis of biological networks. Its
functionalities can be extended through Cytoscape plu-
gins. Scientists from different research fields have con-
tributed more than 160 useful plugins so far. These
comprehensive features allow us to perform thorough
network-level analyses, visualization of our association
tables, and integration with other biological networks in
the future. In this study, the average node degree,
average path length, and network diameter of one
network was calculated.
The vaccine-AE association network is a bipartite

network, which consists of interactions between two
different types of nodes (X-type and Y-type), with
edges connecting only nodes of different types. To cal-
culate the similarity of one type of nodes (e.g., X-type
nodes) based on their interactions with another type of
nodes (e.g., Y-type nodes), the Pearson correlation co-
efficient (PCC) was employed as an association index.
We assume that node A and B are X-type nodes, and
the PCC between node A and B is calculated by

Fig. 2 Sample RDF graph representation of vaccine AE association
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where A and B are nodes of same type, N(A) and N(B)
are their total number of interactions with A and B,
N(A)∩N(B) is the total number of Y-type nodes that
interact with both A and B, and ny is the total the total
number of Y-type nodes in the network. A PCC of 1
indicates a perfect overlap, 0 corresponds to the number
of shared interactors expected by chance and −1 depicts
perfect anti-correlation.
The hierarchical clustering analysis is used to identify

the similarities among vaccines using their association in-
dexes. Both the heatmap of the dendrogram are used to
visualize the clustering results. The clustering analysis and
visualization of vaccine-AE association network was per-
formed using the GAIN tool [19].

Results
Overview of the results
Overall, we extracted 2,346,367 vaccine-AE associations
from the VAERS system, with 83,148 distinct associations.
We defined that a vaccine-AE association is significant if
PRR for this association is greater than 1. Among all
vaccine-AE associations reported in the VAERS, we identi-
fied 277,698 vaccine-AE associations, 53,795 of which
have overall PRR greater than 1 between 1990 and 2013.
We also investigated yearly PRRs of these associations.
For one specific year, we define that a vaccine-AE associ-
ation is significant if the yearly PRR is greater than 1.
Table 1 presents the numbers of significant associations
for each year (Nlink Column).
Based on the significant yearly or overall associa-

tions, we further investigated these association net-
works using different network properties. Table 1
presents the general characteristics of the overall associ-
ation network as well as yearly-significant association net-
works, including average node degree, average path length
and network diameter. This demonstrates that vaccine-AE
network is dense network, with any given node connected
to all other nodes through an average of approximately
two other nodes and a maximum of 5–6 nodes. It is ex-
plained partly by that many vaccines are co-administered.
However, given that there are more AEs than vaccines in
the network, it is plausible that many AEs were reported
together. Another interesting observation was that across
23 years, the average path length and network diameter
for yearly vaccine-AE association networks don’t change
dramatically. It indicated that in most cases, it is relatively
common that two vaccines sharing one AE or two AEs as-
sociate with one vaccine in the network. On the other

hand, the average node degree of these networks changes
over time, partly due to the increasing number of reports
received from 1990 to 2013 (Table 1). All the network
information in Table 1 were presented in Additional file 1.

Different AE association patterns in different genders
We further investigated whether vaccine-AE associations
are different between genders. We constructed sex-specific
vaccine-AE association networks by computing the PRR
based on reports only from female/male populations. There
are 49,616 and 51,578 significant vaccine-AE associations
(i.e., PRR > 1) in female and male populations, respectively.
The network properties of these two sex-specific associ-
ation networks are similar with overall association network
(Table 1). We clustered the vaccines based on their associ-
ation indexes calculated by their associations with AEs. In
Fig. 3a and b, we observed different similarity patterns in
female (Fig. 3a and male (Fig. 3b). For instance,

Table 1 General characteristics of the networks

Nnode Nlink Average
degree

Average path
length

Network
diameter

1990 342 990 5.79 3.05 7

1991 634 2,756 8.69 2.69 5

1992 553 2,275 8.23 2.58 5

1993 517 2,263 8.75 2.45 5

1994 549 2,487 9.06 2.46 5

1995 637 3,080 9.67 2.54 6

1996 628 3,028 9.64 2.54 5

1997 660 3,270 9.91 2.51 5

1998 793 3,989 10.06 2.54 5

1999 1,047 5,245 10.21 2.67 5

2000 1,065 5,708 10.72 2.59 5

2001 906 4,904 10.83 2.53 5

2002 987 5,289 10.72 2.58 5

2003 1,430 8,197 11.46 2,52 5

2004 1,160 6,491 11.19 2.62 5

2005 1,315 7,290 11.08 2.66 6

2006 1,978 12,128 12.26 2.66 5

2007 3,103 20,214 13.03 2.59 5

2008 3,045 20,196 13.27 2.58 6

2009 3,351 22,054 13.16 2.57 5

2010 2,639 18,041 13.67 2.62 5

2011 2,142 13,533 12.64 2.69 5

2012 1,943 12,292 12.65 2.72 5

2013 826 4,886 11.83 2.72 5

Female 4,947 49,616 20.14 2.35 5

Male 4,519 51,578 22.83 2.35 5

Overall 5,938 53,742 18.10 2.48 5

Zhang et al. Journal of Biomedical Semantics  (2015) 6:33 Page 5 of 8



HBHEPB, ROTH1, PNC13, DTAP IPVHIB, PNC,
ROTHB5, DTAPHEPBIP, HIBV, DTAP, and IPV were
clustered together based on their associations with adverse
events in the female population. Besides most of the vac-
cines that were grouped in the female population, we also
found four more vaccines in the same group in the male
population, including PNC, HEP, VARCEL, and MMR.
Similarly, while DIPHIB, DTP, and OPV were tightly clus-
tered in the male population, RV was also grouped in this
cluster in the female population. The dendrograms
indicate the same differences between two populations
(Fig. 3c and d). These results indicate that there are indeed
sex-specific reponse differences after vaccine injection.
We also compared whether pairs of vaccines with similar

association profiles in female-specific association network

are also similar in male-specific network. In Fig. 4, the dis-
tributions of PCC indexes are different in two populations,
indicating that there are some sex-specific associations in
both populations, although majority of association relation-
ships can be identified in both populations. Specifically,
there were more vaccine pairs showing high similairties in
the male population than in the female population. The
underlying mechanisms need further investigation using
other types of biological data, such as genomic, metablo-
mic, and proteomic level measurement data.

Discussions
Most vaccine-preventable diseases have declined in the
United States by at least 95–99 % [20, 21]. However, vac-
cines are pharmaceutical products that carry risks.

Fig. 3 Comparison of vaccine similarity in different sexes. a Hierarchical analysis of vaccines based on association information in female
reports; b Hierarchical analysis of vaccines based on association information in male reports; c Dendrogram of vaccine similarity in female
reports; d Dendrogram of vaccine similarity in male reports
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Certain biomarkers or individual variations could impli-
cate different vaccine responses, which are essential for
precision medicine. Identifying these associations is
critical to vaccine safety, which reassures public accept-
ance of vaccines. One way to address this question is the
post-approval surveillance of vaccine AEs. For instance,
the VAERS is a passive surveillance system to monitor
vaccine safety after the administration of vaccines
licensed in the United States [2]. Such surveillance data
can complement the original safety evaluation data
generated from the clinical trial phases and provide
more comprehensive safety assessment in a much larger
population. We are one of the first research groups that
investigates sex-specific vaccine-AE association patterns
by integrating traditional statistical signal detection and
network analysis approaches. Our findings indicated that
saftety signals present different patterns in female and
male population. This is consistent with previous studies

in the vaccine community [22, 23]. With high-
throughput technology advances such as next generation
sequencing, transcriptomics, epigenetics, proteomics, and
new computational approaches to interpreting big data,
we expect a better understanding of associations and
mechanisms of vaccine AEs and immunogenicity. Net-
work analysis approaches is one of the promising
stratetigies to integrate such heterogeneous “big data”,
leading to a more personalized or individual approach to
vaccine practice in the near future.

Conclusions and future work
In this paper, we proposed a network-based approach
to investigate the vaccine-AE association network from
VAERS. The results indicated that (1) network diameter
and average path length of vaccine-AE association
networks don’t change dramatically over a 23-year
period, while the average node degree of these networks

Fig. 4 Density plot of PCC association indexes in female vs male populations (red: female; blue: male)
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changes due to the different number of reports during
different period of time; (2) vaccine-AE associations
derived from different genders show sex-associated
patterns in sex-specific vaccine-AE association net-
works. To our knowledge, this is the first time that a
network-based approach has been used to identify sex-
specific association patterns in a spontaneous reporting
system database. Due to unique limitations of such pas-
sive surveillance systems, network-based approaches
have the potential to (1) identify nodes of importance,
irrespective of whether they are disproportionally
reported; (2) provide guidance on sex-specific recom-
mendations in personalized vaccinology.
Extensions of this work include: (1) integration of

other spontaneous reporting system databases (e.g., the
European Adverse events following immunization
(AEFI) system) to construct more complete vaccine-
AE association networks; (2) incorporation of other
complementary public databases such as Semantic
MEDLINE [24]; (3) development of advanced network-
based approaches taking the PRR values into account;
(4) investigation of other types of data mining methods
to assess the significance of vaccine-AE associations;
(5) focused investigation of examples based on the net-
work parameters; and (6) identification of sex-specific
subnetwork patterns of AE correlation networks.

Additional file

Additional file 1: Network file containing all the networks
presented in Table 1. (CYS 13422 kb)
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