

Supplementary information, Fig. S1 HSPA8 inhibits necroptosis.

a List of the top genes from the siRNA screening (as described in Fig. 1a). These top hits were further reconfirmed by shRNA knockdown assay in L929 cells.

b Reintroducing the siRNA-resistant HSPA8 expression in HSPA8-knocked-down L929 cells rescued the necroptosis-inhibitory role of HSPA8. The siRNA-resistant mouse HSPA8 cDNAs were delivered into the L929 cells by lentivirus infection. Then the cells were transfected with the corresponding siHSPA8 oligos. Thirty-six hours later, necroptosis was induced by treating cells with T/Z for 3 hours. Cell viability was determined by measuring intracellular ATP levels. The data are represented as the mean ± SD of duplicate wells. The HSPA8 knockdown and rescue efficiencies were tested by immunoblotting (right panel).

c The necroptosis-inhibitory score of the heat shock protein family genes. The necroptosis-inhibitory score= (ATP level of MLKL-KO L929)/(ATP level of L929)-100%.

d Knocking out TNFR1 did not block siHSPA8-induced necroptosis in L929 cells. Cells were transfected with indicated siRNA oligos. Seventy-two hours later, spontaneous necroptosis was measured by ATP level. Cell viability was determined by measuring intracellular ATP levels as described in Methods. The data are represented as the mean \pm SD of duplicate wells.

e Overexpression of HSPA8 inhibited necroptosis. The cDNAs encoding Flag-tagged HSPA8 were introduced into L929 cells through lentiviral infection. Necroptosis was induced by treating the cells with T/Z for the specified durations. Cell viability was determined by measuring intracellular ATP levels. The data are represented as the mean \pm SD of duplicate wells.

f Knocking down HSPA8 promoted necroptotic cytolysis. The expression of Flag-tagged RIP3 was induced by adding 0.4 μ g/ml doxycycline (dox) for 12 hours. Then the RIP3-expressing HeLa cells (HeLa-RIP3) were transfected with indicated siRNAs. Thirty-six hours later, necroptosis was induced by T/S/Z for 10 hours. Plasma membrane breakdown was traced with SYTOX Green (100 nM) staining. Scale bar: 200 μ m. Necroptosis inducer T/S/Z: T, TNF- α (20 ng/ml); S, Smac mimetic (100 nM); Z, z-VAD (20 μ M). Necroptosis inhibitor, NSA: Necrosulfonamide (1 μ M).

g Quantification of the cytolytic (necroptotic) HeLa-RIP3 cells as shown in **f** by IncuCyte. The data are represented as the mean \pm SD of triplicate SYTOX Green+ lytic cell numbers from three different views for each condition.

h Reintroducing the siRNA-resistant HSPA8 expression in HSPA8-knocked-down HeLa-RIP3 cells rescued the necroptosis-inhibitory role of HSPA8. The siRNA-resistant human HSPA8 cDNAs were delivered into the HeLa-RIP3 cells by lentivirus infection. Then cells were transfected with the corresponding siHSPA8 oligos. Thirty-six hours later, necroptosis was induced by treating cells with T/S/Z for 10 hours. Cell viability was determined by measuring intracellular ATP levels as described in Methods. The data are represented as the mean \pm SD of duplicate wells. The HSPA8 knockdown and rescue efficiencies were tested by immunoblotting (bottom panel).

i HSPA8 inhibited either TNF- or TRAIL-induced necroptosis. Necroptosis was induced in HeLa-RIP3 cells by treating cells with T/S/Z or TRAIL/S/Z. The siHSPA8-enhanced necroptosis was blocked by treating cells with MLKL inhibitor NSA or knocking down MLKL expression. Cell viability was determined by measuring intracellular ATP levels. Necroptosis inducer TRAIL/S/Z: TRAIL (50 ng/mL); S, Smac mimetic (100 nM); Z, z-VAD (20 μ M). The data are represented as the mean \pm SD of duplicate wells. The HSPA8 and MLKL knockdown efficiencies were tested by immunoblotting (bottom panel).

p values were determined by unpaired two-tailed Student's t-test with Welch's correction. **p < 0.01; ***p < 0.005. All results are reported from one representative experiment from at least three independent repeats.