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Abstract

Background: Reduced hospital admission rates for heart failure (HF) and evidence of

increased in‐hospital mortality were reported during the COVID‐19 pandemic. The

aim of this study was to apply a machine learning (ML)‐based mortality prediction

model to examine whether the latter is attributable to differing case mixes and

exceeds expected mortality rates.

Methods and Results: Inpatient cases with a primary discharge diagnosis of HF non‐

electively admitted to 86 German Helios hospitals between 01/01/2016 and 08/31/

2020 were identified. Patients with proven or suspected SARS‐CoV‐2 infection were

excluded. ML‐based models were developed, tuned, and tested using cases of

2016–2018 (n = 64,440; randomly split 75%/25%). Extreme gradient boosting

showed the best model performance indicated by a receiver operating characteristic

area under the curve of 0.882 (95% confidence interval [CI]: 0.872–0.893). The

model was applied on data sets of 2019 and 2020 (n = 28,556 cases) and the hospital

standardized mortality ratio (HSMR) was computed as the observed to expected

death ratio. Observed mortality rates were 5.84% (2019) and 6.21% (2020), HSMRs

based on an individual case‐based mortality probability were 100.0 (95%

CI: 93.3–107.2; p = 1.000) for 2019 and 99.3 (95% CI: 92.5–106.4; p = .850) for

2020. Within subgroups of age or hospital volume, there were no significant dif-

ferences between observed and expected deaths. When stratified for pandemic

phases, no excess death during the COVID‐19 pandemic was observed.
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Conclusion: Applying an ML algorithm to calculate expected inpatient mortality

based on administrative data, there was no excess death above expected event rates

in HF patients during the COVID‐19 pandemic.
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1 | INTRODUCTION

During the early phase of the ongoing COVID‐19 pandemic, numbers

of heart failure (HF)‐related hospital admissions were significantly

decreased.1–6 This was accompanied by an increase in case severity

with regard to New York Heart Association (NYHA) class and higher

in‐hospital mortality rates.5,7–9 It is unclear, whether the inferior

outcome had to be attributed only to differing patient profiles or to

additional factors like changes in HF patient care during the pan-

demic. Risk‐adjusted mortality prediction would allow standardized

modeling with regard to time intervals and regional differences of

endpoints like in‐hospital mortality. We previously introduced dif-

ferent machine learning (ML)‐based algorithms for the calculation of

expected mortality rates on a populational level in a large German HF

cohort that only implemented widely accessible administrative

data.10 ML models outperformed logistic regression analysis ac-

cording to values of the area under the curve (AUC) with the extreme

gradient boosting model showing the best performance metrices. The

aim of the present analysis was to apply this model to data from 2019

to 2020 of the same nationwide, real‐world data set and compare

expected and observed mortality rates with respect to pandemic

phases overall and in specific subgroups.

2 | METHODS

2.1 | Data source

Administrative data of 86 German Helios hospitals was retro-

spectively analyzed. Patient cases with full inpatient treatment be-

tween January 1, 2016 to August 31, 2020 and the main discharge

diagnosis of HF defined in accordance to prior publications were

identified.5,10 Hospital admission and discharge were categorized

within administrative data and only cases with both urgent (none-

lective) admission and hospital discharge type other than hospital

transfer were further analyzed. Discharge diagnoses were encoded

using the International Statistical Classification of Diseases and

Related Health Problems (ICD‐10‐GM [German Modification]).

Comorbidities were identified from encoded secondary diagnoses

at hospital discharge according to the Elixhauser comorbidity

score.11,12 All patients with an encoded SARS‐CoV‐2 infection

(U07.1, U07.2!) were excluded. Cases with missing information for

NYHA classes (n = 7280) were discarded due to an adequate

calibration of ML models. Detailed information regarding used

ICD‐codes is provided in the Supporting Information Material

(Tables S1 and S2). We computed the number of laboratory‐proven

SARS‐CoV‐2 infections per 100,000 inhabitants within a federal state

using data from the Robert‐Koch‐Institute and the Federal Bureau of

Statistics (Germany) with tertiles defining areas with low (<152), in-

termediate (152–297), and high COVID‐19 case volume (>297).13

Hospitals were categorized with respect to the number of yearly HF

admissions between 2016 and 2018 and expressed as tertiles with

low (<149), intermediate (149–368), and high (>368) hospital case

volume. Curves of daily admissions for 2019 and 2020 were fitted

using locally estimated scatterplot smoothing with a degree of

smoothing of α = .25 and with corresponding 95% confidence inter-

vals (CIs). Based on nonoverlapping CIs for daily hospital admissions

defining the beginning and end of the deficit period with fewer

HF‐related hospitalizations in 2020, this deficit period lasted from

03/12/2020 to 04/14/2020 (corresponding phase in 2019 with re-

spect to changing weekdays: 03/13/2019–04/15/2019). The time

interval before and after the nonoverlapping CIs will be considered

the prepandemic period (2020: 01/01/2020–03/11/2020, corre-

sponding phase in 2019: 01/01/2019–03/12/2019) and the re-

sumption period (2020: 04/15/2020–08/18/2020, corresponding

phase in 2019: 04/16/2019–08/19/2019) as illustrated in Figure S1.

Patients' data were stored in a pseudonymized form and data use was

approved by the local ethics committee (AZ490/20‐ek) and

the Helios Kliniken GmbH data protection authority. Considering the

retrospective analysis of double‐pseudonymized administrative clin-

ical routine data, individual informed consent was not obtained.

2.2 | Model development/testing

All analyzes were performed within the R environment for statistical

computing (version 3.6.1, 64‐bit build).14 Data from 2016 to 2018

(n = 59,125 cases from 69 German Helios hospitals, 69.8% aged

≥75 years, 51.9% female) was split into 75%/25% portions used for

model development and testing, stratified for in‐hospital mortality.

Baseline characteristics were well balanced between the data set

parts as can be seen in Table S3. Random forest, gradient boosting

machine, single‐layer neural network, and extreme gradient boosting

were the machine ML‐based models being investigated and com-

pared to logistic regression. Variable selection and scaling as well as

model tuning were performed as described previously.10 Final model
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adaptations including a recalibration of approximated probabilities

using a generalized additive model and a reclassification of thresholds

based on receiver operating characteristic (ROC) curves and F1 sta-

tistics have been carried out according to our previous work.10 Using

the probabilities predicted within the test data and the optimal

threshold, the predictive abilities of the algorithm were assessed by

the ROC AUC, the precision‐recall curve, the area under the

precision‐recall curve (AUPRC), calibration‐in‐the‐large (overall ex-

pected and observed mortality rate), weak calibration (intercept and

slope of the calibration curve), calibration plots, F1 statistic and

confusion matrices.15 Pooled in‐hospital mortality rate within the

development data set was 6.20%. Extreme gradient boosting was the

most reliable ML model with respect to the highest ROC AUC (0.882,

95% CI: 0.872–0.893) and AUPRC (0.477, 95% CI: 0.445–0.509) in

the test data set when implementing the Elixhauser comorbidities as

individual variables.10 Calibration of the model showed adequate

accordance of predicted and observed events within the test data set,

the Brier score (uncalibrated) was 0.043 without an improvement

after recalibrating probabilities. Therefore, the extreme gradient

boosting model was utilized for further model application in this

study. Specific variable importance values for baseline variables and

Elixhauser comorbidities are listed in the Supporting Information

Material (Table S4).

2.3 | Calculation of expected mortality rates

The model was used to calculate the expected number of deaths in

2019 and 2020 (admissions limited to August 31st) as the sum of

individual in‐hospital mortality probabilities. The hospital standar-

dized mortality ratio (HSMR) was computed as the ratio between

observed and predicted deaths. Its 95% CI was calculated using By-

ar's approximation. HSMRs within years were compared using the

Spearman rank correlation.

3 | RESULTS

In this retrospective cross‐sectional analysis, 26,591 patient cases

from 2019 to 2020 were analyzed and in‐hospital mortality was

predicted using the extreme gradient boosting machine model to

compare differences between predicted and observed mortality rates

throughout the years. Comparing baseline characteristics, patients

were older, had a different composition of comorbidities, and had a

shorter length of stay in 2019 and 2020 compared to the data set of

2016–2018. Cases from the model development cohort also were

more symptomatic as reflected by a higher percentage of patients

classified as NYHA class IV, whereas NYHA class III was over-

represented in 2019 and 2020. Baseline characteristics are listed in

Table 1. Overall, observed mortality rates were 5.89% in 2019% and

6.23% in 2020, corresponding HSMRs based on the individual case‐

based mortality probability were 100.0 (95% CI: 93.3–107.2;

p = 1.000) for 2019 and 99.3 (95% CI: 92.5–106.4; p = .850) for

2020. HSMRs were further studied in subgroups stratified by age,

predefined pandemic phases in2020 and corresponding time inter-

vals in 2019, hospital volume and COVID‐19 case volume. Within the

subgroups of age, there were no significant differences between

predicted and observed in‐hospital mortality rates for both 2019 and

2020. When stratified for the different pandemic phases, HSMRs in

2019 and 2020 were 109.8 (95% CI: 97.6–123.0; p = .118) and 100.3

(95% CI: 89.0–112.7; p = .971) for the prepandemic period, 102.2

(95% CI: 85.4–121.4; p = .828) and 107.5 (95% CI: 91.7–132.4;

p = .291) for the deficit period as well as 93.0 (95% CI: 83.9–102.8;

p = .159) and 95.6 (95% CI: 86.5–105.4; p = .382) for the resumption

period, respectively. In areas with high COVID‐19 case volume, ob-

served death rates were lower than the predicted ones for both 2019

(HSMR: 91.0; 95% CI: 80.0–103.1; p = .142) and 2020 (HSMR: 87.6;

95% CI: 76.8–99.5; p = .042) with only the latter meeting the criteria

of statistical significance. HSMRs were not different from 100 in

intermediate COVID‐19 case volume regions in both years and in low

COVID‐19 case volume regions in 2019, but a difference between

expected and observed mortality with an HSMR of 113.5 (95% CI:

100.9–127.1; p = .034) was calculated for the year 2020 in areas with

low COVID‐19 case volume. No differences with respect to HSMRs

were observed for the different groups of hospital volume.

HSMRs within subgroups are presented in detail in Table 2 and

illustrated in Figure 1.

4 | DISCUSSION

In this retrospective cross‐sectional analysis, we applied our pre-

viously introduced ML algorithm (gradient boosting machine)

for the calculation of expected in‐hospital mortality rates on a

populational level in a nationwide, multicenter cohort of HF pa-

tients containing administrative data before and throughout the

COVID‐19 pandemic. Our model had high‐performance indices and

was well‐calibrated. When comparing model‐derived expected with

observed mortality for 2019 and 2020, we found regional differ-

ences of HSMR values but overall high accordance between cal-

culated and true in‐hospital mortality rates. The relative increase of

in‐hospital mortality in HF patient cohorts that has been previously

observed during the COVID‐19 pandemic did not exceed the ex-

pected variation of death rates that were calculated by our model

based on patients' baseline characteristics.5 There were no sig-

nificant differences in overall HSMRs of 2019 and 2020. Conse-

quently, the higher in‐hospital mortality rate in 2020 is likely

attributable to the differing case mix with older patients suffering

from a different composition of comorbidities. Increased in‐hospital

mortality rates in 2020 compared to previous years were also re-

ported by other groups, which were also related to differing

baseline characteristics including a higher mean age and the pre-

sence of more comorbidities.8,16 In contrast, other groups reported

no or at least no significant differences in mortality rates in the

same period.1,2,4 Considering the fact that no relevant variations of

baseline characteristics were observed in the latter studies when
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comparing the different observational periods, this would underline

the crucial role of the corresponding case mix of the cohorts of

interest on in‐hospital mortality. This is therefore compatible with

our findings of indifferent HSMRs.

Interestingly, observed mortality rates were even lower in

areas with high COVID‐19 case numbers. There is no obvious ex-

planation for this observation. Since a similar trend also was ap-

parent in 2019, a fixed regional effect caused by unknown

TABLE 1 Baseline characteristics comparing datasets used for model development with data of 2019 and 2020

Variable Model development 2019 2020 p

N 59 125 13 690 12 901

Age (years)

<65 12.6% (7459/59 125) 11.5% (1568/13 690) 11.0% (1424/12 901) <.001

65–74 17.6% (10 377/59 125) 17.5% (2390/13 690) 16.3% (2103/12 901) .003

>75 69.8% (41 289/59 125) 71.1% (9732/13 690) 72.7% (9374/12 901) <.001

Length of stay (days)

<5 37.2% (21 981/59 125) 40.0% (5478/13 690) 40.9% (5271/12 901) <.001

5–9 32.8% (19 392/59 125) 32.0% (4382/13 690) 33.0% (4252/12 901) .163

>9 30.0% (17 752/59 125) 28.0% (3830/13 690) 26.2% (3378/12 901) <.001

Intensive care Length of stay (days)

0 80.3% (47 485/59 125) 84.0% (11 500/13 690) 82.5% (10 644/12 901) <.001

>0 19.7% (11 640/59 125) 16.0% (2190/13 690) 17.5% (2257/12 901) <.001

Gender

Female 51.9% (30 689/59 125) 51.0% (6987/13 690) 51.1% (6588/12 901) .069

Male 48.1% (28 436/59 125) 49.0% (6703/13 690) 48.9% (6313/12 901) .069

NYHA class

NYHA II 8.9% (5289/59 125) 9.2% (1265/13 690) 7.7% (997/12 901) <.001

NYHA III 42.0% (24842/59 125) 45.3% (6200/13 690) 46.4% (5986/12 901) <.001

NYHA IV 47.4% (28027/59 125) 44.3% (6061/13 690) 44.9% (5798/12 901) <.001

Elixhauser comorbidities

Cardiac arrhythmias 62.4% (36 921/59 125) 63.0% (8630/13 690) 64.2% (8288/12 901) .001

Valvular disease 37.7% (22 269/59 125) 39.9% (5468/13 690) 38.5% (4967/12901) <.001

Pulmonary circulation disorders 19.2% (11 357/59 125) 18.9% (2590/13 690) 17.3% (2235/12 901) <.001

Peripheral vascular disorders 12.9% (7633/59 125) 11.9% (1635/13 690) 11.5% (1480/12 901) <.001

Hypertension, uncomplicated 30.1% (17 800/59 125) 28.4% (3884/13 690) 30.3% (3914/12 901) <.001

Hypertension, complicated 49.6% (29 343/59 125) 49.5% (6772/13 690) 48.1% (6208/12 901) .008

Chronic pulmonary disease 19.5% (11 515/59 125) 18.9% (2584/13 690) 18.1% (2340/12 901) .001

Diabetes, uncomplicated 18.0% (10 642/59 125) 17.6% (2405/13 690) 17.3% (2229/12 901) .106

Diabetes, complicated 22.0% (13 028/59 125) 21.4% (2929/13 690) 22.3% (2882/12 901) .149

Hypothyroidism 13.4% (7935/59 125) 14.2% (1944/13 690) 14.9% (1928/12 901) <.001

Renal failure 63.0% (37 250/59 125) 62.5% (8554/13 690) 63.4% (8182/12 901) .281

Obesity 23.3% (13 759/59 125) 23.3% (3186/13 690) 21.4% (2758/12 901) <.001

Weight loss 6.0% (3548/59 125) 5.6% (771/13 690) 5.5% (704/12 901) .027

Fluid and electrolyte disorders 31.3% (18 504/59 125) 30.6% (4188/13 690) 33.4% (4309/12 901) <.001

Deficiency anemia 5.4% (3195/59 125) 5.5% (759/13 690) 6.7% (867/12 901) <.001

Depression 5.3% (3121/59 125) 5.0% (680/13 690) 5.2% (673/12 901) .336
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structural differences is likely to influence the results. For example,

population density has been shown to impact in‐hospital outcomes

in HF patients.17 An uneven distribution of cases discharged as

hospital transfers between different areas could also contribute to

this finding, as those cases were excluded from our analysis. This

was done to avoid a biased in‐hospital death rate because no cross‐

linking of patient cases between hospitals was possible due to data

structure and data privacy. Moreover, an early discharge to prevent

nosocomial infection and to keep capacities ready especially in

areas being highly affected by incident SARS‐CoV‐2 infections

could lead to the transfer of patients to the outpatient sector.

Previous findings of a shortened length of stay during the pandemic

are pointing in this direction.2,5 Other studies reported higher rates

of out‐of‐hospital cardiac arrests with an increased case‐fatality

rate during the pandemic and overall excess mortality during the

first half of 2020 in Germany compared to previous years.18–21

Whether this is indicative of an actual shift of cardiovascular deaths

from the hospital to the outpatient setting needs to be further

studied.

The overall high concordance of expected and observed in‐

hospital mortality rates within different age groups indicates a high

reliability of the investigated model. There were only two com-

parable prediction models focusing on administrative data only,

which reported lower AUC values (0.72–0.78).22,23 A direct

juxtaposition with our model is, however, hindered due to a dif-

ferent set of included variables. Our data set does not contain

information on ethnicity, insurance data, used medication, and

other variables being implemented into the mentioned models.

Possible explanations for this better predictive performance, be-

sides the algorithm itself, might be a higher event rate in our co-

hort affecting the model quality during the developmental stage.

Furthermore, the cohort size of our training data set was sig-

nificantly larger at least when compared to the study of Desai and

colleagues.22 Both studies also examined whether the addition of

data from electronic medical records would lead to an improve-

ment of the predictive power and presented ambiguous results.

Whereas one report propagated similar model discrimination when

only using claims data, the other one showed better performance

metrices when augmenting the administrative data set by labora-

tory results and imaging data.22,23 Contrary, a previous study by

Lagu et al. reported even better performance of administrative

data‐based prediction models when compared to clinical predic-

tion tools for HF patients.24 Other algorithms designed to forecast

short‐ or long‐term mortality in acute as well as chronic HF

showed a similar or lower discriminatory power even when in-

cluding more sophisticated and disease‐specific variables.25–30 Of

course, it needs to be noticed that all of those prediction tools

were developed to predict an individual risk and not all of them

TABLE 2 Predicted and observed mortality as well as HSMRs overall and within subgroups

2019 2020
Level Observed Predicted HSMR (95% CI) p Observed Predicted HSMR (95% CI) p

N 807 806.7 100.0 (93.3–107.2) 1.000 804 810.0 99.3 (92.5–106.4) .850

Age group

55–64 30 28.8 104.3 (70.3–148.8) .868 27 26.3 102.8 (67.7–149.6) .937

65–74 82 87.8 93.4 (74.3–115.9) .581 77 78.7 97.8 (77.2–122.3) .907

75–84 280 292.0 95.9 (85.0–107.8) .503 304 307.8 98.8 (88.0–110.5) .857

85+ 407 390.2 104.3 (94.4–114.9) .409 387 388.9 99.5 (89.8–109.9) .951

Period

Prepandemic period 296 269.6 109.8 (97.6–123.0) .118 284 283.1 100.3 (89.0–112.7) .971

Deficit period 130 127.2 102.2 (85.4–121.4) .828 119 107.5 110.7 (91.7–132.4) .291

Resumption period 381 409.8 93.0 (83.9–102.8) .159 401 419.4 95.6 (86.5–105.4) .382

Hospital volume

Low 74 86.9 85.1 (66.8–106.9) .177 68 79.7 85.3 (66.2–108.1) .204

Intermediate 268 265.1 101.1 (89.4–114.0) .873 279 298.1 93.6 (82.9–105.2) .279

High 465 454.7 102.3 (93.2–112.0) .640 457 432.1 105.8 (96.3–115.9) .242

COVID19 volume

High 248 272.5 91.0 (80.0–103.1) .142 237 270.5 87.6 (76.8–99.5) .042

Low 268 246.1 108.9 (96.3–122.8) .174 298 262.7 113.5 (100.9–127.1) .034

Intermediate 291 288.1 101.0 (89.7–113.3) .879 269 276.9 97.1 (85.9–109.5) .662

Abberviations: CI, confidence interval; HSMR, hospital standardized mortality ratio.
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used in‐hospital death as the endpoint of interest. That being said,

the juxtaposition of performance metrices can only serve to get an

impression of the quality of our model instead of directly com-

paring it to the ones mentioned above. If confirmed as a reliable

algorithm after external validation, our model also offers far‐

reaching possibilities beyond analyzes linked to the COVID‐19

pandemic. This includes both the standardized comparison of

HF‐related mortality in quality management programs with regard

to temporal and regional differences of medical treatments as well

as an interesting solution for hospital benchmarking in general.

4.1 | Limitations

Data used for model development has been retrospectively collected

with known limitations compared to a prospective data assessment.

However, it has been stated that data collection mode per se did not

influence the discriminatory power of the derived prediction model.31

Differences with respect to baseline variables between the patient

cohort used for model development and the cohorts the model was

applied to may influence the predictive accuracy. However, absolute

differences of variable prevalence were acceptable and are unlikely

to impact model‐derived predictions relevantly. As administrative

data is not stored for research interests but for remuneration rea-

sons, a potential affection of the encoded information is possible. The

quality of the results depends to a large extent on the correct en-

coding of hospital discharge diagnoses.12 However, regarding the

main discharge diagnosis and the adequacy of hospitalization as well

as encoding, there is a continuous evaluation by reimbursement

companies/health insurances which supports the assumption of

overall valid information. NYHA class assignment is influenced by the

subjective assessment of the treating physician, but a potential bias

would influence all investigated groups and is likely to be attenuated

by the large cohort size. Supporting this information with more ob-

jective variables would be desirable, but neither data regarding pa-

tients' specific medical history, cardiac imaging, laboratory results,

F IGURE 1 Hospital standardized mortality ratios within several subgroups in 2019 and 2020
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medication nor treatment‐related data was available due to the type

and structure of the analyzed database.

5 | CONCLUSION

Using an ML algorithm processing widely available administrative

data, we developed a reliable model to calculate expected in‐hospital

mortality rates on a population level in a cohort of inpatients urgently

admitted for HF. Applying the model on HF patients’ data during the

COVID‐19 pandemic, no significant increase in observed mortality

above predicted event rates was found with respect to pandemic

phases.
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