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Abstract

Diverse crops are both outbred and clonally propagated. Breeders typically use truncation selection of parents and invest significant time,
land, and money evaluating the progeny of crosses to find exceptional genotypes. We developed and tested genomic mate selection cri-
teria suitable for organisms of arbitrary homozygosity level where the full-sibling progeny are of direct interest as future parents and/or cul-
tivars. We extended cross variance and covariance variance prediction to include dominance effects and predicted the multivariate selec-
tion index genetic variance of crosses based on haplotypes of proposed parents, marker effects, and recombination frequencies. We
combined the predicted mean and variance into usefulness criteria for parent and variety development. We present an empirical study of
cassava (Manihot esculenta), a staple tropical root crop. We assessed the potential to predict the multivariate genetic distribution (means,
variances, and trait covariances) of 462 cassava families in terms of additive and total value using cross-validation. Most variance (89%) and
covariance (70%) prediction accuracy estimates were greater than zero. The usefulness of crosses was accurately predicted with good cor-
respondence between the predicted and the actual mean performance of family members breeders selected for advancement as new
parents and candidate varieties. We also used a directional dominance model to quantify significant inbreeding depression for most traits.
We predicted 47,083 possible crosses of 306 parents and contrasted them to those previously tested to show how mate selection can re-
veal the new potential within the germplasm. We enable breeders to consider the potential of crosses to produce future parents (progeny
with top breeding values) and varieties (progeny with top own performance).

Keywords: genomic mate selection; variance prediction; directional dominance; nonadditive effects; cassava; Genomic Prediction;
GenPred; Shared Data Resources

Introduction
Diverse crops ranging from staples (e.g., cassava and potato) to

cash crops (e.g., cacao) to forestry products (e.g., eucalyptus) are

both outbred and clonally propagated (Gemenet and Khan 2017).

In these crops, exceptional genotypes can be immortalized and

commercialized as clonal varieties. Few clonal crops are also in-

bred thus, like livestock, each cross segregates phenotypically to

different degrees. Unlike seed crops (e.g., maize, wheat), inbreed-

ing is unnecessary for product development. Consider a breeding

program implementing some form of genomic selection (GS)

(Heffner et al. 2009; Jannink et al. 2010) on a population. All extant

members and future progeny are or will be genotyped using

genome-wide markers. Field evaluations are conducted at spe-

cies- and trait-appropriate stages for one or more traits, on at

least a subset of the genotypes. Genomic prediction is used to in-

crease selection intensity and decrease cycle times by providing

selection criteria for more genotypes, faster than would have oth-

erwise been possible (Hickey et al. 2017). The breeding scheme

can be further divided into two parts (Gaynor et al. 2017;
Santantonio and Robbins, 2020; Werner et al. 2020) consisting of
(1) population improvement by recurrent selection (RS) and (2) a
variety development pipeline (VDP). RS is done in order to man-
age and improve the frequency of beneficial alleles in the popula-
tion over time. The VDP consists of a series of field trials in which
candidates’ performance is evaluated. For clonal crops, germ-
plasm is advanced from one VDP stage to the next by vegetative
propagation.

The importance of matings and the need for mate
selection criteria
Every cross is important. Crosses imply an opportunity and a
risk. New matings generate genetic variation, the substrate on
which selection can operate. However, for a breeder, new crosses
require investment of time, land, and money, especially consider-
ing the added costs of genotyping. Moreover, crosses may exhibit
inbreeding depression or heterosis. Thus, matings serve the mul-
tiple purposes of producing new candidate breeding parents for
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RS and/or cultivars for VDP, potentially evaluated for multiple
product profiles characterized by unique selection indices (SI).
Selection to drive improvement in the population’s mean over
time to meet the objective of RS centers on allele-substitution
effects and the breeding value (BV). For the VDP, selecting clones
to advance for testing should be based on the total genetic value
(TGV) of an individual which includes nonadditive genetic effects
such as dominance.

Genomic predictions incorporating nonadditive
effects
Nonadditive effects can be included in genomic predictions in a
number of ways (Vitezica et al. 2013; Varona et al. 2018). Most of
the literature so far has dealt with including nonadditive effects
in the prediction of the genetic values of an existing pool of selec-
tion candidates (Varona et al. 2018). Nonadditive predictions have
often been shown to increase prediction accuracy (Heslot et al.
2012; Wolfe et al. 2016a; Werner et al. 2020). In addition, the mean
performance (mean TGV) of the progeny can deviate from the
prediction based on the mean BV of the parents in the presence
of nonadditive effects. Genomic predictions of cross mean TGV
have been applied to hybrid performance (Alves et al. 2019) and
mate allocation (Toro and Varona 2010). Predictions can also in-
clude genome-wide inbreeding/overdominance effects, also re-
ferred to as directional dominance; Xiang et al. (2016) and this has
recently been shown to be advantageous in a simulated two-part
clonal crop breeding scheme (Werner et al. 2020).

Genomic mate selection for outbred, clonal crops
When one or both parents are heterozygous, offspring are
expected to segregate for their BV and TGVs. The relative advan-
tage of possible pairwise matings can best be distinguished when
predictions of both the genetic mean and variance are available.
The usefulness criterion (UC) or simply “usefulness” of a cross is
a prediction of the mean performance of the selected superior
fraction of the progeny: UC ¼ lþ i� r, where r is the predicted
genetic standard deviation of the progeny and i is the standard-
ized selection intensity (Zhong and Jannink 2007; Segelke et al.
2014; Lehermeier et al. 2017b). The additive genetic variance of an
infinite pool of progeny from a cross can be predicted determinis-
tically using the combination of genome-wide marker effects, a
genetic map, and phased parental haplotypes (Lehermeier et al.
2017b). This approach has almost exclusively been applied to the
prediction of additive genetic variance and covariance (Neyhart
et al. 2019). Bonk et al. (2016) showed that dominance in addition
to additive within-family variances can be deterministically pre-
dicted in outbred species based on gametic variances of putative
parents (Bijma et al. 2020). Most other applications are predictions
of the variance of inbred lines derived from inbred founders
(Zhong and Jannink 2007; Lehermeier et al. 2017b; Allier et al.
2019b; Neyhart et al. 2019; Neyhart and Smith 2019).

Criteria and methods developed in this study
In this study, we extend the deterministic prediction of progeny
variances in several ways to maximize the utility and practicality
of implementing genomic mate selection. First, we show how to
include dominance in the prediction of cross genetic variance
and we do so for founders of arbitrary inbreeding level. Next, we
distinguish two types of cross usefulness: usefulness for RS (i.e.,
the predicted mean BV of offspring selected as parents; UCparent)
and usefulness for variety development (i.e., the predicted mean
TGV of clones advanced as varieties in the VDP; UCvariety). Finally,
since matings are usually chosenbased on multiple traits, we

extend the prediction to cross variance on SI. We show that to

predict index variance, we must predict the full matrix of trait ge-

netic variances and covariances (Bonk et al. 2016; Allier et al.

2019b; Neyhart et al. 2019). We implement the core functions for

multi-trait prediction of outbred cross variances including addi-

tive and dominance effects in an R package predCrossVar.

Empirical study of cassava
We present an empirical study of the accuracy for predicting ad-

ditive and nonadditive genomic mate selection criteria. We set up

a cross-validation scheme that measures the accuracy of predict-

ing means, variances and usefulnesses of previously untested

crosses using data from a real cassava (Manihot esculenta) breed-

ing program. Cassava is one of the most important tropical staple

foods, especially in Africa (http://faostat.fao.org). Among outbred,

clonal crops, GS is relatively mature in cassava breeding (de

Oliveira et al. 2012; Ly et al. 2013; Wolfe et al. 2016a,b, 2017; Elias

et al. 2018; Yonis et al. 2020; Okeke et al. 2017; Ozimati et al. 2018)

because of the Next Generation Cassava Breeding Project (http://

www.nextgencassava.org, est. 2012), and the species can serve as

a model for many others. We leverage a validated GS pedigree

with genome-wide phased haplotypes and a genetic map (Chan

et al. 2019). We used a directional dominance model (Xiang et al.

2016) to make first-time estimates of genome-wide inbreeding

(homozygosity) effects in cassava. We report our empirical study

in a fully reproducible and documented framework (https://wolf

emd.github.io/PredictOutbredCrossVar/).

Methods
Formulation of genomic predictions and selection
criteria
Below, we describe predictions that are applicable as selection

criteria, first for genomic truncation selection GTS, followed by

extensions that enable mate selection GMS. Throughout, we dis-

tinguish selection criteria based on their suitability for evaluating

the potential of individuals (for GTS) or crosses (for GMS) for RS vs

VDP.

GTS: Selecting genotypes with predictions about
generation t
Genomic recurrent TS (GTS) evaluates existing individuals, either

for their potential as parents (without regards to specific mates)

and/or their potential as clonal cultivars. Under a nonepistatic

model, the TGVs of individuals in the current population (time t)

can be partitioned into a BV (gBV) and a dominance deviation gDD.

gTGV ¼ gBV þ gDD

Consider a diploid population with n individuals genotyped at

p biallelic genomic loci.

y ¼ Xbþ ZaþWdþ e

In this linear model, the n� 1 vector of phenotypic observa-

tions, y is modeled according to a combination of genetic and

nongenetic effects. Fixed experimental design-related effects

estimates are given by b and its corresponding incidence matrix

X(½n� Nfixed�) where Nfixed is the number of fixed factors. The ele-

ments of the ½n� p� matrices Z and W contain column-centered

marker genotypes:
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zij ¼
2� 2pj A1A1

1� 2pj A1A2

0� 2pj A2A2

wij ¼
�2q2

j A1A1

2pjqj A1A2

�2p2
j A2A2

8><
>:

8><
>:

Here, pj and qj are the population allele frequencies, as opposed
to the within-parent allele frequencies, which are referred to later
on. This encoding of genotypes results in marker effects (a and d)
that correspond to allele substitution and dominance deviation
effects (Vitezica et al. 2013). The marker effects can then be used
to predict genomic estimated TGVs (GETGV, ĝTGV) as the sum of
the genomic estimated BV (GEBV, ĝBV ¼ Ẑ) and a corresponding
dominance deviation (GEDD, ĝDD ¼Wd̂). The GEBV predicts the
mean offspring of a clone mated at random and as such is suit-
able for truncation RS of parents. The GETGV predicts the perfor-
mance of each clone, rather than any property of its offspring
and is useful for selection for variety advancement.

GMS: Selecting crosses with predictions about
generation tþ1
GEBV and GETGV enable us to do truncation selection. In order to
implement mate selection, criteria that distinguish crosses are
needed. Progeny of crosses may segregate for both their breeding
and TGVs. Crosses may thus differ in their likelihood of produc-
ing progeny that are superior varieties (high gTGV;tþ1) and/or
parents (high gBV;tþ1). We focus here on distinguishing the best
crosses on the basis of both their predicted genetic means and
variances.

Predicted cross means
The family mean, lBV can be predicted as the mean of parental
BVs.

lBV ¼
GEBVP1 þ GEBVP2

2

Dominance deviation can be included in order to predict the
mean TGV, lTGV according to Equation 14.6 (Falconer and Mackay
1996; Toro and Varona 2010; Varona et al. 2018; Werner et al.
2020).

lTGV ¼
Xp

k¼1

akðpik � qik � ykÞ þ dk½2pikqik þ ykðpik � qikÞ�

Here, pik and qik are the allele frequencies of the counted (alter-
native) and the noncounted (reference-genome) allele, respec-
tively, for one of the two parents (indexed by i). The difference in
frequency between the parent one (indexed by i) and the parent
two (indexed by j) is,yk ¼ pik � pjk and the summation is over the p
markers indexed by k. Note that ak is the average effect and not
the allele substitution effect, a estimated by the additive-
dominance parameterization presented above. As a result, pre-
dicting lTGV with the formula above may not be appropriate. We
adopt a suitable additive-dominance partition, described below,
in our primary analyses.

Predicted cross variances
The within-cross additive genetic variance can be predicted de-
terministically, relying on the formula for the genetic variance
under linkage disequilibrium using Equation 5.16a (Lynch and
Walsh 1998; Lehermeier et al. 2017b). Below, we use Equation
5.16b (Lynch and Walsh 1998) to predict dominance variance de-
terministically in an infinite population of diploid full-siblings
(Bonk et al. 2016).

r̂2
BV ¼ aTDa

r̂2
DD ¼ dTD2d, where D2 ¼ D� D; � indicating element-wise

(Hadamard) multiplication of D, having the effect of squaring all
elements.

r̂2
TGV ¼ r̂2

BV þ r̂2
DD

The p� p variance-covariance matrix, D, is the expected link-
age disequilibrium among full-siblings by considering the
expected pairwise recombination frequency and each parent’s
haplotype phase.

Dgametes
P1

¼ ð1� 2cÞ � Dhaplos
P1

Dgametes
P2

¼ ð1� 2cÞ � Dhaplos
P2

Dgenotypes
P1�P2

¼ Dgametes
P1

þ Dgametes
P2

Dhaplos
P1

and Dhaplos
P2

are simply the p� p covariance matrices associ-
ated with each parent’s respective 2� p haplotype matrix (HP1orP2 ),
where elements are 1 if the counted allele is present, 0 otherwise.
We computed Dhaplos ¼ 1

2 HTH� ppT, where p is a vector of within-
individual, per-SNP allele frequencies (Alachiotis et al. 2016).

The p� p pairwise recombination frequencies matrix is c and
can be derived from a genetic map. Dgametes

P1
and Dgametes

P2
are the co-

variance matrices for each parents pool of possible gametes,
whose covariances sum to give the expected covariances geno-
types in the cross, Dgenotypes

P1�P2
. The genetic variances r̂2

BV and r̂2
DD

are thus predicted as above by using D ¼ Dgenotypes
P1�P2

.

Usefulness criteria (UC)—mean of superior family
members
Given that predictions of genetic means and variances for a cross
are available, they can be combined into a single cross selection
criterion. We focus here on the UC, which predicts the mean (BV)
of the superior progeny from a cross, i.e., the mean after selection
(Schnell and Utz 1975; Zhong and Jannink 2007; Lehermeier et al.
2017b). We note that predictions of cross means and variances
may be used in other ways (Bijma et al. 2020), but focus on UC.
The UC ¼ lþ i� r, where l is the predicted mean of the cross, i is
the standardized within-family selection intensity and r is the
predicted cross standard deviation.

In the context of the two-part breeding scheme for GS in
clonal crops, crosses may be useful for producing both new
parents and new varieties. We, therefore, define e therefore dis-
tinguish two UCs: UCparentand UCvariety (Table 1). Notice that in ad-
dition to separate predictions of mean and variance for UCparent

vs UCvariety, two-part GS implies that the within-family intensity
of selection for RS does not necessarily equal that of the VDP
(Santantonio and Robbins 2020).

Extension to multi-trait selection indices
Parent selection is often done based on a multi-character selection
index (SI). Crosses can be considered for their potential to produce
progeny with good merit on one or more SI by first predicting the
variances and covariances for each trait on the SI (Bonk et al. 2016;

Table 1 Criteria for evaluating crosses

Parameter Breeding values Total genetic values

Mean lBV lTGV

Variance r2
BV r2

TGV ¼ r2
BV þ r2

DD
Usefulness UCparent ¼ lBV þ ðiRS � rBVÞ UCvariety ¼ lTGV þ ðiVDP � rTGVÞ

M. D. Wolfe et al. | 3



Allier et al. 2019b; Neyhart et al. 2019). We can therefore predict the
mean and variance of a cross on the SI as follows:

1) Predict (co)variances for all traits on SI. Consider an index
with two traits, T1 and T2.

r2
T1 ¼ aT

T1DaT1

r2
T2 ¼ aT

T2DaT2

rT1;T2 ¼ aT
T1DaT2

Apply to dominance by substituting a with d and squaring ele-
ments of D.

1) Compute the predicted mean and variance on the SI.

lSI ¼ wTĝBV
r2

SI ¼ wTGw

The n�T matrix ĝBV contains the GEBV for each trait and the
T � 1 vector w are the index weights. The T�T matrix G is the ad-
ditive (or total) genetic variance-covariance matrix for traits on
the index.

G ¼
r2

Trait1 ;Trait1
. . . rTrait1 ;TraitT

..

. . .
. ..

.

rTrait1 ;TraitT
. . . r2

TraitT ;TraitT

2
664

3
775

Based on these predictions of family means, variances and
trait-covariances, we can compute the mean of selected family
members on the index (i.e., the UCSI).

UCSI ¼ lSI þ iSI � rSI

Including directional dominance as a
genome-wide inbreeding effect
Many outbred, clonal crops are known to suffer from inbreeding de-
pression. The typical genome-wide regression models the marker
effects as drawn from a normal distribution, with mean zero and an
estimated variance parameter. To include directional dominance,
we model the genome-wide proportion of loci that are homozygous
with the 1� p vector, f, as a fixed-covariate, leading to:

y ¼ Xbþ fbþ Zaþ Cd� þ e:

The scalar b is the estimated linear effect of overall homozy-
gosity, interpreted as inbreeding depression or heterosis depend-
ing on its direction relative to each trait (Xiang et al. 2016). The
effect of over/under-dominance measured by b can be incorpo-
rated into the predicted means and variances by dividing b by the
number of effects (p) and subtracting that value from the vector
of dominance effects, to get d ¼ d� � b

p (Xiang et al. 2016; Varona
et al. 2018; Werner et al. 2020). It is important to note that the par-
tition of genetic effects in this model corresponds to the
“biological” (or genotypic) parameterization (Vitezica et al. 2013).
The dominance coding in the matrix C is

cij ¼
ð0� 2pjqjÞ A1A1

ð1� 2pjqjÞ A1A2

ð0� 2pjqjÞ A2A2

:

8<
:

As a result the effects a and d do not correspond to allele sub-
stitution and dominance deviation effects directly, but the sum
of variance components still equals the r2

TGV and allele substitu-
tion effects can be recovered as a ¼ aþ dðq� pÞ in order to predict
gBV (Vitezica et al. 2013; Varona et al. 2018; Werner et al. 2020).

Empirical assessment of the accuracy predicting
means, variances, covariances, and usefulnesses
in cassava crosses
Since 2012, the Next Generation Cassava Breeding project (http://
www.nextgencassava.org) has implemented GS in African and
Latin American breeding programs (de Oliveira et al. 2012; Ly et al.
2013; Wolfe et al. 2017). Cassava breeding programs are well-
poised to adopt GMS if, in addition to prediction of means, varian-
ces and covariances can be accurately predicted.

Cassava data: pedigree, genetic map, and phased
haplotypes
We chose a publicly available, previously published pedigree, ge-
netic map, and phased marker-dataset as the best starting point
for our analysis (Chan et al. 2019; https://www.biorxiv.org/con
tent/10.1101/794339v1.full). The pedigree and germplasm chosen
represent parents and offspring from the first three cycles of GS
conducted at the International Institute of Tropical Agriculture
(IITA). These germplasm and genomic selections have been de-
scribed in greater detail previously (Rabbi et al. 2017, 2020; Wolfe
et al. 2016a,b, 2017, 2019). We note that each cycle of selection
was done by recurrent genomic truncation selection using a SI
similar (but not identical) to the one described below. The base
generation (C0) was the top-ranked clones among a larger collec-
tion of the diverse but interrelated elite as well as landrace germ-
plasm. Chan et al. (2019) implemented a number of procedures to
ensure the quality of the data. First, technical replications of the
original genotyping-by-sequencing (GBS) were validated with
BIGRED (Chan et al. 2018) and reads were combined to reduce
missingness and increase read-depth-per-sample. Next, a multi-
pass analysis using the pedigree-validation software,
AlphaAssign (Whalen et al. 2018) was used to ensure only rela-
tionships supported by the data were assumed downstream.
Genotypes were called using validated pedigree information, and
sites with more than 30% missing data were removed, leaving
206,539 out of 336,692 sites (summed across all 18 chromosomes)
for analysis. The filtered dataset was used as input for phasing
and imputation. Pedigree-guided imputation and phasing were
accomplished by SHAPEIT2/duoHMM (O’Connell et al. 2014).
Finally, the authors constructed a genetic linkage map based on
crossover events observed in the dataset. We restricted our
analysis to only the 3199 individuals comprising 462 full-sibling
families (and their parents), in which both parents were vali-
dated/known.

Cassava data: traits, trials, and selection indices
We chose four focal cassava traits: dry matter percentage (DM),
fresh root yield in natural-log tons-per-hectare (logFYLD),
season-wide mean cassava mosaic disease severity (1–5 scale;
MCMDS), and total carotenoids by color chart (1–8 scale;
TCHART). These traits include both polygenic (DM and logFYLD)
and mono/oligenic architectures (MCMDS and TCHART). Two of
the traits are known to have important dominance variance
(logFYLD and MCMDS), while DM has been shown to be largely
additive (Wolfe et al. 2016a,b). From these traits, we composed
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two hypothetical SI, which represent two real and disparate

breeding goals (Supplementary Table S1). Both indices target in-

creased DM and logFYLD and reduced MCMDS. We refer to the

first index as the “Standard SI” (or StdSI) as it emphasizes yield

and disease resistance in a white-fleshed background. The sec-

ond index “Biofortification SI” (or BiofortSI) focuses on breaking a

historically negative genetic correlation between DM and carot-

enoid content by weighting most heavily the combination of

yellow-flesh (high TCHART) and high DM. We note that the pedi-

gree and germplasm analyzed here arose from genomic trunca-

tion selection for the equivalent of the StdSI. For this reason, our

population and analyses should not be considered as representa-

tive or definitive regarding biofortification breeding goals. We

started with unscaled, noneconomic weights and scaled them by

dividing by the standard deviation of phenotypic BLUPs (see be-

low) for each trait (Supplementary Table S1).
We used pre-adjusted phenotypes, namely, de-regressed

BLUPs as input for our downstream analyses. The field trial data

used span from 2013 to 2019 and are available directly from

http://www.cassavabase.org. The download, quality control, for-

matting and mixed-model analysis that produced the BLUPs are

fully documented and reproducible here: https://wolfemd.github.

io/IITA_2019GS/. The BLUPs produced and used in this study of

cross variance prediction were originally used for GS conducted

during summer 2019. The entire raw IITA trial download was too

large for GitHub and is therefore stored here: https://cassava

base.org/ftp/marnin_datasets/NGC_BigData/.

Parent-wise cross-validation scheme
We devised a cross-validation scheme that: (1) allowed measure-

ment of the accuracy of predicting means, variances, and cova-

riances in previously unobserved crosses, and (2) enabled us to

distinguish accuracy predicting BV from TGV. First, define a vec-

tor, P of the parents listed in the pedigree. Define also a second

vector C listing the genotypes (clones) in the pedigree, including

the parents (P � C).
We conducted five replications of the following procedure:

1) Define parent-wise cross-validation folds: randomly assign

the parents in P into k-folds. We chose k ¼ 5 folds or about

42 of 209 parents in P per fold (defined as Pk
TST, the list of

“test” parents in the kth-fold.
2) For each of the k-folds (set of 42 “test” parents), divide the

clones vector C into two mutually exclusive sets: “training”

(CTRN) and “validation” (CVLD). From the set CTRN, we exclude

all descendants (offspring, grandchildren, great grandchil-

dren, etc.) of Pk
TST. We include the Pk

TST themselves (pheno-

typing the parents before predicting their offspring) and any

nondescendents. Define CVLD simply as the set difference

between C and CTRN.
3) Estimate marker effects independently by fitting mixed-

models (see section below for further details) to CVLD and

CTRN corresponding to each Pk
TST.

4) For each Pk
TST , define the set of crosses to predict, Xk

toPred to

include any of the 462 actual families (sire-dam pairs) in

the pedigree, in which the Pk
TST were involved. By construc-

tion, the real family members that have been observed for

each of the Xk
toPred were excluded from the model used to get

marker effects for CTRN, and included in the model for CVLD.

Predict the means, variances and covariances for each focal

trait in each cross, Xk
toPred using the CTRN marker effects only.

5) For each family in Xk
toPred, using all existing family members,

compute the sample means, variances, and covariances for
GEBV and GETGV as predicted by the CVLD marker effects.

6) Calculate the accuracy of prediction for each mean

(corBV
lT

; corTGV
lT

), variance (corBV
r2

t¼t
; corTGV

r2
t¼t

) and covariance

(corBV
rt 6¼t

; corTGV
rt 6¼t

) in terms of both BV and TGV. For cor
lT

we used
the Pearson correlation between predicted and sample

mean GEBV/GETGV. For cor
r2

t¼t
and cor

r2
t6¼t

, only families with
greater than two members were able to be included, and we
weighted the correlation between the predicted and sample
(co)variance of GEBV/GETGV according to the family size (R
package::function psych::cor.wt). For sake of comparison, we
also include accuracies in the supplement where predicted

values are correlated to phenotypic (rather than genomic-

predicted) BLUPs, e.g., cor
lT

BV;BLUP; cor
lT

TGV;BLUP, and so on.

The cross-validation scheme is numerically summarized in
Supplementary Table S2 (see also Supplementary Tables S3–S5).

Multi-trait Bayesian ridge regressions
We used the multi-trait Bayesian ridge regression (MtBRR) imple-
mented in the development version of the BGLR R package
(https://github.com/gdlc/BGLR-R), which is itself a direct port of
the model implemented in the package MTM (de los Campos and
Grüneberg 2016). The MtBRR models marker effects as being
drawn from a multivariate-normal distribution with mean effects
of 0 for each trait and variance-covariance parameters jointly es-
timated from the posterior distribution of the Gibbs chain. We
ran each chain for 30,000 iterations, discarded the first 5000 as
burn-in and thinned to every 5th sample. The number of itera-
tions was chosen based on prior univariate analyses using 10,000
iterations (Wolfe et al. 2017). Convergence was confirmed visually
during initial test runs. We used de-regressed BLUPs as responses
in each model to match the approach used for GS (Wolfe et al.
2017), but BGLR does not currently support weighted observa-
tions in the multi-trait model. Our main focus was on the direc-
tional dominance model described above. However, we also fit a
nondirectional additive plus dominance model to which we make
some comparisons in the Supplementary material.

We fit an MtBRR to each CTRN and CVLD as described above. In
addition, we analyzed the entire population (“All” samples) and
the component genetic groups, which are: GG (or C0; the original
progenitors chosen from a population known as the “Genetic
Gain”), TMS13, TMS14, and TMS15, which represent the off-
spring from 2013 (C1), 2014 (C2), and 2015 (C3), respectively.

Predicting cross means, variances, and
usefulnesses
We predicted cross means using the posterior mean marker
effects. For variance predictions, Lehermeier et al. (2017a,b) used
the posterior mean variance (PMV), which is effectively the mean
of the variances predicted by each MCMC-sample of marker
effects (see Equations 7–10 in that study). The alternative ap-
proach, referred to as the variance of posterior means (VPM), is to
make variance predictions simply with the posterior mean
marker effects. The PMV is expected to be less biased compared
to the VPM but is considerably more computationally intensive.
Moreover, PMV requires the on-disk storage of massive posterior
marker-effects arrays. We computed the PMV for each prediction
in the cross-validation study and in estimating population ge-
netic variances. In the Supplementary Appendix, we made a brief
comparison of PMV and VPM and based on these results, used
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VPM in the exploratory predictions, which are described below.
We computed SI means and variances using the predicted (and
sample) means, variances and covariances of the component
traits, and the index weights, given in Supplementary Table S1.

Realized selection intensities (measuring post-
cross selection)
We used GEBV and GETGV based on test-set marker-effects to
compute observed (or realized) usefulness criteria i.e., UCparent and
UCvariety and measure prediction accuracy as follows. For UCparent,
we computed the mean GEBV of family members who were
themselves later used as parents. We computed UCvariety using
the mean GETGV of family members advanced to the penulti-
mate stage of the VDP, the advanced yield trial (AYT). In order to
combine predicted means and variances into usefulness criteria,
i.e., ÛCparent and ÛCvariety, we first calculated the realized intensity
of within-family selection (iRS and iVDP). For iRS, we used the pro-
portion of family members who themselves appear in the pedi-
gree as parents. For the iVDP, we used the raw plot-basis data to
compute the proportion of clones from each family with at least
one plot in the aforementioned AYT stage of the VDP, as of July
2019. We computed standardized selection intensity in R using
i ¼ dnormðqnormð1� propSelÞÞ=propSel, where propSel is the propor-
tion selected.

Exploratory analysis: predictions of previously
untested crosses
We conducted a prediction exercise evaluating the interest of
possible future crosses compared to those previously made in
terms of additive and total merit, i.e., UCparent and UCvariety. We
predicted the means and variances of all possible pairwise mat-
ings between the union of 209 parents already used and the 100
clones with top rank on the StdSI, of which only 3 overlapped
(N¼ 306 parents). This resulted in 47,083 crosses to predict. We
used marker-effects from the full-model (all clones included). We
predicted means, variances, and covariances for all four traits
and subsequently used these to compute StdSI and BiofortSI
means and variances.

The dataset we analyzed does not include all traits or germ-
plasm relevant to the IITA breeding program. For that reason, our
results especially regarding the potential benefits of new matings
are meant as an example. Assessment of the actual best new
matings to make in the ongoing breeding program will rely on a
broader analysis.

Results
Results along with code generating summaries, figures, and re-
lated tables are also available as part of the workflowr R mark-
down website (Results, Figures, Supplementary Figures, and
Supplementary Tables).

Pedigree and Germplasm: There were 3199 individuals in 462
families, derived from 209 parents in our pedigree. Parents were
used an average of 31 (median 16, range 1–256) times as male
and/or female parents in the pedigree. The mean family size was
7 (median 4, range 1–72). The average proportion of homozygosity
was 0.84 (range 0.76–0.93) across the 3199 pedigree members
(computed over 33,370 variable SNP; Supplementary Table S14).
As expected for a population under RS, the homozygosity propor-
tion increased with each generation with C0, C1, C2, and C3 hav-
ing homozygosity proportion of 0.826, 0.835, 0.838, and 0.839,
respectively (Supplementary Figure S1).

Cross-validation Scheme: Across the 5 replications of fivefold
cross-validation, the average number of clones was 1833 (range
1245–2323) for training sets and 1494 (range 1003–2081) for test-
ing sets. The 25 training-testing pairs set up an average of 167
(range 143–204) crosses to predict (Supplementary Table S2).

BLUPs and SI: The correlation between the two SI (StdSI and
BiofortSI; Supplementary Table S1) based on i.i.d. (nongenomic)
BLUPs of component traits was 0.43 (Supplementary Figure S2).
The correlation between DM and TCHART BLUPs was �0.29.

Accuracy of family mean prediction
Across traits, most accuracy estimates (more than 75%) were
lower for prediction of family-mean TGV than for mean BV (me-
dian difference TGV-BV ¼ �0.017). The only exception was for
yield (logFYLD), where TGV>BV, median increase of 0.13 (Figure
1, Supplementary Table S10). We note that accuracy is higher for
BiofortSI compared to StdSI, which makes sense given that
BiofortSI emphasizes DM and TCHART, which have higher accu-
racy than logFYLD and MCMDS.

Accuracy of within-family variance and
covariance prediction
Most (89%) of variance prediction accuracies were greater than
zero, with median accuracy 0.14 across traits (Figure 2A,
Supplementary Table S11). For covariances, prediction accuracy
was lower (median 0.07) and 70% of accuracy estimates were
greater than zero (Figure 2B, Supplementary Table S11). In con-
trast to results for predicting family-means, the most accurately
predicted trait-variances were MCMDS, TCHART, and logFYLD
with median accuracies (proportion accuracies � 0) of 0.25 (0.92),
0.17 (0.84), and 0.15 (1.0), respectively. Var(DM), for example, had
among the lowest median accuracies at 0.07. Interestingly, the
DM-TCHART covariance was also very well predicted with me-
dian accuracy 0.23 (97% of accuracies � 0). Accuracy for the SI
variances were intermediate with median StdSI accuracy ¼ 0.17
(0.92) and BiofortSI ¼ 0.09 (0.78) compared to the component
traits. Like the SI accuracy for family-means, accuracy for varian-
ces was related to the accuracy of the component traits. In con-
trast to predicting SI cross-means, for variances, the StdSI >

BiofortSI. This makes sense as the StdSI emphasized logFYLD and
MCMDS, whose variance were better predicted than those of DM,
TCHART, and related covariances. There were, overall, only small
differences in accuracy between r2

BV and r2
TGV with the median

difference being �0.003.

Accuracy predicting the usefulness of crosses
The observed UC are the mean GEBV or GETGV of family mem-
bers who were themselves later used as parents or advanced on
the VDP. In order to compute the UC, we first calculated the real-
ized intensity of within-family selection (iRS and iVDP)
(Supplementary Figure S3; Supplementary Table S13). There
were 48 families with a mean intensity of 1.59 (mean 2% selected)
that themselves had members who were parents in the pedigree
and could be used to validate UCparent predictions. There were 104
families for validation of UCvariety predictions, with mean intensity
1.46; mean 5% members selected and advanced to the AYT stage
of the VDP. On a per-repeat-fold basis, the number of families
with observed usefulness for measuring prediction accuracy was
limited. For UCparent there were an average of 17 families (min 9,
max 24). For UCvariety the sizes for the focal AYT stage of the VDP
were an average depended on the VDP stage, for the focal stage
UC½AYT�

variety, mean number of 37 families was 37 (min 25, max 50)
per-repeat-fold.
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Most estimates (95%) of UC accuracy were greater than zero,

with per-trait accuracies largely similar to the family-mean pre-
dictions. Indeed, the overall correlation between mean and UC
accuracies was 0.75. As might be expected, given the incorpora-
tion of variance-predictions and the more limited validation sam-
ple size, the UC accuracy was on average lower by �0.09

compared to the family-mean accuracy (Figure 3, Supplementary
Table S12). In contrast to predictions of cross variances, the me-
dian UC for the BiofortSI was higher (0.58) compared to the StdSI
(0.49). Among component traits, median accuracy ranks TCHART

(0.83) > DM (0.65) > logFYLD (0.24) > MCMDS (0.10). As with the

mean, there was a tendency (62% of estimates) for UCparent to be

slightly better predicted than UCvariety (median magnitude of dif-

ference ¼ �0.06). Prediction accuracy for UC was similar when

setting a constant intensity of 2.67 instead of using family-

specific realized intensity (Supplementary Table S12).

Population estimates of the importance of
dominance variance
Our focus is mainly on distinguishing among crosses, and the

accuracy of cross-based predictions. Detailed analysis of the

additive-dominance genetic variance-covariance structure in

Figure 1 Accuracy predicting family means. Fivefold parent-wise cross-validation estimates of the accuracy predicting the cross means on SI (A) and for
component traits (B), are summarized in boxplots. Accuracy (y-axis) was measured as the correlation between the predicted and the sample mean GEBV
or GETGV. For each trait, accuracies are given for two prediction types: family mean BV vs TGV.

Figure 2 Accuracy predicting genetic (co)variances. Fivefold parent-wise cross-validation estimates of the accuracy predicting the genetic variance of
crosses on SI (A) and for component trait variances (B) and covariances (C). Accuracy (y-axis) was measured as the correlation between the predicted
and the sample (co)variance of GEBV or GETGV. For each trait (panel), accuracies for two prediction types are given: VarBV and VarTGV.

M. D. Wolfe et al. | 7



cassava (sub)-populations is an important topic, which we
mostly leave for future study. We make a brief examination of
the genetic variance-covariance estimates associated with the
overall population and component genetic groups. We report

all PMV-covariance estimates in Supplementary Table S15 and
complete BGLR output in the repository associated with this
study. We focus here on genetic variance-covariance account-
ing for LD, as in Lehermeier et al. (2017a), “Method 2.” Over all

genetic groups analyzed, across trait and SI variances, domi-
nance accounted for an average of 24% (range 6–53%).

Dominance was most important (mean 46% of genetic vari-

ance) for yield (logFYLD) and least important for TCHART

(mean 11%) (Figure 4). For several estimates, there was an op-

posing sign between additive and dominance components, e.g.,

positive dominance but negative additive genetic covariance

for DM-logFYLD.

Population estimates of inbreeding effects
We found that genome-wide estimates of the effect of homozy-

gosity were consistently negative for logFYLD with a mean

Figure 3 Accuracy predicting cross usefulness (the expected mean of future selected offspring). Fivefold parent-wise cross-validation estimates of the
accuracy predicting the usefulness of crosses on the SI (A) and for component traits (B), are summarized in boxplots. Accuracy (y-axis) was measured as
the family-size weighted correlation between the predicted and observed usefulness of crosses for breeding parents (UCparent) or varieties (UCvariety).

Figure 4 Population-level measures of the importance of dominance genetic effects. The genetic variance estimates from the models fitted to the overall
population (“All”) and also to its four genetic groups (x-axis) are presented in these barplots. Each panel contains results for a trait variance or
covariance. For SI (A) and component traits (B) the proportion of genetic variance accounted for by dominance is shown on the y-axis. For covariances
between component traits (C) the estimates themselves are plotted. In C, fill color indicates variance component (additive vs dominance).
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directional dominance regression coefficient of �2.75 log(tons/
ha) across genetic groups (mean effect �3.88 across cross-
validation folds). In addition, DM estimates indicated inbreeding
depression effects in several genetic groups and the majority of
cross-validation folds with mean directional dominance regres-
sion coefficient of �4.82 percent dry matter across genetic groups
(mean effect �7.85 across cross-validation folds) and similarly for
MCMDS, mean inbreeding effect of 0.32 worse disease severity
across genetic groups (mean effect 1.27 across cross-validation
folds). This corresponds to higher homozygosity being associated
with lower DM, lower yield, and greater disease severity (Figure 5,
Supplementary Table S16).

Exploring predictions about untested crosses
We made 8 predictions (2 SIs � 2 selection targets [BV, TGV] � 2
criteria [Mean, UC ¼ Mean þ i*SD]) for each of 47,083 possible
crosses of 306 parents. We examined the correlation structure
among these predictions in order to understand the multivariate
decision space they describe (Figure 6, Supplementary Figures S4
and S5).

The two SI are (by design) disparate breeding goals. The mean
correlation (across var. components) between SIs was low for pre-
dictions of the family mean (0.20) and lower for the UC (0.14), but
high for the SD (0.91). The predictions of BV and TGV were
strongly correlated with 0.95 (0.96) for predicted cross means on
the StdSI (BiofortSI), 0.88 (0.91) for predicted genetic standard de-
viation, and 0.93 (0.95) for UC.

The predicted cross means and variances had a low, but nega-
tive correlation (Figure 6A). Across traits and variance compo-
nents, the average correlation between predicted mean and
standard deviation (cor

l;r
) was �0.37. At the standardized intensity

of 2.67 (1% selected) the predicted UC was dominated by the
mean (average cor

l;UC
¼ 0.995) and there was a small negative corre-

lation between variance and UC (average cor
r;UC
¼ �0.26).

We wanted to know how selections of crosses-to-make would
be affected by our choice of criteria. Separately, for each of the 8
predictions of 47,083 crosses, we selected the top 50 ranked
crosses (Supplementary Table S19). In total, only 202 unique
crosses were selected based on their rank on at least one of the 8

predictions. Of those, 112 were selected for the StdSI (90 Biofort)
and included only 7 (6) self-crosses. No crosses were selected for
both SI. None of the selected crosses have previously been tested
in the IITA breeding program. We plotted the predicted l vs the r

(Figure 6A) and the UCparent vs the UCvariety (Figure 6B). We high-
light the unique new crosses proposed and contrast them to the
462 previously made, distinguishing genetic groups (selection-cy-
cle-of-origin, C0, C1, and C2) by colors, in order to illustrate the
extent to which our genomic mate selection criteria propose
novel and putatively better crosses. For simplicity, we plotted
predictions for StdSI only.

There were 44 parents represented among the 112 “best”
crosses for StdSI with a median usage in 3 families each (range
1–70, most popular parent ¼ TMS13F1095P0013). Only 33
parents among 90 “best” crosses were indicated for the BiofortSI
with a median contribution to 4 (range 1–81, most popular par-
ent ¼ IITA-TMS-IBA011371) crosses. Figure 7 breaks down the
selections on the StdSI according to prediction and variance
components as a network where selected parents are nodes and
matings are edges. For the StdSI, only 17 of 112 crosses (30 of 90
for BiofortSI) were selected jointly for both BV and TGV. Self-
crosses were only selected based on BV. In fact, 22 of 44 parents
selected on the StdSI were chosen only for the TGV of their
crosses and 4 only for their BVs (Figure 7). For the BiofortSI, one
parent was chosen only for BV, but 14 of 33 were only interesting
for their TGV. Only 27 crosses for the StdSI (14 for BiofortSI)
were selected only based on the UC (i.e., selected for their vari-
ance but not their mean). As judged by the number of times a
cross was chosen given the four selection criteria, there are 58
unique crosses in the top 50 for the StdSI and 66 for the
BiofortSI. This demonstrates a relatively simple approach for
selecting the overall best crosses based on the four predicted
mate selection criteria.

Discussion
We developed and tested genomic mate selection criteria suitable
for multi-trait index selection in organisms of arbitrary homozy-
gosity level where the F1 (full-sibling progeny) are of direct

Figure 5 Estimates of the genome-wide effect of inbreeding. For each trait (panels), the fixed-effect for genome-wide proportion of homozygous sites is
shown on the y-axis, as estimated by a directional dominance model. For the overall population (“All”) and four genetic groups (“C0” C1”C2”C3”), the
posterior mean estimate and its standard deviation (bars) are shown on the x-axis. For comparison a boxplot showing the distribution of estimates from
models fit to parent-wise cross-validation training and validation sets (“ParentwiseCV”) is also shown.

M. D. Wolfe et al. | 9



interest as future parents and/or cultivars (varieties). We focused

on the prediction of the SI-associated genetic variance of crosses

based on the haplotypes of proposed parents, estimates of

marker effects, and estimates of recombination frequencies be-

tween marker loci. We combined the predicted mean and vari-

ance of a cross into usefulness criteria for parent (UCparent) and

variety (UCvariety) development, by predicting the genetic variance

of both breeding (r2
BV) and TGVs (r2

TGV ¼ r2
BV þ r2

DD).

Sufficiency and implications of prediction
accuracy estimates
We worked with 462 real cassava families of heterogeneous size.

We made practical use of the available data in implementing the

parent-wise cross-validation scheme. We found that prediction

accuracy for family means were largely similar to our previously

published estimates (Wolfe et al. 2016a, 2017). Variance and UC

prediction accuracies were lower than mean prediction accura-

cies in general. Given that variances are the second-moment of

the distribution, it makes sense that accuracies for variances are

lower than for means (Zhong and Jannink 2007; Osthushenrich

et al. 2018; Neyhart and Smith 2019). The accuracy predicting the

family mean for a given trait was not well correlated with the ac-

curacy estimate for predicting family variances (r ¼ �0.22). This

suggests that, for a given phenotype, breeding programs cannot

simply rely on available estimates of family-mean prediction ac-

curacy to determine the adequacy of family-variance predictions.

The UC and family-mean accuracy estimates were reasonably

correlated (r¼ 0.75).
Many factors contribute to achieving optimal accuracy and

those factors are well understood in the literature. We focused

here on getting an assessment of the overall ability to distin-

guish crosses with high vs low genetic variances. Previous stud-

ies of variance-prediction accuracy evaluated relatively few

families, but with larger size (Osthushenrich et al. 2018; Yao

et al. 2018; Neyhart and Smith 2019). Interestingly, we found

that traits with the most accurately predicted variances had

less accurately predicted means, including the SIs (mean: StdSI

< BiofortSI; variance: StdSI > BiofortSI; Figures 1 and 2). This

Figure 6 Genomic mate selection criteria for the StdSI predicted for previously untested crosses. We predicted 47,083 crosses among 306 parents. We
made four predictions: 2 variance components [BV, TGV] � 2 criteria [Mean, UC ¼Mean þ 2*SD]. Two-dimensional contour lines show the distribution of
all predicted crosses. For each of the predictions, we took the top 50 ranked crosses and then selected the union of crosses selected by at least one
metric. The 462 crosses previously made are also shown and genetic groups (C0, C1, and C2) are distinguished by color from the 112 new crosses to
highlight the opportunity for improvement. Selfs are shown as triangles, outcrosses as circles. The predicted cross genetic mean is plotted against the
predicted family genetic standard deviation (Sd, r) for BV and TGV (panel rows) (A). The UCparent is plotted against the UCvariety with a red one-to-one line
in B.
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does not seem initially explainable by our priors regarding trait
genetic architectures; DM and FYLD are both generally consid-
ered as polygenic/infinitesimal traits, while MCMDS and
TCHART are expected to be closer to mono- or oligogenic
(Wolfe et al. 2016b;Rabbi et al. 2020). Differences in accuracy be-
tween mean and variance predictions should instead have to
do with the nature of linkage disequilibrium, especially as it
affects marker-causal relationships (de Los Campos et al. 2015;
Lehermeier et al. 2017a). Similar to the simulations and empiri-
cal results of Neyhart et al. (2019) we found that the DM-
TCHART covariance was particularly well predicted, corre-
sponding to hypothesized tight linkage between QTL on chro-
mosome 1 (Rabbi et al. 2017); a region known to contain large
low-recombination regions of historical introgression from the
wild relative M. glaziovii (Wolfe et al. 2019).

The actual accuracy achieved should be higher than our esti-
mates. Our empirical estimates of progeny variance, against
which we validate our predictions, are subject to both Mendelian
sampling and effect estimation error. That error decreases the
correlation, biasing all our estimates downward. Put another
way, we make predictions of the variance of an infinite number
of progeny, but are only able to correlate those predictions to a
real sample of families with finite and heterogeneous numbers of
offspring.

Several conditions for the implementation of cross-variance
predictions and mate selection need to be met. First, predictions
of GEBV or GETGV are considered suitable for genomic truncation
selection; for example, based on cross-validation and/or cross-
generation prediction accuracy estimates. Second, genetic maps
are established and trusted. Finally, accurate marker data phas-
ing for candidate parents must be available. If these criteria are
met the logistics of mate selection are feasible.

The possibility remains that estimates of variance might be
poor enough to contribute more noise than signal to the selection
decisions. The answer is hard to intuit and decisions must be
made on a program-specific basis. By obtaining a prediction of
cross-variance we add a component of information to the cross-
mean predictions we had before. We also add a potential source
of error. One suggestion might simply be to incorporate cross-
variance predictions into selections via the UC cautiously by
choosing a relatively low-standardized selection intensity value
when incorporating the mean and variance predictions. Field val-
idating variance predictions across multiple large families and
simulating long-term outcomes may offer the best viable addi-
tional sources of decision support regarding the use of usefulness
predictions.

The importance of nonadditive effects and the
effect on inbreeding
Nonadditive effects are important in cassava, accounting for an
average of 24% of genetic variance in this study. Our results are
consistent with previous studies that highlight the importance of
nonadditive effects for fresh root yields but not for dry matter or
total carotenoid content (Esuma et al. 2016; Wolfe et al. 2016a,
2017; Nduwumuremyi et al. 2018; Andrade et al. 2019). To our
knowledge, we are the first to report partitions of trait-trait ge-
netic covariance into additive and dominance components,
though we do not comment on it in detail in this study. We also
report the first estimates of genome-wide marker-based direc-
tional dominance in cassava. Using the model of Xiang et al.
(2016), we found notable evidence of inbreeding depression, for ev-
ery trait except TCHART, but especially yield. Our results match
several previous estimates of inbreeding depression based on
field observation of selfed (S1) progeny (Pujol and McKey 2006;

Figure 7 Network plot of selected parents and matings for the StdSI. There were 44 parents and 112 crosses chosen because they were in the top 50 for
at least one of four predictions: 2 variance components [BV, TGV] � 2 criteria [Mean, UC ¼Mean þ 2*SD]). Parents are shown as nodes, with size
proportional to their usage (number of connections). Matings are shown as edges, with linetype distinguishing selection based on Mean (solid) and UC
(dashed) and color depicts selection for BV vs TGV.
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Rojas et al. 2009; Kawuki et al. 2011; de Freitas et al. 2016). Theory
and data (reviewed in Kristensen and Sørensen 2005) indicate
that traits more closely associated with fitness (in cassava, this
would be traits related to root and stem production, for example)
should be more impacted by directional dominance (inbreeding
depression). These results also make sense in light of the evi-
dence of deleterious genetic load in cassava (Ramu et al. 2017)
and balancing selection for heterozygosity in introgression
regions (Wolfe et al. 2019). It was also interesting to observe that
there are unique matings with elite rank only for TGV (nonaddi-
tive effects) and still others uniquely interesting for BV. The net-
work plot in Figure 7 shows a pattern of crosses within vs among
particular parents selected for exploiting either BV or TGV that
warrants future investigation. Our cross-validation scheme
allows us to distinguish TGV and BV accuracy by using genomic
estimates of BV and TGV as validation data. Nevertheless, we
found only small differences between TGV and BV accuracy for
both mean and variance-related predictions. The composition of
a mating plan based on UCparent and UCvariety is still an important
decision point for breeders. To a certain extent, choices depend
on a breeder’s emphasis on matings to produce varieties vs to im-
prove the population overall. In the future, numerically opti-
mized mating plans that balance investment in crosses to
maximize the value of parents and varieties produced by each
crossing block can be developed.

Caveats, limitations, and future directions for
GMS in outbred, clonal crops
In some circumstances, for computational efficiency, it may be
desirable to use the VPM rather than the PMV approach to predict
cross variances. Our results show that the correlation between
VPM and PMV predictions is very high but their magnitude is dif-
ferent, as is the accuracy estimate (see Supplementary
Appendix). If any bias is consistent, then ranking differences be-
tween PMV and VPM (or REML) predictions of cross variance will
not occur. Ultimately, if implementing mate selections via the
usefulness criteria, choosing the VPM method would mostly have
the consequence of shrinking the predicted values toward the
mean.

Other critical considerations for practical implementation in-
clude the necessary phasing quality and method. We leveraged a
dataset imputed and phased using a validated pedigree (Chan
et al. 2019); many plant breeding programs may not have suitable
pedigree or depth of relationships to enable this. We do not rule
out using “standard” population-based imputation and phasing
(e.g., Browning and Browning 2016). Promising also will be the de-
velopment of a practical haplotype graph suitable for outbred
diploids like cassava (Jensen et al. 2020; Zou et al. 2020). In addi-
tion, the necessary marker density for accurate prediction should
be considered as it has a very significant effect on computational
speed.

Several extensions and future directions are of interest mov-
ing forward from the current study. We have only addressed
dominance, but extensions of variance prediction to include epis-
tasis or even nonlinear kernel types should be straightforward
(Alves et al. 2019). The directional dominance model and its as-
sumption of uncorrelated additive and dominance effects and
linear genome-wide effects on phenotype of increasing homozy-
gosity need evaluation (Xiang et al. 2018). We note that many out-
bred, clonal crops are actually polyploids. For organisms with
such genomes, further developments in recombination mapping,
phasing, and prediction models will be required, but are expected
to be possible. In our study, we focused on trait-associated

variance prediction. Considerable development of mate selection
criteria has concerned the avoidance of genetic diversity loss gen-
erally, these are approaches that constrain inbreeding (Kinghorn
2011; Woolliams et al. 2015) and are distinct from trait-associated
predictions presented here. We note that Allier et al. (2019b) re-
cently described prediction of the variance in parental contribu-
tion in a family (i.e., the variance in inbreeding level) as a
correlated trait, using an extension of the approach for prediction
trait-associated variance.

Conclusions
By providing predictions of the selection-index-associated means
and variances in arbitrary crosses for additive and dominance var-
iances, we provided a suite of genomic mate selection criteria
suitable for the complexities of a modern (cassava) breeding pro-
gram. We presented a simple approach for genomic truncation
mate selection that identifies a profile of crosses collectively in-
teresting because of the predicted merit of their progeny in terms
oflBV; lTGV ; rBV, and rTGV. Ultimately, crossing plans can be nu-
merically optimized (Akdemir and Sánchez 2016; Gorjanc and
Hickey 2018; Akdemir et al. 2019; Allier et al. 2019a) to consider
trait-associated means and variances as well as inbreeding levels,
to provide a high degree of control for the management of breed-
ing populations.

Data availability, reproducibility, and
predCrossVar R package
We accessed the pedigree, genetic map and haplotypes from the
Cassavabase FTP server repository for Chan et al. 2019: ftp://ftp.
cassavabase.org//manuscripts/Chan_et_al_2019. The full reposi-
tory for this study including all data and output can also be
accessed through the Cassavabase FTP server by choosing
"Guest" credentials, here: ftp://ftp.cassavabase.org//manuscripts/
Wolfe_et_al_2021. Alternatively, all files are also available
through the Cassavabase FTP server-archive: https://cassava
base.org/ftp/manuscripts/Wolfe_et_al_2021/. The repository, mi-
nus large data files, can be found on GitHub, here: https://github.
com/wolfemd/PredictOutbredCrossVar/. We used Rmarkdown
and the R package workflowr (version 1.6.2, https://github.com/
jdblischak/workflowr) to document our empirical analysis as a
fully reproducible website: https://wolfemd.github.io/
PredictOutbredCrossVar/. Finally, we implemented the core func-
tions for multi-trait prediction of outbred cross variances includ-
ing additive and dominance effects in an R package
predCrossVar, repository on GitHub: https://github.com/wolf
emd/predCrossVar}, package reference manual: https://wolfemd.
github.io/predCrossVar/, which we used in the aforementioned
analyses. Supplemental Material available at figshare: https://
doi.org/10.25386/genetics.14569044.
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